Amortized Analysis

Andreas Klappenecker

[partially based on the slides of Prof. Welch]

Analyzing Calls to a Data

Some algorithms involve repeated calls to one or
more data structures.

When analyzing the running time of an algorithm,
one needs to sum up the fime spent in all the
calls to the data structure.

Problem: If different calls take different times,
how can we accurately calculate the total fime?

2

Max-Heap

A max-heap is an nearly complete binary tree

(i.e., all levels except the deepest level are completely filled and
the last level is filled from the left)

satisfying the heap property: if B is a child of a node A,
then key[A] >= key[B].
(1)

[Picture courtesy of Wikipedia.]

Heap Implementation

We can store a heap in an array:

100119] 36117} 3 |25 1]2 7

If the array is indexed a[l1..n],

then a[i] has children a[2i] and a[2i+1]:
a[1] has children a[2], a[3],

a[2] has children a[4], a[5],

a[3] has children a[6], a[7], ... 4

Adding an Element to a Heap

An element can be added to the heap as follows:

Add the element on the bottom level of the
heap.

Compare the added element with its parent; if
they are in the correct order, stop.

If not, swap the element with its parent and
return to the previous step.

Adding an Element: Example

Adding 15 to a max-heap. Insert at position x,
compar'e with parent, swap, compar'e with parent, swap

@/ hS @/ hS 6/ @/ hS o/

What is the time-complexity of adding an element
to a heap with n elements?

Constructing a Heap

Let us form a heap of n elements from scratch.

First idea:
Use n times add to form the heap.

Each addition to the heap operates on a heap
with at most n elements.

Adding to a heap with n elements takes O(log n)
time

Total time spent doing the n insertionsis O
(n log n) time !

Constructing a Heap (2)

Two question arise:

Does our analysis overestimate the time?
The different insertions take different
amounts of time, and many are on smaller
heaps. (=> leads to amortized analysis)

Is this the optimal way to create a heap?
Perhaps simply adding n times is not the best
way to form a heap.

Deleting the Maximal Element

Deleting the maximal element from a max-heap starts
by replacing it with the last element from the lowest
level. Then restore the heap property (using Max-
Heapify) by swapping with largest child, and repeat
same process on the next level, etc.

®
/®/, e /@/ Do
g O &

Constructing a Heap (3)

Second idea:

Place elements in an array, interpret as a binary
tree. Look at subtrees at height h (measured
from lowest level). If these trees have been
heapified, then subtrees at height h+1 can be
heapified by sending their roots down.

Initially, the trees at height O are all heapified.

10

Constructing a Heap (4)

Array of length n. Number of nodes at height h

is at most floor(n/2"1). Cost to heapify a tree at
height h+1 if all subtrees have been heapified: O
(h) swaps. Total cost:

[lgn] - [lgn] h

1

Amortized Analysis

12

Amortized Analysis

Purpose is to accurately compute the total time spent
in executing a sequence of operations on a data
structure

Three different approaches:
aggregate method: brute force

accounting method: assign costs to each operation
so that it is easy to sum them up while still
ensuring that the result is accurate

potential method: a more sophisticated version of

the accounting method (omitted here) -

Running Example #1:
Operations are: ~) ~

Push(S,x)

Pop(S)

Multipop(S k) - pop the top k elements
Implement with either array or linked list

time for Push is O(1)

time for Pop is O(1)

time for Multipop is O(min(|S| k))

14

Running Example #2:

Operation:

increment(A) - add 1 (initially O)
Implementation:

k-element binary array

use grade school ripple-carry algorithm

15

Aggregate Method

16

Aggregate Method

Show that a sequence of n operations
takes T(n) time

We can then say that the amortized
cost per operation is T(n)/n

Makes no distinction between operation
types

17

Augmented Stack:

In a sequence of n operations, the stack
never holds more than n elements.

Thus, the cost of a multipop is O(nh)

Therefore, the worst-case cost of any
sequence of n operations is O(n?).

But this is an over-estimatel

18

Aggregate Method for

Key idea: total number of pops (or multipops)
in the entire sequence of operations is at
most the total number of pushes

Suppose that the maximum number of Push
operations in the sequence is n.

So time for entire sequence is O(n).
Amortized cost per operation: O(n)/n = O(1).

19

Aggregate Method for k-Bit

Worst-case time for an increment is O(k).
This occurs when all k bits are flipped

But in a sequence of n operations, not all of
them will cause all k bits to flip:

bit O flips with every increment

bit 1 flips with every 2nd increment

bit 2 flips with every 4th increment ...

bit k flips with every 2*-th increment

20

Aggregate Method for k-Bit

Total number of bit flips in n increment
operations is

n+n/2+n/4+ .. +n/2k<n(1/(1-1/2))= 2n
So total cost of the sequence is O(n).

Amortized cost per operation is O(n)/n = O(1).

21

Accounting Method

22

Accounting Method

Assign a cost, called the "amortized
cost", o each operation

Assignment must ensure that the sum
of all the amortized costs in a sequence
is at least the sum of all the actual
costs

remember, we want an upper bound on the
total cost of the sequence

23

Accounting Method

For each operation in the sequence:

if amortized cost > actual cost then store
extra as a credit with an object in the data
structure

if amortized cost < actual cost then use the
stored credits to make up the difference

Never allowed to go into the red! Must
have enough credit saved up to pay for

24

Accounting Method vs.

Aggregate method:
first analyze entire sequence
then calculate amortized cost per
operation
Accounting method:
first assign amortized cost per operation

check that they are valid (never go into the
red)

25

Accounting Method for

Assign these amortized costs:
Push - 2
Pop - 0O
Multipop - O
For Push, actual cost is 1. Store the extral

as a credit, associated with the pushed
element.

Pay for each popped element (either from

Accounting Method for

There is always enough credit to pay
for each operation (never go into red).

Each amortized cost is O(1)

So cost of entire sequence of n
operations is O(n).

27

Accounting Method for k-Bit

Assign amortized cost for increment
operation to be 2.

Actual cost is the number of bits
flipped:

a series of 1's are reset t0 0

thena O is set to 1

Idea: 1is used to pay for flipping a O
to 1. The extralis stored with the

28

Accounting Method for k-Bit

00 0 0 O 00 1 00
00 0 0 1 00 1 0 1
00 0 10 00 1 10

00 O 1 1 00 1 1 1

29

Accounting Method for k-Bit

All changes from 1 to O are paid for
with previously stored credit (never go
into red)

Amortized time per operation is O(1)
total cost of sequence is O(n)

30

Conclusions

Amortized Analysis allows one to
estimate the cost of a sequence of
operations on data structures.

The method is typically more accurate
than worst case analysis when the data
structure is dynamically changing.

31

