Hiring Problem
and
Generating Random Permutations
Andreas Klappenecker
Partially based on slides by Prof. Welch
• You need to hire a new employee.

• The headhunter sends you a different applicant every day for n days.

• If the applicant is better than the current employee then fire the current employee and hire the applicant.

• Firing and hiring is expensive.

• How expensive is the whole process?
• Worst case is when the headhunter sends you the n applicants in increasing order of goodness.

• Then you hire (and fire) each one in turn: n hires.
• Best case is when the headhunter sends you the best applicant on the first day.

• Total cost is just 1 (fire and hire once).
• What about the average cost?

• An input to the hiring problem is an ordering of the n applicants.

• There are n! different inputs.

• Assume there is some distribution on the inputs
 • for instance, each ordering is equally likely
 • but other distributions are also possible

• Average cost is expected value...
• We want to know the expected cost of our hiring algorithm, in terms of how many times we hire an applicant.

• Elementary event s is a sequence of the n applicants.

• Sample space is all $n!$ sequences of applicants.

• Assume uniform distribution, so each sequence is equally likely, i.e., has probability $1/n!$.

• Random variable $X(s)$ is the number of applicants that are hired, given the input sequence s.

• What is $E[X]$?
• Break the problem down using **indicator random variables** and properties of expectation

• Change viewpoint: instead of one random variable that counts how many applicants are hired, consider n random variables, each one keeping track of whether or not a particular applicant is hired.

• Indicator random variable X_i for applicant i: 1 if applicant i is hired, 0 otherwise
• Important fact: \(X = X_1 + X_2 + \ldots + X_n \)

• number hired is sum of all the indicator r.v.'s

• Important fact:

• \(E[X_i] = \Pr[\text{"applicant i is hired"}] \)

• Why? Plug in definition of expected value.

• Probability of hiring i is probability that i is better than the previous i-1 applicants…
• Suppose $n = 4$ and $i = 3$.

• In what fraction of all the inputs is the 3rd applicant better than the 2 previous ones?

1234 2134 3124 4123
1243 2143 3142 4132
1324 2314 3214 4213
1342 2341 3241 4231
1423 2413 3412 4312
1432 2431 3421 4321
Suppose $n = 4$ and $i = 3$.

In what fraction of all the inputs is the 3rd applicant better than the 2 previous ones?

\[
\frac{8}{24} = \frac{1}{3}
\]
• In general, since all permutations are equally likely, if we only consider the first i applicants, the largest of them is equally likely to occur in each of the i positions.

• Thus $\Pr[X_i = 1] = 1/i$.
• Recall that X is random variable equal to the number of hires
• Recall that X is random variable equal to the number of hires

• Recall that $X = \text{the sum of the } X_i's$ (each X_i is the random variable that tells whether or not the i-th applicant is hired)
• Recall that X is random variable equal to the number of hires

• Recall that $X = \sum X_i$'s (each X_i is the random variable that tells whether or not the i-th applicant is hired)

• $E[X] = E[\sum X_i]$
• Recall that X is random variable equal to the number of hires

• Recall that $X = \sum X_i$'s (each X_i is the random variable that tells whether or not the i-th applicant is hired)

• $E[X] = E[\sum X_i]$

 $= \sum E[X_i]$, by property of E
• Recall that X is random variable equal to the number of hires

• Recall that $X = \text{the sum of the } X_i's (each X_i is the random variable that tells whether or not the i-th applicant is hired)$

• $E[X] = E[\sum X_i]$

 $= \sum E[X_i], \text{by property of } E$

 $= \sum \Pr[X_i = 1], \text{by property of } X_i$
• Recall that X is random variable equal to the number of hires

• Recall that $X = \text{the sum of the } X_i\text{'s (each } X_i \text{ is the random variable that tells whether or not the } i\text{-th applicant is hired)}$

• $E[X] = E[\sum X_i]$

$$= \sum E[X_i], \text{ by property of } E$$

$$= \sum \Pr[X_i = 1], \text{ by property of } X_i$$

$$= \sum 1/i, \text{ by argument on previous slide}$$
• Recall that X is random variable equal to the number of hires

• Recall that $X = \text{the sum of the } X_i \text{'s (each } X_i \text{ is the random variable that tells whether or not the i-th applicant is hired)}$

• $E[X] = E[\sum X_i]$

 $= \sum E[X_i], \text{ by property of } E$

 $= \sum \Pr[X_i = 1], \text{ by property of } X_i$

 $= \sum 1/i, \text{ by argument on previous slide}$

 $\leq \ln n + 1, \text{ by formula for harmonic number}$
• So average number of hires is $\ln n$, which is much better than worst case number (n).

• But this relies on the headhunter sending you the applicants in random order.

• What if you cannot rely on that?

 • maybe headhunter always likes to impress you, by sending you better and better applicants

• If you can get access to the list of applicants in advance, you can create your own randomization, by randomly permuting the list and then interviewing the applicants.

• Move from (passive) probabilistic analysis to (active) randomized algorithm by putting the randomization under your control!
• Instead of relying on a (perhaps incorrect) assumption that inputs exhibit some distribution, make your own input distribution by, say, permuting the input randomly or taking some other random action

• On the same input, a randomized algorithm has multiple possible executions

• No one input elicits worst-case behavior

• Typically we analyze the average case behavior for the worst possible input
• Suppose we have access to the entire list of candidates in advance

• Randomly permute the candidate list

• Then interview the candidates in this random sequence

• Expected number of hirings/firings is $\mathcal{O}(\log n)$ no matter what the original input is
Probabilistic Analysis versus Randomized Algorithm

- Probabilistic analysis of a deterministic algorithm:
 - assume some probability distribution on the inputs

- Randomized algorithm:
 - use random choices in the algorithm
Generating Random Permutations
How to Randomly Permute an Array

- input: array A[1..n]
- for i := 1 to n do
 - j := value in [i..n] chosen uniformly at random
 - swap A[i] with A[j]
• Show that after i-th iteration of the for loop:

\[A[1..i] \] equals each permutation of i elements from \(\{1, \ldots, n\} \) with probability \(\frac{(n-i)!}{n!} \)

• **Basis:** After first iteration, \(A[1] \) contains each permutation of 1 element from \(\{1, \ldots, n\} \) with probability \(\frac{(n-1)!}{n!} = \frac{1}{n} \)

• true since \(A[1] \) is swapped with an element drawn from the entire array uniformly at random
• **Induction:** Assume that after (i−1)-st iteration of the for loop

\[A[1..i−1] \] equals each permutation of i−1 elements from \{1,\ldots,n\} with probability \((n−(i−1))!/n!\)

• The probability that \(A[1..i]\) contains permutation \(x_1, x_2, \ldots, x_i\) is the probability that \(A[1..i−1]\) contains \(x_1, x_2, \ldots, x_{i−1}\) after the (i−1)-st iteration AND that the i-th iteration puts \(x_i\) in \(A[i]\).
• Let e_1 be the event that $A[1..i-1]$ contains $x_1, x_2, \ldots, x_{i-1}$ after the $(i-1)$-st iteration.

• Let e_2 be the event that the i-th iteration puts x_i in $A[i]$.

• We need to show that $\Pr[e_1 \cap e_2] = (n-i)!/n!$.

• Unfortunately, e_1 and e_2 are not independent: if some element appears in $A[1..i-1]$, then it is not available to appear in $A[i]$.
• Recall: \(e_1 \) is event that \(A[1..i-1] = x_1, \ldots, x_{i-1} \)

• Recall: \(e_2 \) is event that \(A[i] = x_i \)

\[
\Pr[e_1 \cap e_2] = \Pr[e_2|e_1] \cdot \Pr[e_1]
\]

\[
\Pr[e_2|e_1] = \frac{1}{n-i+1} \text{ because}
\]

• \(x_i \) is available in \(A[i..n] \) to be chosen since \(e_1 \) already occurred and did not include \(x_i \)

• every element in \(A[i..n] \) is equally likely to be chosen

\[
\Pr[e_1] = \frac{(n-(i-1))!}{n!} \text{ by inductive hypothesis}
\]

• So \(\Pr[e_1 \cap e_2] = \left[\frac{1}{n-i+1} \right] \cdot \frac{(n-(i-1))!}{n!} \)
• After the last iteration (the n-th), the inductive hypothesis tells us that

\[A[1..n] \] equals each permutation of \(n \) elements from \(\{1, \ldots, n\} \) with probability \((n-n)!/n! = 1/n! \)

• Thus the algorithm gives us a uniform random permutation.