
1

Shortest Path Algorithms

Andreas Klappenecker

[based on slides by Prof. Welch]

Friday, October 12, 2012

2

Single Source Shortest Path

Friday, October 12, 2012

2

Single Source Shortest Path

• Given:
• a directed or undirected graph G = (V,E)
• a source node s in V
• a weight function w: E -> R.

Friday, October 12, 2012

2

Single Source Shortest Path

• Given:
• a directed or undirected graph G = (V,E)
• a source node s in V
• a weight function w: E -> R.

• Goal: For each vertex t in V, find a path from s to t
in G with minimum weight

Friday, October 12, 2012

2

Single Source Shortest Path

• Given:
• a directed or undirected graph G = (V,E)
• a source node s in V
• a weight function w: E -> R.

• Goal: For each vertex t in V, find a path from s to t
in G with minimum weight

Warning! Negative weight cycles are a problem:

s t
4

−5
Friday, October 12, 2012

3

Constant Weight Functions

Friday, October 12, 2012

3

Constant Weight Functions

Suppose that the weights of all edges are
the same. How can you solve the single-
source shortest path problem?

Friday, October 12, 2012

3

Constant Weight Functions

Suppose that the weights of all edges are
the same. How can you solve the single-
source shortest path problem?

Breadth-first search can be used to solve
the single-source shortest path problem.

Friday, October 12, 2012

3

Constant Weight Functions

Suppose that the weights of all edges are
the same. How can you solve the single-
source shortest path problem?

Breadth-first search can be used to solve
the single-source shortest path problem.
Indeed, the tree rooted at s in the BFS
forest is the solution.

Friday, October 12, 2012

Intermezzo: Priority Queues

4

Friday, October 12, 2012

Priority Queues

A min-priority queue is a data structure for maintaining
a set S of elements, each with an associated value
called key.
This data structure supports the operations:
• insert(S,x) which realizes S := S ∪ {x}
• minimum(S) which returns the element with the
smallest key.
• extract-min(S) which removes and returns the
element with the smallest key from S.
• decrease-key(S,x,k) which decreases the value of x’s 5

Friday, October 12, 2012

Simple Array Implementation

Suppose that the elements are numbered
from 1 to n, and that the keys are stored
in an array key[1..n].
• insert and decrease-key take O(1) time.
• extract-min takes O(n) time, as the
whole array must be searched for the
minimum.

6

Friday, October 12, 2012

Binary min-heap Implementation

Suppose that we realize the priority
queue of a set with n element with a
binary min-heap.
• extract-min takes O(log n) time.
• decrease-key takes O(log n) time.
• insert takes O(log n) time.
Building the heap takes O(n) time.

7

Friday, October 12, 2012

Fibonacci-Heap Implementation

Suppose that we realize the priority queue
of a set with n elements with a Fibonacci
heap. Then
• extract-min takes O(log n) amortized time.
• decrease-key takes O(1) amortized time.
• insert takes O(1) time.
[One can realize priority queues with worst case times as above]

8

Friday, October 12, 2012

9

Dijkstra’s Single Source Shortest
Path Algorithm

Friday, October 12, 2012

10

Dijkstra's SSSP Algorithm

• Assumes all edge weights are nonnegative
• Similar to Prim's MST algorithm
• Start with source node s and iteratively

construct a tree rooted at s
• Each node keeps track of tree node that

provides cheapest path from s (not just
cheapest path from any tree node)

• At each iteration, include the node whose
cheapest path from s is the overall cheapest

Friday, October 12, 2012

11

Prim's vs. Dijkstra's

s

5

4

1

6

Prim's MST

s

5

4

1

6

Dijkstra's SSSP

Friday, October 12, 2012

11

Prim's vs. Dijkstra's

s

5

4

1

6

Prim's MST

s

5

4

1

6

Dijkstra's SSSP

Friday, October 12, 2012

11

Prim's vs. Dijkstra's

s

5

4

1

6

Prim's MST

s

5

4

1

6

Dijkstra's SSSP

Friday, October 12, 2012

12

Implementing Dijkstra's Alg.

• How can each node u keep track of its best
path from s?

• Keep an estimate, d[u], of shortest path
distance from s to u

• Use d as a key in a priority queue
• When u is added to the tree, check each of

u's neighbors v to see if u provides v with a
cheaper path from s:
• compare d[v] to d[u] + w(u,v)

Friday, October 12, 2012

13

Dijkstra's Algorithm

• input: G = (V,E,w) and source node s
// initialization
• d[s] := 0
• d[v] := infinity for all other nodes v
• initialize priority queue Q to contain all

nodes using d values as keys

Friday, October 12, 2012

14

Dijkstra's Algorithm

• while Q is not empty do
• u := extract-min(Q)
• for each neighbor v of u do

• if d[u] + w(u,v) < d[v] then // relax
• d[v] := d[u] + w(u,v)
• decrease-key(Q,v,d[v])
• parent(v) := u

Friday, October 12, 2012

15

Dijkstra's Algorithm Example

a b

d e

c

2

8
4 9

2
4

12

10 6 3

a is source node

0 1 2 3 4 5
Q abcde bcde cde de d Ø

d[a] 0 0 0 0 0 0

d[b] ∞ 2 2 2 2 2

d[c] ∞ 12 10 10 10 10

d[d] ∞ ∞ ∞ 16 13 13

d[e] ∞ ∞ 11 11 11 11

iteration

Friday, October 12, 2012

15

Dijkstra's Algorithm Example

a b

d e

c

2

8
4 9

2
4

12

10 6 3

a is source node

0 1 2 3 4 5
Q abcde bcde cde de d Ø

d[a] 0 0 0 0 0 0

d[b] ∞ 2 2 2 2 2

d[c] ∞ 12 10 10 10 10

d[d] ∞ ∞ ∞ 16 13 13

d[e] ∞ ∞ 11 11 11 11

iteration

Friday, October 12, 2012

15

Dijkstra's Algorithm Example

a b

d e

c

2

8
4 9

2
4

12

10 6 3

a is source node

0 1 2 3 4 5
Q abcde bcde cde de d Ø

d[a] 0 0 0 0 0 0

d[b] ∞ 2 2 2 2 2

d[c] ∞ 12 10 10 10 10

d[d] ∞ ∞ ∞ 16 13 13

d[e] ∞ ∞ 11 11 11 11

iteration

Friday, October 12, 2012

15

Dijkstra's Algorithm Example

a b

d e

c

2

8
4 9

2
4

12

10 6 3

a is source node

0 1 2 3 4 5
Q abcde bcde cde de d Ø

d[a] 0 0 0 0 0 0

d[b] ∞ 2 2 2 2 2

d[c] ∞ 12 10 10 10 10

d[d] ∞ ∞ ∞ 16 13 13

d[e] ∞ ∞ 11 11 11 11

iteration

Friday, October 12, 2012

15

Dijkstra's Algorithm Example

a b

d e

c

2

8
4 9

2
4

12

10 6 3

a is source node

0 1 2 3 4 5
Q abcde bcde cde de d Ø

d[a] 0 0 0 0 0 0

d[b] ∞ 2 2 2 2 2

d[c] ∞ 12 10 10 10 10

d[d] ∞ ∞ ∞ 16 13 13

d[e] ∞ ∞ 11 11 11 11

iteration

Friday, October 12, 2012

15

Dijkstra's Algorithm Example

a b

d e

c

2

8
4 9

2
4

12

10 6 3

a is source node

0 1 2 3 4 5
Q abcde bcde cde de d Ø

d[a] 0 0 0 0 0 0

d[b] ∞ 2 2 2 2 2

d[c] ∞ 12 10 10 10 10

d[d] ∞ ∞ ∞ 16 13 13

d[e] ∞ ∞ 11 11 11 11

iteration

Friday, October 12, 2012

15

Dijkstra's Algorithm Example

a b

d e

c

2

8
4 9

2
4

12

10 6 3

a is source node

0 1 2 3 4 5
Q abcde bcde cde de d Ø

d[a] 0 0 0 0 0 0

d[b] ∞ 2 2 2 2 2

d[c] ∞ 12 10 10 10 10

d[d] ∞ ∞ ∞ 16 13 13

d[e] ∞ ∞ 11 11 11 11

iteration

Friday, October 12, 2012

15

Dijkstra's Algorithm Example

a b

d e

c

2

8
4 9

2
4

12

10 6 3

a is source node

0 1 2 3 4 5
Q abcde bcde cde de d Ø

d[a] 0 0 0 0 0 0

d[b] ∞ 2 2 2 2 2

d[c] ∞ 12 10 10 10 10

d[d] ∞ ∞ ∞ 16 13 13

d[e] ∞ ∞ 11 11 11 11

iteration

Friday, October 12, 2012

15

Dijkstra's Algorithm Example

a b

d e

c

2

8
4 9

2
4

12

10 6 3

a is source node

0 1 2 3 4 5
Q abcde bcde cde de d Ø

d[a] 0 0 0 0 0 0

d[b] ∞ 2 2 2 2 2

d[c] ∞ 12 10 10 10 10

d[d] ∞ ∞ ∞ 16 13 13

d[e] ∞ ∞ 11 11 11 11

iteration

Friday, October 12, 2012

15

Dijkstra's Algorithm Example

a b

d e

c

2

8
4 9

2
4

12

10 6 3

a is source node

0 1 2 3 4 5
Q abcde bcde cde de d Ø

d[a] 0 0 0 0 0 0

d[b] ∞ 2 2 2 2 2

d[c] ∞ 12 10 10 10 10

d[d] ∞ ∞ ∞ 16 13 13

d[e] ∞ ∞ 11 11 11 11

iteration

Friday, October 12, 2012

16

Correctness of Dijkstra's Alg.

• Let Ti be the tree constructed after i-th
iteration of the while loop:
• The nodes in Ti are not in Q

• The edges in Ti are indicated by parent variables

• Show by induction on i that the path in Ti
from s to u is a shortest path and has
distance d[u], for all u in Ti.

• Basis: i = 1.
 s is the only node in T1 and d[s] = 0.

Friday, October 12, 2012

17

Correctness of Dijkstra's Alg.

• Induction: Assume Ti is a correct shortest path tree.
We need to show that Ti+1 is a correct shortest path
tree as well.

• Let u be the node added in iteration i.
• Let x = parent(u).

s x

Ti

u

Ti+1

Need to show
path in Ti+1 from s
to u is a shortest
path, and has
distance d[u]

Friday, October 12, 2012

18

Correctness of Dijkstra's Alg

s
x

Ti

u

Ti+1

P, path in Ti+1

from s to u

Friday, October 12, 2012

18

Correctness of Dijkstra's Alg

s
x

Ti

u

Ti+1

P, path in Ti+1

from s to u

a

b

P', another
path from s to u

Friday, October 12, 2012

18

Correctness of Dijkstra's Alg

s
x

Ti

u

Ti+1

P, path in Ti+1

from s to u

(a,b) is first edge in P' that
leaves Ti

a

b

P', another
path from s to u

Friday, October 12, 2012

19

Correctness of Dijkstra's Alg

s
x

Ti

u
Ti+1

a

b
P'

PLet P1 be part of P' before (a,b).

Let P2 be part of P' after (a,b).

w(P') = w(P1) + w(a,b) + w(P2)

 ≥ w(P1) + w(a,b) (nonneg wts)

 ≥ wt of path in Ti from s to a + w(a,b) (inductive hypothesis)

 ≥ w(s->x path in Ti) + w(x,u) (alg chose u in iteration i and

 d-values are accurate, by inductive hypothesis

 = w(P).

So P is a shortest path, and d[u] is accurate after iteration i+1.

Friday, October 12, 2012

20

Running Time of Dijstra's Alg.

• initialization: insert each node once
• O(V Tins)

• O(V) iterations of while loop
• one extract-min per iteration => O(V Tex)

• for loop inside while loop has variable number of
iterations…

• For loop has O(E) iterations total
• one decrease-key per iteration => O(E Tdec)

Friday, October 12, 2012

21

Running Time using
Binary Heaps and Fibonacci Heaps

• O(V(Tins + Tex) + E•Tdec)

• If priority queue is implemented with a binary
heap, then
• Tins = Tex = Tdec = O(log V)

• total time is O(E log V)

• There are fancier implementations of the
priority queue, such as Fibonacci heap:
• Tins = O(1), Tex = O(log V), Tdec = O(1) (amortized)

• total time is O(V log V + E)
Friday, October 12, 2012

22

Using Simpler Heap

• O(V(Tins + Tex) + E•Tdec)
• If graph is dense, so that |E| = Θ(V2), then it

doesn't help to make Tins and Tex to be at
most O(V).

• Instead, focus on making Tdec be small, say
constant.

• Implement priority queue with an unsorted
array:
• Tins = O(1), Tex = O(V), Tdec = O(1)

Friday, October 12, 2012

23

The Bellman-Ford Algorithm

Friday, October 12, 2012

24

What About Negative Edge

• Dijkstra's SSSP algorithm requires all
edge weights to be nonnegative. This is
too restrictive, since it suffices to
outlaw negative weight cycles.

• Bellman-Ford SSSP algorithm can
handle negative edge weights.
[It even can detect negative weight
cycles if they exist.]

Friday, October 12, 2012

25

Bellman-Ford: The Basic Idea

• Consider each edge (u,v) and see if u
offers v a cheaper path from s
• compare d[v] to d[u] + w(u,v)

• Repeat this process |V| - 1 times to
ensure that accurate information
propgates from s, no matter what order
the edges are considered in

Friday, October 12, 2012

26

Bellman-Ford SSSP Algorithm

• input: directed or undirected graph G = (V,E,w)
//initialization
• initialize d[v] to infinity and parent[v] to nil for all v in V

other than the source
• initialize d[s] to 0 and parent[s] to s
// main body
• for i := 1 to |V| - 1 do

• for each (u,v) in E do // consider in arbitrary order
• if d[u] + w(u,v) < d[v] then

• d[v] := d[u] + w(u,v)
• parent[v] := u

Friday, October 12, 2012

27

Bellman-Ford SSSP Algorithm

// check for negative weight cycles
• for each (u,v) in E do

• if d[u] + w(u,v) < d[v] then
• output "negative weight cycle exists"

Friday, October 12, 2012

28

Running Time of Bellman-Ford

• O(V) iterations of outer for loop
• O(E) iterations of inner for loop
• O(VE) time total

Friday, October 12, 2012

29

Correctness of Bellman-Ford

Assume no negative-weight cycles.
Lemma: d[v] is never an underestimate of the

actual shortest path distance from s to v.
Lemma: If there is a shortest s-to-v path

containing at most i edges, then after
iteration i of the outer for loop, d[v] is at
most the actual shortest path distance from
s to v.

Theorem: Bellman-Ford is correct.
This follows from the two lemmas and the fact

Friday, October 12, 2012

30

Bellman-Ford Example

s

c

a
b

3

—4
4

2

1

process edges in order
(c,b)
(a,b)
(c,a)
(s,a)
(s,c)

Exercise!

Friday, October 12, 2012

31

Correctness of Bellman-Ford

• Suppose there is a negative weight
cycle.

• Then the distance will decrease even
after iteration |V| - 1
• shortest path distance is negative infinity

• This is what the last part of the code
checks for.

Friday, October 12, 2012

32

The Boost Graph Library

The BGL contains generic implementations of all the graph
algorithms that we have discussed:
• Breadth-First-Search
• Depth-First-Search
• Kruskal’s MST algorithm
• Prim’s MST algorithm
• Strongly Connected Components
• Dijkstra’s SSSP algorithm
• Bellman-Ford SSSP algorithm
I recommend that you gain experience with this useful library.
Recommended reading: The Boost Graph Library by J.G. Siek, L.-Q.
Lee, and A. Lumsdaine, Addison-Wesley, 2002.

Friday, October 12, 2012

