
Deterministic and Randomized
Quicksort

Andreas Klappenecker

Sunday, October 28, 2012

Overview

Deterministic Quicksort

Modify Quicksort to obtain better asymptotic bound

Linear-time median algorithm

Randomized Quicksort

Sunday, October 28, 2012

Deterministic Quicksort

Quicksort(A,p,r)

if p < r then

q := Partition(A,p,r); // rearrange A[p..r] in place

Quicksort(A, p,q-1);

Quicksort(A,p+1,r);

Sunday, October 28, 2012

Divide-and-Conquer

The design of Quicksort is based on the divide-and-conquer
paradigm.

a) Divide: Partition the array A[p..r] into two (possibly empty)
subarrays A[p..q-1] and A[q+1,r] such that

- A[x] <= A[q] for all x in [p..q-1]

- A[x] > A[q] for all x in [q+1,r]

b) Conquer: Recursively sort A[p..q-1] and A[q+1,r]

c) Combine: nothing to do here

Sunday, October 28, 2012

Partition

Select pivot (orange element) and rearrange:

larger elements to the left of the pivot (red)

elements not exceeding the pivot to the right (yellow)

2 1 3 4 7 5 6 8

p i r

Sunday, October 28, 2012

Partition

Partition(A,p,r)

x := A[r]; // select rightmost element as pivot

i := p-1;

for j = p to r-1 do

if A[j] <= x then i := i+1; swap(A[i], A[j]); fi;

od;

swap(A[i+1],A[r])

return i+1;

Throughout the for loop:
• If p <= k <= i then A[k]<= x
• If i+1<=k <= j-1 then A[k] > x
• If k=r, then A[k] = x
• A[j..r-1] is unstructured

Sunday, October 28, 2012

Partition - Loop - Example

i
2 8 7 1 3 5 6 4

p,j r

2 8 7 1 3 5 6 4

p,i j r

2 8 7 1 3 5 6 4

p,i j r

2 8 7 1 3 5 6 4

p,i j r

2 1 7 8 3 5 6 4

p i j r

2 1 3 8 7 5 6 4

p i j r

2 1 3 8 7 5 6 4

p i j r

2 1 3 8 7 5 6 4

p i r

Sunday, October 28, 2012

After the loop, the partition routine swaps the leftmost
element of the right partition with the pivot element:

swap(A[i+1],A[r])

now recursively sort yellow and red parts.

2 1 3 8 7 5 6 4

p i r

2 1 3 4 7 5 6 8

p i r

Sunday, October 28, 2012

Worst-Case Partitioning

The worst-case behavior for quicksort occurs on an input of
length n when partitioning produces just one subproblem
with n-1 elements and one subproblem with 0 elements.

Therefore the recurrence for the running time T(n) is:

T(n) = T(n-1) + T(0) + θ(n) = T(n-1) + θ(n) = θ(n2)

Perhaps we should call this algorithm pokysort?

Sunday, October 28, 2012

“Better” Quicksort and Linear
Median Algorithm

Sunday, October 28, 2012

Best-case Partitioning

Best-case partitioning:

If partition produces two subproblems that are roughly of the
same size, then the recurrence of the running time is

T(n) <= 2T(n/2) + θ(n)

so that T(n) = O(n log n)

Can we achieve this bound?

Yes, modify the algorithm. Use a linear-time median algorithm
to find median, then partition using median as pivot.

Sunday, October 28, 2012

Linear Median Algorithm

Let A[1..n] be an array over a totally ordered domain.

- Partition A into groups of 5 and find the median of each
group. [You can do that with 6 comparisons]

- Make an array U[1..n/5] of the medians and find the median m
of U by recursively calling the algorithm.

- Partition the array A using the median-of-medians m to find
the rank of m in A. If m is of larger rank than the median of A,
eliminate all elements > m. If m is of smaller rank than the
median of A, then eliminate all elements <= m. Repeat the
search on the smaller array.

Sunday, October 28, 2012

Linear-Time Median Finding

How many elements do we eliminate in each round?

The array U contains n/5 elements. Thus, n/10 elements of U
are larger (smaller) than m, since m is the median of U . Since
each element in U is a median itself, there are 3n/10 elements
in A that are larger (smaller) than m.

Therefore, we eliminate (3/10)n elements in each round.

Thus, the time T(n) to find the median is

T(n) <= T(n/5) + T(7n/10) + 6n/5.

// median of U, recursive call, and finding medians of groups

Sunday, October 28, 2012

Solving the Recurrence

Suppose that T(n) <= cn (for some c to be determined later)

T(n) <= c(n/5) + c(7n/10)+6n/5= c(9n/10)+6n/5

If this is to be <= cn, then we need to have

c(9n/10)+12n/10 <= cn

or 12 <= c

Suppose that T(1) = d. Then choose c = max{12,d}.

An easy proof by induction yields T(n) <= cn.

Sunday, October 28, 2012

Goal Achieved?

We can accomplish that quicksort achieves O(n log n) running
time, if we use the linear-time median finding algorithm to
select the pivot element.

Unfortunately, the constant in the big Oh expression becomes
large, and quicksort looses some of its appeal.

Is there a simpler solution?

Sunday, October 28, 2012

Randomized Quicksort

Sunday, October 28, 2012

Deterministic Quicksort

Randomized-Quicksort(A,p,r)

if p < r then

q := Randomized-Partition(A,p,r);

Randomized-Quicksort(A, p,q-1);

Randomized-Quicksort(A,p+1,r);

Sunday, October 28, 2012

Partition

Randomized-Partition(A,p,r)

i := Random(p,r);

swap(A[i],A[r]);

Partition(A,p,r);

Almost the same as Partition, but now the pivot element is not
the rightmost element, but rather an element from A[p..r] that
is chosen uniformly at random.

Sunday, October 28, 2012

Goal

The running time of quicksort depends mostly on the number of
comparisons performed in all calls to the Randomized-Partition
routine.

Let X denote the random variable counting the number of
comparisons in all calls to Randomized-Partition.

Sunday, October 28, 2012

Notations

Let zi denote the i-th smallest element of A[1..n].

Thus A[1..n] sorted is <z1, z2, ... , zn >.

Let Zij = {zi, ..., zj} denote the set of elements between zi and zj,
including these elements.

Xij = I{ zi is compared to zj}.

Thus, Xij is an indicator random variable for the event that the
i-th smallest and the j-th smallest elements of A are compared
in an execution of quicksort.

Sunday, October 28, 2012

Number of Comparisons

Since each pair of elements is compared at most once by
quicksort, the number X of comparisons is given

Therefore, the expected number of comparisons is

X =
n−1�

i=1

n�

j=i+1

Xij

E[X] =
n−1�

i=1

n�

j=i+1

E[Xij] =
n−1�

i=1

n�

j=i+1

Pr[zi is compared to zj]

Sunday, October 28, 2012

When do we compare?

When do we compare zi to zj?

Suppose we pick a pivot element in Zij = {zi, ..., zj}.

If zi < x < zj then zi and zj will land in different partitions and
will never be compared afterwards.

Therefore, zi and zj will be compared if and only if the first
element of Zij to be picked as pivot element is contained in the
set {zi,zj}.

Sunday, October 28, 2012

Probability of Comparison

Pr[zi or zj is the first pivot chosen from Zij]
= Pr[zi is the first pivot chosen from Zij]

+Pr[zj is the first pivot chosen from Zij]
= 1

j−i+1 + 1
j−i+1 = 2

j−i+1

Sunday, October 28, 2012

Expected Number of Comparisons

E[X] =
n−1�

i=1

n�

j=i+1

2

j − i+ 1

=
n−1�

i=1

n−i�

k=1

2

k + 1

<

n−1�

i=1

n�

k=1

2

k

=
n−1�

i=1

O(log n)

= O(n log n)

Sunday, October 28, 2012

Conclusion

It follows that the expected running time of Randomized-
Quicksort is O(n log n).

It is unlikely that this algorithm will choose a terribly
unbalanced partition each time, so the performance is very good
almost all the time.

Sunday, October 28, 2012

