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Amortized Analysis

Andreas Klappenecker

[partially based on the slides of Prof. Welch]
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Analyzing Calls to a Data 

• Some algorithms involve repeated calls to one or 
more data structures.

• When analyzing the running time of an algorithm, 
one needs to sum up the time spent in all the 
calls to the data structure.

• Problem: If different calls take different times, 
how can we accurately calculate the total time?



Max-Heap

A max-heap is an nearly complete binary tree 
(i.e., all levels except the deepest level are completely filled and 
the last level is filled from the left) 

satisfying the heap property: if B is a child of a node A, 
then key[A] >= key[B].  

[Picture courtesy of Wikipedia.] 3



Heap Implementation

We can store a heap in an array:

If the array is indexed a[1..n], 

then a[i] has children a[2i] and a[2i+1]:

a[1] has children a[2], a[3],

a[2] has children a[4], a[5],

a[3] has children a[6], a[7], … 4
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Adding an Element to a Heap

An element can be added to the heap as follows: 

1. Add the element on the bottom level of the 
heap.

2.Compare the added element with its parent; if 
they are in the correct order, stop.

3.If not, swap the element with its parent and 
return to the previous step.
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Adding an Element: Example
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Adding 15 to a max-heap. Insert at position x,
compare with parent, swap, compare with parent, swap.

What is the time-complexity of adding an element 
to a heap with n elements? 
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Constructing a Heap
Let us form a heap of n elements from scratch.

First idea: 
• Use n times add to form the heap.
• Each addition to the heap operates on a heap 

with at most n elements. 
• Adding to a heap with n elements takes O(log n) 

time
• Total time spent doing the n  insertions is    O

(n log n) time



Constructing a Heap (2) 

Two question arise: 
• Does our analysis overestimate the time?  

The different insertions take different 
amounts of time, and many are on smaller 
heaps. (=> leads to amortized analysis)

• Is this the optimal way to create a heap? 
Perhaps simply adding n times is not the best 
way to form a heap.
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Deleting the Maximal Element 

Deleting the maximal element from a max-heap starts 
by replacing it with the last element from the lowest 
level. Then restore the heap property (using Max-
Heapify) by swapping with largest child, and repeat 
same process on the next level, etc.
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Constructing a Heap (3)

Second idea:
Place elements in an array, interpret as a binary 

tree. Look at subtrees at height h (measured 
from lowest level). If these trees have been 
heapified, then subtrees at height h+1 can be 
heapified by sending their roots down. 

Initially, the trees at height 0 are all heapified. 
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Constructing a Heap (4)

Array of length n. Number of nodes at height h

is at most floor(n/2h+1). Cost to heapify a tree at 
height h+1 if all subtrees have been heapified: O
(h) swaps. Total cost:
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Amortized Analysis
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Amortized Analysis

• Purpose is to accurately compute the total time spent 
in executing a sequence of operations on a data 
structure

• Three different approaches:
• aggregate method:  brute force
• accounting method:  assign costs to each operation 

so that it is easy to sum them up while still 
ensuring that the result is accurate

• potential method:  a more sophisticated version of 
the accounting method (omitted here)
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Running Example #1: 

• Operations are:
• Push(S,x)
• Pop(S)
• Multipop(S,k) - pop the top k elements

• Implement with either array or linked list
• time for Push is O(1)
• time for Pop is O(1)
• time for Multipop is O(min(|S|,k))
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Running Example #2:

• Operation:
• increment(A) - add 1 (initially 0)

• Implementation:
• k-element binary array
• use grade school ripple-carry algorithm



Aggregate Method
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Aggregate Method

• Show that a sequence of n operations 
takes T(n) time

• We can then say that the amortized 
cost per operation is T(n)/n

• Makes no distinction between operation 
types
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Augmented Stack: 

• In a sequence of n operations, the stack 
never holds more than n elements.

• Thus, the cost of a multipop is O(n)
• Therefore, the worst-case cost of any 

sequence of n operations is O(n2).
• But this is an over-estimate!
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Aggregate Method for 

• Key idea:  total number of pops (or multipops) 
in the entire sequence of operations is at 
most the total number of pushes

             
• Suppose that the maximum number of Push 

operations in the sequence is n.
• So time for entire sequence is O(n).
• Amortized cost per operation: O(n)/n = O(1).
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Aggregate Method for k-Bit 

• Worst-case time for an increment is O(k).   
This occurs when all k bits are flipped

• But in a sequence of n operations, not all of 
them will cause all k bits to flip:
• bit 0 flips with every increment
• bit 1 flips with every 2nd increment
• bit 2 flips with every 4th increment …
• bit k flips with every 2k-th increment
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Aggregate Method for k-Bit 

• Total number of bit flips in n increment 
operations is
• n + n/2 + n/4 + … + n/2k < n(1/(1-1/2))= 2n

• So total cost of the sequence is O(n).
• Amortized cost per operation is O(n)/n = O(1).
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Accounting Method
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Accounting Method

• Assign a cost, called the "amortized 
cost", to each operation

• Assignment must ensure that the sum 
of all the amortized costs in a sequence 
is at least the sum of all the actual 
costs
• remember, we want an upper bound on the 

total cost of the sequence
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Accounting Method

• For each operation in the sequence:
• if amortized cost > actual cost then store 

extra as a credit with an object in the data 
structure

• if amortized cost < actual cost then use the 
stored credits to make up the difference

• Never allowed to go into the red!  Must 
have enough credit saved up to pay for 
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Accounting Method vs. 

• Aggregate method:
• first analyze entire sequence
• then calculate amortized cost per 

operation

• Accounting method:
• first assign amortized cost per operation
• check that they are valid (never go into the 

red)
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Accounting Method for 

• Assign these amortized costs:
• Push - 2
• Pop - 0
• Multipop - 0

• For Push, actual cost is 1.  Store the extra 1 
as a credit, associated with the pushed 
element.

• Pay for each popped element (either from 
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Accounting Method for 

• There is always enough credit to pay 
for each operation (never go into red).

• Each amortized cost is O(1)
• So cost of entire sequence of n 

operations is O(n).
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Accounting Method for k-Bit 

• Assign amortized cost for increment 
operation to be 2.

• Actual cost is the number of bits 
flipped:
• a series of 1's are reset to 0
• then a 0 is set to 1

• Idea:  1 is used to pay for flipping a 0 
to 1.  The extra 1 is stored with the 
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Accounting Method for k-Bit 
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Accounting Method for k-Bit 

• All changes from 1 to 0 are paid for 
with previously stored credit (never go 
into red)

• Amortized time per operation is O(1)
• total cost of sequence is O(n)
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Conclusions

Amortized Analysis allows one to 
estimate the cost of a sequence of 
operations on data structures. 

The method is typically more accurate 
than worst case analysis when the data 
structure is dynamically changing. 


