Deterministic and Randomized
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PPN O o B 4, Tt AT P S AT STt S 2% B LI G vs e Nl b e b e AT e i i OB s B

Andreas Klappenecker



Overview
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o Deterministic Quicksort
o Modify Quicksort to obtain better asymptotic bound
o Linear-time median algorithm

o Randomized Quicksort

Sunday, October 28, 2012



Deterministic Quicksort
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Quicksort(A,p,r)
if p<r then
q := Partition(A,p,r); // rearrange A[p..r] in place
Quicksort(A, p,g-1):
Quicksort(A,p+1,r);

Sunday, October 28, 2012



Divide-and-Conquer
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The design of Quicksort is based on the divide-and-conquer
paradigm.

a) Divide: Partition the array A[p..r] into two (possibly empty)
subarrays A[p..q-1] and A[g+1,r] such that

- A[x] <= A[q] for all x in [p..q-1]
- A[x] > A[q] for all x in [g+1,r]
b) Conquer: Recursively sort A[p..q-1] and A[g+1,r]

c) Combine: nothing to do here
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Partition
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Select pivot (orange element) and rearrange:

larger elements to the left of the pivot (red)

elements not exceeding the pivot to the right (yellow)
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Partition
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Partition(A,p,r)
x := A[r]; // select rightmost element as pivot
1= p-1;
for j=p tor-1do
if A[j]<= x then i :=i+1; swap(A[il, A[j]): fi:

od; Throughout the for loop:

.  If p <= k<= i then A[k]J<= x
SWGP(A[H'].]:A[r‘]) 3 If i+1<:k e J_l Then A[k] > X
return i+l; e Tf k=r, then A[k] = x

® A[j..r-1] is unstructured
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Partition - Loop - Example
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After the loop, the partition routine swaps the leftmost
element of the right partition with the pivot element:
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now recursively sort yellow and red parts.

swap(A[i+1],A[r])
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Worst-Case Partitioning
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The worst-case behavior for quicksort occurs on an input of
length n when partitioning produces just one subproblem
with n-1 elements and one subproblem with O elements.

Therefore the recurrence for the running time T(n) is:

T(n) = T(n-1) + T(O) + B(n) = T(n-1) + B(n) = B(n?)

Perhaps we should call this algorithm pokysort?
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"Better” Quicksort and Linear
Medlcm Algorl‘rhm

PRSI A B Tt PSS P S DA 18 87t SOV LTI TR e N it e b = OENNT 0 40 1 e i DS s T AN



Best-case Par’rl’rlonmg
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Best-case partitioning:

If partition produces two subproblems that are roughly of the
same size, then the recurrence of the running time is

T(n) <= 2T(n/2) + B(n)
so that T(n) = O(n log n)
Can we achieve this bound?

Yes, modify the algorithm. Use a linear-time median algorithm
to find median, then partition using median as pivot.
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Linear Median Algorithm
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Let A[1..n] be an array over a totally ordered domain.

- Partition A into groups of 5 and find the median of each
group. [You can do that with 6 comparisons]

- Make an array U[1..n/5] of the medians and find the median m
of U by recursively calling the algorithm.

- Partition the array A using the median-of-medians m to find
the rank of m in A. If m is of larger rank than the median of A,
eliminate all elements > m. If m is of smaller rank than the
median of A, then eliminate all elements <= m. Repeat the
search on the smaller array.
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Linear-Time Medlcm Finding
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How many elements do we eliminate in each round?

The array U contains n/5 elements. Thus, n/10 elements of U
are larger (smaller) than m, since m is the median of U . Since
each element in U is a median itself, there are 3n/10 elements
in A that are larger (smaller) than m.

Therefore, we eliminate (3/10)n elements in each round.
Thus, the time T(n) to find the median is
T(n) <= T(n/5) + T(7n/10) + 6n/5.

// median of U, recursive call, and finding medians of groups
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Solving the Recurrence
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Suppose that T(n) <= cn (for some ¢ to be determined later)
T(n) <= ¢(n/B) + ¢(7n/10)+6n/5= c¢(9n/10)+6n/5

If this is to be <= cn, then we need to have

c(9n/10)+12n/10 <= cn

or12<=c¢

Suppose that T(1) = d. Then choose ¢ = max{12,d}.

An easy proof by induction yields T(n) <= cn.
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Goal Achieved?
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We can accomplish that quicksort achieves O(n log h) running
time, if we use the linear-time median finding algorithm to
select the pivot element.

Unfortunately, the constant in the big Oh expression becomes
large, and quicksort looses some of its appeal.

Is there a simpler solution?
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Deterministic Quicksort
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Randomized-Quicksort(A,p,r)
if p<r then
q := Randomized-Partition(A p,r);
Randomized-Quicksort(A, p.g-1):
Randomized-Quicksort(A,p+1,r);
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Partition
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Randomized-Partition(A p,r)
i := Random(p,r);
swap(A[il,A[r]):
Partition(A p.r):

Almost the same as Partition, but now the pivot element is not
the rightmost element, but rather an element from A[p..r] that
is chosen uniformly at random.
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Goal
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The running time of quicksort depends mostly on the number of
comparisons performed in all calls to the Randomized-Partition
routine.

Let X denote the random variable counting the number of
comparisons in all calls to Randomized-Partition.
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Notations
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Let zidenote the i-th smallest element of A[l..n].
Thus A[l..n] sorted is <z1, z2, ..., Zn>.

Let Zij = {zi, ..., zj} denote the set of elements between z;and z;,
including these elements.

Xij = I{ zi is compared to zj}.

Thus, Xj;is an indicator random variable for the event that the
i-th smallest and the j-th smallest elements of A are compared
in an execution of quicksort.
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Number of Comparisons
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Since each pair of elements is compared at most once by
quicksort, the number X of comparisons is given

10 o e )
s
i=1 j=i+1
Therefore, the expected number of comparisons is

n 1

L L E[X;] ;‘ Pr|z; is compared to z;]

e el = 1] et
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When do we compare?
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When do we compare z; to z;?

Suppose we pick a pivot element in Z;; = {zi, ..., z;}.

If zi< x < zjthen z; and z; will land in different partitions and
will never be compared afterwards.

Therefore, zi and z; will be compared if and only if the first
element of Z;;to be picked as pivot element is contained in the

set {zi,z;}.
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Probability of Comparison
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Pr|z; or z; is the first pivot chosen from Z;,]
= Pr|z; is the first pivot chosen from Z;;]

+ Pr|z, is the first pivot chosen from Z;,]
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Expected Number of Comparisons
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Conclusion
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I't follows that the expected running time of Randomized-
Quicksort is O(n log n).

It is unlikely that this algorithm will choose a terribly
unbalanced partition each time, so the performance is very good
almost all the time.
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