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Overview

Deterministic Quicksort

Modify Quicksort to obtain better asymptotic bound

Linear-time median algorithm

Randomized Quicksort
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Deterministic Quicksort

Quicksort(A,p,r)

if p < r then 

q := Partition(A,p,r); // rearrange A[p..r] in place

Quicksort(A, p,q-1);

Quicksort(A,p+1,r);
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Divide-and-Conquer

The design of Quicksort is based on the divide-and-conquer 
paradigm. 

a) Divide: Partition the array A[p..r] into two (possibly empty) 
subarrays A[p..q-1] and A[q+1,r] such that

- A[x] <= A[q] for all x in [p..q-1] 

- A[x] > A[q] for all x in [q+1,r]

b) Conquer: Recursively sort A[p..q-1] and A[q+1,r]

c) Combine: nothing to do here
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Partition

Select pivot (orange element) and rearrange:

larger elements to the left of the pivot (red)

elements not exceeding the pivot to the right (yellow)

2 1 3 4 7 5 6 8

p i r
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Partition

Partition(A,p,r)

x := A[r]; // select rightmost element as pivot

i := p-1;

for j = p to r-1 do 

if A[j] <= x then i := i+1; swap(A[i], A[j]); fi;

od;

swap(A[i+1],A[r])

return i+1;

Throughout the for loop:
• If p <= k <= i then A[k]<= x
• If i+1<=k <= j-1 then A[k] > x
• If k=r, then A[k] = x
• A[j..r-1] is unstructured
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Partition - Loop - Example

i
2 8 7 1 3 5 6 4

p,j r

2 8 7 1 3 5 6 4

p,i j r

2 8 7 1 3 5 6 4

p,i j r

2 8 7 1 3 5 6 4

p,i j r

2 1 7 8 3 5 6 4

p i j r

2 1 3 8 7 5 6 4

p i j r

2 1 3 8 7 5 6 4

p i j r

2 1 3 8 7 5 6 4

p i r
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After the loop, the partition routine swaps the leftmost 
element of the right partition with the pivot element:

swap(A[i+1],A[r])

now recursively sort yellow and red parts. 

2 1 3 8 7 5 6 4

p i r

2 1 3 4 7 5 6 8

p i r

Sunday, October 28, 2012



Worst-Case Partitioning

The worst-case behavior for quicksort occurs on an input of 
length n when partitioning produces just one subproblem 
with n-1 elements and one subproblem with 0 elements. 

Therefore the recurrence for the running time T(n) is: 

T(n) = T(n-1) + T(0) + θ(n) = T(n-1) + θ(n) = θ(n2)

Perhaps we should call this algorithm pokysort? 
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“Better” Quicksort and Linear 
Median Algorithm
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Best-case Partitioning

Best-case partitioning: 

If partition produces two subproblems that are roughly of the 
same size, then the recurrence of the running time is 

T(n) <= 2T(n/2) + θ(n)

so that T(n) = O(n log n)

Can we achieve this bound?  

Yes, modify the algorithm. Use a linear-time median algorithm 
to find median, then partition using median as pivot. 

Sunday, October 28, 2012



Linear Median Algorithm

Let A[1..n] be an array over a totally ordered domain.

- Partition A into groups of 5 and find the median of each 
group. [You can do that with 6 comparisons]

- Make an array U[1..n/5] of the medians and find the median m 
of U by recursively calling the algorithm.

- Partition the array A using the median-of-medians m to find 
the rank of m in A. If m is of larger rank than the median of A, 
eliminate all elements > m. If m is of smaller rank than the 
median of A, then eliminate all elements <= m. Repeat the 
search on the smaller array. 
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Linear-Time Median Finding

How many elements do we eliminate in each round? 

The array U contains n/5 elements. Thus, n/10 elements of U 
are larger (smaller) than m, since m is the median of U . Since 
each element in U is a median itself, there are 3n/10 elements 
in A that are larger (smaller) than m. 

Therefore, we eliminate (3/10)n elements in each round. 

Thus, the time T(n) to find the median is 

T(n) <= T(n/5) + T(7n/10) + 6n/5. 

// median of U, recursive call, and finding medians of groups
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Solving the Recurrence

Suppose that T(n) <= cn (for some c to be determined later)

T(n) <= c(n/5) + c(7n/10)+6n/5= c(9n/10)+6n/5

If this is to be <= cn, then we need to have 

c(9n/10)+12n/10 <= cn

or 12 <= c

Suppose that T(1) = d. Then choose c = max{12,d}. 

An easy proof by induction yields T(n) <= cn. 
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Goal Achieved? 

We can accomplish that quicksort achieves O(n log n) running 
time, if we use the linear-time median finding algorithm to 
select the pivot element. 

Unfortunately, the constant in the big Oh expression becomes 
large, and quicksort looses some of its appeal. 

Is there a simpler solution? 
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Randomized Quicksort
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Deterministic Quicksort

Randomized-Quicksort(A,p,r)

if p < r then 

q := Randomized-Partition(A,p,r); 

Randomized-Quicksort(A, p,q-1);

Randomized-Quicksort(A,p+1,r);
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Partition

Randomized-Partition(A,p,r)

i := Random(p,r);

swap(A[i],A[r]);  

Partition(A,p,r);

Almost the same as Partition, but now the pivot element is not 
the rightmost element, but rather an element from A[p..r] that 
is chosen uniformly at random. 

Sunday, October 28, 2012



Goal

The running time of quicksort depends mostly on the number of 
comparisons performed in all calls to the Randomized-Partition 
routine. 

Let X denote the random variable counting the number of 
comparisons in all calls to Randomized-Partition.
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Notations 

Let zi denote the i-th smallest element of A[1..n]. 

Thus A[1..n] sorted is <z1, z2, ... , zn >.

Let Zij  = {zi, ..., zj} denote the set of elements between zi and zj,  
including these elements.  

Xij  = I{ zi is compared to zj}. 

Thus,  Xij is an indicator random variable for the event that the 
i-th smallest and the j-th smallest elements of A are compared 
in an execution of quicksort. 
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Number of Comparisons

Since each pair of elements is compared at most once by 
quicksort, the number X of comparisons is given 

Therefore, the expected number of comparisons is

 

 

X =
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i=1

n�

j=i+1

Xij
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Pr[zi is compared to zj ]
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When do we compare?

When do we compare zi to zj?

Suppose we pick a pivot element in Zij  = {zi, ..., zj}. 

If zi < x < zj then zi and zj will land in different partitions and 
will never be compared afterwards.

Therefore, zi and zj will be compared if and only if the first 
element of Zij to be picked as pivot element is contained in the 
set {zi,zj}.
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Probability of Comparison 

Pr[zi or zj is the first pivot chosen from Zij ]
= Pr[zi is the first pivot chosen from Zij ]

+Pr[zj is the first pivot chosen from Zij ]
= 1

j−i+1 + 1
j−i+1 = 2

j−i+1
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Expected Number of Comparisons 
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Conclusion

It follows that the expected running time of Randomized-
Quicksort is O(n log n). 

It is unlikely that this algorithm will choose a terribly 
unbalanced partition each time, so the performance is very good 
almost all the time. 
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