
1

Dynamic Programming

Andreas Klappenecker

[partially based on slides by Prof. Welch]

2

Dynamic Programming

• Optimal substructure
• An optimal solution to the problem contains

within it optimal solutions to subproblems.

• Overlapping subproblems
• The space of subproblem is “small” so that

the recursive algorithm has to solve the
same problems over and over.

Giving Optimal Change

3

Motivation

We have discussed a greedy algorithm for
giving change.
However, the greedy algorithm is not
optimal for all denominations.
Can we design an algorithm that will give
the minimum number of coins as change
for any given amount?
Answer: Yes, using dynamic programming. 4

Dynamic Programming Task

For dynamic programming, we have to find
some subproblems that might help in
solving the coin-change problem.

Idea:
• Vary amount
• Restrict the available coins

5

Initial Set Up

Suppose we want to compute the minimum number of
coins with values
 v[1]>v[2]>…>v[n]=1
to give change for an amount C.
Let us call the (i,j)-problem the problem of computing
minimum number of coins with values
 v[i]>v[i+1]>…>v[n]=1
to give change for an amount 1<= j <= C.
The original problem is the (1,C)-problem.

6

Tabulation

Let m[i][j] denote the solution to the
(i,j)-problem.

Thus, m[i][j] denotes the minimum number
of coins to make change for the amount j
using coins with values v[i],…,v[n].

7

Tabulation Example

Denomination v[1]=10, v[2]=6, v[3]=1
Table of m[i][j] values:

8

A Simple Observation

In calculating m[i][j], notice that:
a)Suppose we do not use the coin with value v[i]

in the solution of the (i,j)-problem, then m[i][j]
= m[i+1][j]

b)Suppose we use the coin with value v[i] in the
solution of the (i,j)-problem, then m[i][j] = 1 +
m[i][j-v[i]]

9

Tabulation Example

Denomination v[1]=10, v[2]=6, v[3]=1
Table of m[i][j] values:

10

Recurrence

We either use a coin with value v[i] in the
solution or we don’t.
 m[i+1][j] if v[i]>j
m[i][j] =
 min{ m[i+1][j], 1+m[i][j-v[i]] }
 otherwise

11

DP Coin-Change Algorithm
Dynamic_Coin_Change(C,v,n)

 allocate array m[1..n][0..C];

 for(i = 0; i<=C, i++)

 m[n][i] = i; // make change for amount i using coins of value v[n]=1.

 for(i=n-1; i=>1; i--) { // successively allow a larger number coin values

 for(j=0; j<=C; j++) { // calc values of the array.

 if(v[i]>j || m[i+1][j]<1+m[i][j – v[i]])

 m[i][j] = m[i+1][j]; // large coin does not help

 else m[i][j] = 1+m[i][j –v[i]]; //

 }

 }

 return &m; 12

Question

The previous algorithm allows us to find
the minimum number of coins.

How can you modify the algorithm to
actually compute the change (i.e., the
multiplicities of the coins)?

13

Matrix Chain Algorithm

14

Matrices
An n x m matrix A over the real numbers is a
rectangular array of nm real numbers that are
arranged in n rows and m columns.
For example, a 3 x 2 matrix A has 6 entries

 A =

where each of the entries aij is a real 15

a11 a12

a21 a22

a31 a32

Definition of Matrix Multiplication

Let A be an n x m matrix
B an m x p matrix
The product of A and B is n x p matrix AB

whose (i,j)-th entry is
 ∑k=1

m aik bkj

In other words, we multiply the entries of the
i-th row of A with the entries of the j-th
column of B and add them up.

16

Matrix Multiplication

[Images courtesy of Wikipedia] 17

Complexity of Naïve Matrix

• Multiplying non-square matrices:
• A is n x m,
• B is m x p
• AB is n x p matrix
 [whose (i,j) entry is ∑aik bkj]

• Computing the product AB takes
• nmp scalar multiplications
• n(m-1)p scalar additions
if we take basic matrix multiplication algorithm. 18

19

Matrix Chain Order Problem

Matrix multiplication is associative,
meaning that (AB)C = A(BC).
Therefore, we have a choice of forming
the product of several matrices.
What is the least expensive way to form
the product of several matrices if the
naïve matrix multiplication algorithm is
used?
[Use number of scalar multiplications as cost.]

20

Why Order Matters

• Suppose we have 4 matrices:
• A: 30 x 1
• B: 1 x 40
• C: 40 x 10
• D: 10 x 25

• ((AB)(CD)) : requires 41,200 mults.
• (A((BC)D)) : requires 1400 mults.

21

Matrix Chain Order Problem

Given matrices A1, A2, …, An,

where Ai is a di-1 x di matrix.
[1] What is minimum number of scalar multiplications

required to compute the product A1· A2 ·… · An?

[2] What order of matrix multiplications achieves
this minimum?

We focus on question [1];
We will briefly sketch an answer to [2].

22

A Possible Solution

• Try all possibilities and choose the best
one.

• Drawback: There are too many of them
(exponential in the number of matrices
to be multiplied)

• Need to be more clever - try dynamic
programming!

23

Step 1: Develop a Recursive

• Define M(i,j) to be the minimum number
of multiplications needed to compute
 Ai· Ai+1 ·… · Aj

• Goal: Find M(1,n).
• Basis: M(i,i) = 0.
• Recursion: How can one define M(i,j)

recursively?

24

Defining M(i,j) Recursively

• Consider all possible ways to split Ai
through Aj into two pieces.

• Compare the costs of all these splits:
• best case cost for computing the product of

the two pieces
• plus the cost of multiplying the two products

• Take the best one
• M(i,j) = mink(M(i,k) + M(k+1,j) + di-1dkdj)

25

Defining M(i,j) Recursively

(Ai ·…· Ak)·(Ak+1 ·… · Aj)

P1 P2

•minimum cost to compute P1 is M(i,k)
•minimum cost to compute P2 is M(k+1,j)
•cost to compute P1· P2 is di-1dkdj

26

Step 2: Find Dependencies

1 2 3 4 5
1 0
2 n/a 0
3 n/a n/

a
0

4 n/a n/
a

n/
a

0
5 n/a n/

a
n/
a

n/
a

0

GOAL!
M:

computing the pink
square requires the
purple ones: to the
left and below.

27

Defining the Dependencies

• Computing M(i,j) uses
• everything in same row to the left:
 M(i,i), M(i,i+1), …, M(i,j-1)
• and everything in same column below:
 M(i,j), M(i+1,j),…,M(j,j)

28

Step 3: Identify Order for

• Recall the dependencies between
subproblems just found

• Solve the subproblems (i.e., fill in the
table entries) this way:
• go along the diagonal
• start just above the main diagonal
• end in the upper right corner (goal)

29

Order for Solving Subproblems

1 2 3 4 5
1 0
2 n/a 0
3 n/a n/

a
0

4 n/a n/
a

n/
a

0
5 n/a n/

a
n/
a

n/
a

0

M:

1 2 3 4

30

Pseudocode

for i := 1 to n do M[i,i] := 0
for d := 1 to n-1 do // diagonals
 for i := 1 to n-d to // rows w/ an entry on d-th diagonal
 j := i + d // column corresp. to row i on d-th diagonal
 M[i,j] := infinity
 for k := 1 to j-1 to
 M[i,j] := min(M[i,j], M[i,k]+M[k+1,j]+di-1dkdj)

 endfor
 endfor
endfor

running time O(n3)

pay attention here
to remember actual
sequence of mults.

31

Example

M: 1 2 3 4
1 0 1200 700 1400

2 n/a 0 400 650

3 n/a n/a 0 10,000

4 n/a n/a n/a 0

1: A is 30x1
2: B is 1x40
3: C is 40x10
4: D is 10x25

32

Keeping Track of the Order

• It's fine to know the cost of the
cheapest order, but what is that
cheapest order?

• Keep another array S and update it
when computing the minimum cost in the
inner loop

• After M and S have been filled in, then
call a recursive algorithm on S to print
out the actual order

33

Modified Pseudocode

for i := 1 to n do M[i,i] := 0

for d := 1 to n-1 do // diagonals

 for i := 1 to n-d to // rows w/ an entry on d-th diagonal

 j := i + d // column corresponding to row i on d-th diagonal
 M[i,j] := infinity

 for k := 1 to j-1 to

 M[i,j] := min(M[i,j], M[i,k]+M[k+1,j]+di-1dkdj)

 if previous line changed value of M[i,j] then S[i,j] := k

 endfor

 endfor

endfor

keep track of cheapest split point
found so far: between Ak and Ak+1

34

Example

M: 1 2 3 4
1 0 1200 700 1400

2 n/a 0 400 650

3 n/a n/a 0 10,000

4 n/a n/a n/a 0

1: A is 30x1
2: B is 1x40
3: C is 40x10
4: D is 10x25

1

2

3

1

3

1S:

35

Using S to Print Best Ordering

Call Print(S,1,n) to get the entire ordering.

Print(S,i,j):
 if i = j then output "A" + i //+ is string concat
 else
 k := S[i,j]
 output "(" + Print(S,i,k) + Print(S,k+1,j) + ")"

