Deterministic and Randomized
Quicksort

PPN O o B 4, Tt AT P S AT STt S 2% B LI G vs e Nl b e b e AT e i i OB s B

Andreas Klappenecker

Overview

e L e L i U

o Deterministic Quicksort
o Modify Quicksort to obtain better asymptotic bound
o Linear-time median algorithm

o Randomized Quicksort

Sunday, October 28, 2012

Deterministic Quicksort

. Y . - = o DY, L & A oy Yy ~ : : -
WWMMMMﬂM&M" haaet B bt 3 7PN ek 2 :Wv....ag-.u\q;h“‘ - YO SN

e s P2V

Quicksort(A,p,r)
if p<r then
q := Partition(A,p,r); // rearrange A[p..r] in place
Quicksort(A, p,g-1):
Quicksort(A,p+1,r);

Sunday, October 28, 2012

Divide-and-Conquer

YOI ERE A B L Tt G BT P GG BT SN Tty =" IV ST IR s v oV st maa A e N, el s et
: -’ Al ¥, O A o3 ’ & L

The design of Quicksort is based on the divide-and-conquer
paradigm.

a) Divide: Partition the array A[p..r] into two (possibly empty)
subarrays A[p..q-1] and A[g+1,r] such that

- A[x] <= A[q] for all x in [p..q-1]
- A[x] > A[q] for all x in [g+1,r]
b) Conquer: Recursively sort A[p..q-1] and A[g+1,r]

c) Combine: nothing to do here

Sunday, October 28, 2012

Partition

. > = . - ot b ome < NGk > Yo = =i) 2 _— {
PESIETERE A B 4 Tt G B Prman S DA T S8 45 = R 0t Y et ¥ S = BAVER 2100 i s i st PSP Bl s i PSS

1|31 4
1 r

Select pivot (orange element) and rearrange:

larger elements to the left of the pivot (red)

elements not exceeding the pivot to the right (yellow)

Sunday, October 28, 2012

Partition

g N R R R e e It L I itiny. PV S e R epr e SN
: s 4 i o 7 - ’ H Y

Partition(A,p,r)
x := A[r]; // select rightmost element as pivot
1= p-1;
for j=p tor-1do
if A[j]<= x then i :=i+1; swap(A[il, A[j]): fi:

od; Throughout the for loop:

. If p <= k<= i then A[k]J<= x
SWGP(A[H'].]:A[r‘]) 3 If i+1<:k e J_l Then A[k] > X
return i+l; e Tf k=r, then A[k] = x

® A[j..r-1] is unstructured

Sunday, October 28, 2012

Partition - Loop - Example

Sunday, October 28, 2012

L L e e e Lt lanie & PWPSPURSRE R S5 PR P

After the loop, the partition routine swaps the leftmost
element of the right partition with the pivot element:

21113

p 1

211 (3]4
p 1 r

now recursively sort yellow and red parts.

swap(A[i+1],A[r])

Sunday, October 28, 2012

Worst-Case Partitioning

v : - . R L . e ’ . ' -
DI B R A Tt GBS P St oDt 18 K79t S O LT ER I Y e SN st e b A - OO 0 0 i it

The worst-case behavior for quicksort occurs on an input of
length n when partitioning produces just one subproblem
with n-1 elements and one subproblem with O elements.

Therefore the recurrence for the running time T(n) is:

T(n) = T(n-1) + T(O) + B(n) = T(n-1) + B(n) = B(n?)

Perhaps we should call this algorithm pokysort?

Sunday, October 28, 2012

"Better” Quicksort and Linear
Medlcm Algorl‘rhm

PRSI A B Tt PSS P S DA 18 87t SOV LTI TR e N it e b = OENNT 0 40 1 e i DS s T AN

Best-case Par’rl’rlonmg

PO EIRE b Ao 4 Tt g BT PG DA T WA Tty S I S EA2 I v Cgaet W e b A B MR roann el el

Best-case partitioning:

If partition produces two subproblems that are roughly of the
same size, then the recurrence of the running time is

T(n) <= 2T(n/2) + B(n)
so that T(n) = O(n log n)
Can we achieve this bound?

Yes, modify the algorithm. Use a linear-time median algorithm
to find median, then partition using median as pivot.

Sunday, October 28, 2012

Linear Median Algorithm

. : = . AR N et N b S e . 2 . ' »
mmmm»»%"-%m" FKEvee e et il ke L P R ey e

Let A[1..n] be an array over a totally ordered domain.

- Partition A into groups of 5 and find the median of each
group. [You can do that with 6 comparisons]

- Make an array U[1..n/5] of the medians and find the median m
of U by recursively calling the algorithm.

- Partition the array A using the median-of-medians m to find
the rank of m in A. If m is of larger rank than the median of A,
eliminate all elements > m. If m is of smaller rank than the
median of A, then eliminate all elements <= m. Repeat the
search on the smaller array.

Sunday, October 28, 2012

Linear-Time Medlcm Finding

mmmmm“ Y T N brwsmy 1_? Lt P st g - M‘Qu . o ‘.’ﬂw

How many elements do we eliminate in each round?

The array U contains n/5 elements. Thus, n/10 elements of U
are larger (smaller) than m, since m is the median of U . Since
each element in U is a median itself, there are 3n/10 elements
in A that are larger (smaller) than m.

Therefore, we eliminate (3/10)n elements in each round.
Thus, the time T(n) to find the median is
T(n) <= T(n/5) + T(7n/10) + 6n/5.

// median of U, recursive call, and finding medians of groups

Sunday, October 28, 2012

Solving the Recurrence

. 3 = D g = 4a Ly . " L > . . »
YIRS O A B L Tt BT PG DAY 84 ety = IV ST AL R b s e N st A N e W e el oA

Suppose that T(n) <= cn (for some ¢ to be determined later)
T(n) <= ¢(n/B) + ¢(7n/10)+6n/5= c¢(9n/10)+6n/5

If this is to be <= cn, then we need to have

c(9n/10)+12n/10 <= cn

or12<=c¢

Suppose that T(1) = d. Then choose ¢ = max{12,d}.

An easy proof by induction yields T(n) <= cn.

Sunday, October 28, 2012

Goal Achieved?

. : - . y o DY L i oy ¥ 4 e e . . , »
YOOI LR A s & Tt G A o G DA T S A 45 = Rifpee g et Lt anie . DIPTSR = P W P

We can accomplish that quicksort achieves O(n log h) running
time, if we use the linear-time median finding algorithm to
select the pivot element.

Unfortunately, the constant in the big Oh expression becomes
large, and quicksort looses some of its appeal.

Is there a simpler solution?

Sunday, October 28, 2012

\ized

- =
- % E o e

‘Quicksort

Sunday, October 28, 2012

Deterministic Quicksort

- v > = V e & ’um“_: ¥ Aoy Yo S o . ’ »
WWMMW“'"“M" ettt Lot ST, 2 el 18 ande . VIR - N S

o 8 ¥ 2

Randomized-Quicksort(A,p,r)
if p<r then
q := Randomized-Partition(A p,r);
Randomized-Quicksort(A, p.g-1):
Randomized-Quicksort(A,p+1,r);

Sunday, October 28, 2012

Partition

. : = i | DY Lt g s oy ¥ e . . ' -
YOOI LR A s & Tt G A o G DA T S A 45 = bt P e O B BTNCR s 220 00 o i i ISP Bl e i IR

-

Randomized-Partition(A p,r)
i := Random(p,r);
swap(A[il,A[r]):
Partition(A p.r):

Almost the same as Partition, but now the pivot element is not
the rightmost element, but rather an element from A[p..r] that
is chosen uniformly at random.

Sunday, October 28, 2012

Goal

. : = . AR N et N b S e . 2 . ' »
mmmm»»%"-%m" FKEvee e et il ke L P R ey e

The running time of quicksort depends mostly on the number of
comparisons performed in all calls to the Randomized-Partition
routine.

Let X denote the random variable counting the number of
comparisons in all calls to Randomized-Partition.

Sunday, October 28, 2012

Notations

. g g Y oy o WY, St dim sy ¥ 4 Awsng Y oy . a - : -
VOO EIRE A en Trt G P S AT DA SR T4t = et d i Al ankal PRGTSRRIE L S T U

-

Let zidenote the i-th smallest element of A[l..n].
Thus A[l..n] sorted is <z1, z2, ..., Zn>.

Let Zij = {zi, ..., zj} denote the set of elements between z;and z;,
including these elements.

Xij = I{ zi is compared to zj}.

Thus, Xj;is an indicator random variable for the event that the
i-th smallest and the j-th smallest elements of A are compared
in an execution of quicksort.

Sunday, October 28, 2012

Number of Comparisons

MWMMMVQQ*%b-nM“::l{’bw-~ R e Laianie ” P R ‘- el

Since each pair of elements is compared at most once by
quicksort, the number X of comparisons is given

10 o e)
s
i=1 j=i+1
Therefore, the expected number of comparisons is

n 1

L L E[X;] ;‘ Pr|z; is compared to z;]

e el = 1] et

Sunday, October 28, 2012

When do we compare?

; : : iy o’ W bt . i S : . =
L T R Y L T e AR

When do we compare z; to z;?

Suppose we pick a pivot element in Z;; = {zi, ..., z;}.

If zi< x < zjthen z; and z; will land in different partitions and
will never be compared afterwards.

Therefore, zi and z; will be compared if and only if the first
element of Z;;to be picked as pivot element is contained in the

set {zi,z;}.

Sunday, October 28, 2012

Probability of Comparison

. 3 L - = - .“m“_: . A oig Ve Y 9 : - . : -
e n ke s, b I g vl N Tl e e b v e et L ke L PR g = Py W s B S

Pr|z; or z; is the first pivot chosen from Z;,]
= Pr|z; is the first pivot chosen from Z;;]

+ Pr|z, is the first pivot chosen from Z;,]
R e e e o 0
AR TARRR AN L e

Sunday, October 28, 2012

Expected Number of Comparisons

e DN T T L Rt i S i PV S Seeel-per e ST
: i 2 AV, O 7 - ’ H Y

BlX]

||
1)
&5

Sunday, October 28, 2012

Conclusion

& . s - e "N e Lom '. A o g ¥ 7 -] . . -
WWMMWVQQ%" Ade St 2 7PN % ““"“"d‘.'u‘.:{&A.;t‘,“M%w

I't follows that the expected running time of Randomized-
Quicksort is O(n log n).

It is unlikely that this algorithm will choose a terribly
unbalanced partition each time, so the performance is very good
almost all the time.

Sunday, October 28, 2012

