
1

Amortized Analysis

Andreas Klappenecker

[partially based on the slides of Prof. Welch]

2

Analyzing Calls to a Data

• Some algorithms involve repeated calls to one or
more data structures.

• When analyzing the running time of an algorithm,
one needs to sum up the time spent in all the
calls to the data structure.

• Problem: If different calls take different times,
how can we accurately calculate the total time?

Max-Heap

A max-heap is an nearly complete binary tree
(i.e., all levels except the deepest level are completely filled and
the last level is filled from the left)

satisfying the heap property: if B is a child of a node A,
then key[A] >= key[B].

[Picture courtesy of Wikipedia.] 3

Heap Implementation

We can store a heap in an array:

If the array is indexed a[1..n],

then a[i] has children a[2i] and a[2i+1]:

a[1] has children a[2], a[3],

a[2] has children a[4], a[5],

a[3] has children a[6], a[7], … 4

736 12531719100 2

Adding an Element to a Heap

An element can be added to the heap as follows:

1. Add the element on the bottom level of the
heap.

2.Compare the added element with its parent; if
they are in the correct order, stop.

3.If not, swap the element with its parent and
return to the previous step.

5

Adding an Element: Example

6

Adding 15 to a max-heap. Insert at position x,
compare with parent, swap, compare with parent, swap.

What is the time-complexity of adding an element
to a heap with n elements?

7

Constructing a Heap
Let us form a heap of n elements from scratch.

First idea:
• Use n times add to form the heap.
• Each addition to the heap operates on a heap

with at most n elements.
• Adding to a heap with n elements takes O(log n)

time
• Total time spent doing the n insertions is O

(n log n) time

Constructing a Heap (2)

Two question arise:
• Does our analysis overestimate the time?

The different insertions take different
amounts of time, and many are on smaller
heaps. (=> leads to amortized analysis)

• Is this the optimal way to create a heap?
Perhaps simply adding n times is not the best
way to form a heap.

8

Deleting the Maximal Element

Deleting the maximal element from a max-heap starts
by replacing it with the last element from the lowest
level. Then restore the heap property (using Max-
Heapify) by swapping with largest child, and repeat
same process on the next level, etc.

9

Constructing a Heap (3)

Second idea:
Place elements in an array, interpret as a binary

tree. Look at subtrees at height h (measured
from lowest level). If these trees have been
heapified, then subtrees at height h+1 can be
heapified by sending their roots down.

Initially, the trees at height 0 are all heapified.
 10

Constructing a Heap (4)

Array of length n. Number of nodes at height h

is at most floor(n/2h+1). Cost to heapify a tree at
height h+1 if all subtrees have been heapified: O
(h) swaps. Total cost:

11

Amortized Analysis

12

13

Amortized Analysis

• Purpose is to accurately compute the total time spent
in executing a sequence of operations on a data
structure

• Three different approaches:
• aggregate method: brute force
• accounting method: assign costs to each operation

so that it is easy to sum them up while still
ensuring that the result is accurate

• potential method: a more sophisticated version of
the accounting method (omitted here)

14

Running Example #1:

• Operations are:
• Push(S,x)
• Pop(S)
• Multipop(S,k) - pop the top k elements

• Implement with either array or linked list
• time for Push is O(1)
• time for Pop is O(1)
• time for Multipop is O(min(|S|,k))

15

Running Example #2:

• Operation:
• increment(A) - add 1 (initially 0)

• Implementation:
• k-element binary array
• use grade school ripple-carry algorithm

Aggregate Method

16

17

Aggregate Method

• Show that a sequence of n operations
takes T(n) time

• We can then say that the amortized
cost per operation is T(n)/n

• Makes no distinction between operation
types

18

Augmented Stack:

• In a sequence of n operations, the stack
never holds more than n elements.

• Thus, the cost of a multipop is O(n)
• Therefore, the worst-case cost of any

sequence of n operations is O(n2).
• But this is an over-estimate!

19

Aggregate Method for

• Key idea: total number of pops (or multipops)
in the entire sequence of operations is at
most the total number of pushes

• Suppose that the maximum number of Push

operations in the sequence is n.
• So time for entire sequence is O(n).
• Amortized cost per operation: O(n)/n = O(1).

20

Aggregate Method for k-Bit

• Worst-case time for an increment is O(k).
This occurs when all k bits are flipped

• But in a sequence of n operations, not all of
them will cause all k bits to flip:
• bit 0 flips with every increment
• bit 1 flips with every 2nd increment
• bit 2 flips with every 4th increment …
• bit k flips with every 2k-th increment

21

Aggregate Method for k-Bit

• Total number of bit flips in n increment
operations is
• n + n/2 + n/4 + … + n/2k < n(1/(1-1/2))= 2n

• So total cost of the sequence is O(n).
• Amortized cost per operation is O(n)/n = O(1).

22

Accounting Method

23

Accounting Method

• Assign a cost, called the "amortized
cost", to each operation

• Assignment must ensure that the sum
of all the amortized costs in a sequence
is at least the sum of all the actual
costs
• remember, we want an upper bound on the

total cost of the sequence

24

Accounting Method

• For each operation in the sequence:
• if amortized cost > actual cost then store

extra as a credit with an object in the data
structure

• if amortized cost < actual cost then use the
stored credits to make up the difference

• Never allowed to go into the red! Must
have enough credit saved up to pay for

25

Accounting Method vs.

• Aggregate method:
• first analyze entire sequence
• then calculate amortized cost per

operation

• Accounting method:
• first assign amortized cost per operation
• check that they are valid (never go into the

red)

26

Accounting Method for

• Assign these amortized costs:
• Push - 2
• Pop - 0
• Multipop - 0

• For Push, actual cost is 1. Store the extra 1
as a credit, associated with the pushed
element.

• Pay for each popped element (either from

27

Accounting Method for

• There is always enough credit to pay
for each operation (never go into red).

• Each amortized cost is O(1)
• So cost of entire sequence of n

operations is O(n).

28

Accounting Method for k-Bit

• Assign amortized cost for increment
operation to be 2.

• Actual cost is the number of bits
flipped:
• a series of 1's are reset to 0
• then a 0 is set to 1

• Idea: 1 is used to pay for flipping a 0
to 1. The extra 1 is stored with the

29

Accounting Method for k-Bit

0 0 0 0 0
1

0 0 0 0 1
1

0 0 0 1 0

0 0 0 1 1

1 1

0 0 1 0 0

1

0 0 1 0 1

1 1

0 0 1 1 0

1 1

0 0 1 1 1

1 1 1

30

Accounting Method for k-Bit

• All changes from 1 to 0 are paid for
with previously stored credit (never go
into red)

• Amortized time per operation is O(1)
• total cost of sequence is O(n)

31

Conclusions

Amortized Analysis allows one to
estimate the cost of a sequence of
operations on data structures.

The method is typically more accurate
than worst case analysis when the data
structure is dynamically changing.

