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Dynamic Programming

• Optimal substructure
• An optimal solution to the problem contains 

within it optimal solutions to subproblems.

• Overlapping subproblems
• The space of subproblem is “small” so that 

the recursive algorithm has to solve the 
same problems over and over.



Giving Optimal Change
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Motivation

We have discussed a greedy algorithm for 
giving change. 
However, the greedy algorithm is not 
optimal for all denominations. 
Can we design an algorithm that will give 
the minimum number of coins as change 
for any given amount? 
Answer: Yes, using dynamic programming. 4



Dynamic Programming Task

For dynamic programming, we have to find 
some subproblems that might help in 
solving the coin-change problem. 

Idea:
• Vary amount
• Restrict the available coins
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Initial Set Up

Suppose we want to compute the minimum number of 
coins with values 
 v[1]>v[2]>…>v[n]=1
to give change for an amount C. 
Let us call the (i,j)-problem the problem of computing 
minimum number of coins with values 
 v[i]>v[i+1]>…>v[n]=1
to give change for an amount 1<= j <= C. 
The original problem is the (1,C)-problem.
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Tabulation

Let m[i][j] denote the solution to the 
(i,j)-problem. 

Thus, m[i][j] denotes the minimum number 
of coins to make change for the amount j 
using coins with values v[i],…,v[n].
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Tabulation Example

Denomination v[1]=10, v[2]=6, v[3]=1
Table of m[i][j] values: 

8



A Simple Observation

In calculating m[i][j], notice that:
a)Suppose we do not use the coin with value v[i] 

in the solution of the (i,j)-problem, then m[i][j] 
= m[i+1][j]

b)Suppose we use the coin with value v[i] in the 
solution of the (i,j)-problem, then m[i][j] = 1 + 
m[i][ j-v[i] ]
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Tabulation Example

Denomination v[1]=10, v[2]=6, v[3]=1
Table of m[i][j] values: 
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Recurrence

We either use a coin with value v[i] in the 
solution or we don’t. 
                m[i+1][j]     if v[i]>j
m[i][j] =   
                min{ m[i+1][j], 1+m[i][ j-v[i] ] } 
                                  otherwise
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DP Coin-Change Algorithm
Dynamic_Coin_Change(C,v,n)

 allocate array m[1..n][0..C]; 

 for(i = 0; i<=C, i++) 

  m[n][i] = i;  // make change for amount i using coins of value v[n]=1. 

 for(i=n-1; i=>1; i--) { // successively allow a larger number coin values

  for(j=0; j<=C; j++) { // calc values of the array. 

   if( v[i]>j || m[i+1][j]<1+m[i][j – v[i]] )  

    m[i][j] = m[i+1][j]; // large coin does not help

   else m[i][j] = 1+m[i][j –v[i]]; // 

             }

 } 

     return &m; 12



Question

The previous algorithm allows us to find 
the minimum number of coins. 

How can you modify the algorithm to 
actually compute the change (i.e., the 
multiplicities of the coins)? 
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Matrix Chain Algorithm
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Matrices
An n x m matrix A over the real numbers is a 
rectangular array of nm real numbers that are 
arranged in n rows and m columns. 
For example, a 3 x 2 matrix  A has 6 entries

 A = 

where each of the entries aij is a real 15

a11    a12

a21    a22

a31    a32



Definition of Matrix Multiplication

Let A be an n x m matrix
B an m x p matrix
The product of A and B is n x p matrix AB 

whose (i,j)-th entry is   
  ∑k=1

m aik bkj

In other words, we multiply the entries of the 
i-th row of A with the entries of the j-th 
column of B and add them up.   
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Matrix Multiplication

[Images courtesy of Wikipedia] 17



Complexity of Naïve Matrix 

• Multiplying non-square matrices:
• A is n x m, 
• B is m x p
• AB is n x p matrix 
           [ whose (i,j) entry is ∑aik bkj  ]

• Computing the product AB takes 
• nmp scalar multiplications
• n(m-1)p scalar additions
if we take basic matrix multiplication algorithm.  18
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Matrix Chain Order Problem

Matrix multiplication is associative, 
meaning that (AB)C = A(BC). 
Therefore, we have a choice of forming 
the product of several matrices.
What is the least expensive way to form 
the product of several matrices if the 
naïve matrix multiplication algorithm is 
used? 
[Use number of scalar multiplications as cost.] 
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Why Order Matters

• Suppose we have 4 matrices:
• A: 30 x 1
• B: 1 x 40
• C: 40 x 10
• D: 10 x 25

• ((AB)(CD)) : requires 41,200 mults.
• (A((BC)D)) : requires 1400 mults.



21

Matrix Chain Order Problem

Given matrices A1, A2, …, An, 

where Ai is a di-1 x di matrix. 
[1] What is minimum number of scalar multiplications 

required to compute the product A1· A2 ·… · An?

[2] What order of matrix multiplications achieves 
this minimum?

We focus on question [1]; 
We will briefly sketch an answer to [2]. 
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A Possible Solution

• Try all possibilities and choose the best 
one.

• Drawback: There are too many of them 
(exponential in the number of matrices 
to be multiplied)

• Need to be more clever - try dynamic 
programming!
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Step 1:  Develop a Recursive 

• Define M(i,j) to be the minimum number 
of multiplications needed to compute               
  Ai· Ai+1 ·… · Aj

• Goal:  Find M(1,n).
• Basis:  M(i,i) = 0.
• Recursion:  How can one define M(i,j) 

recursively?
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Defining M(i,j) Recursively

• Consider all possible ways to split Ai 
through Aj into two pieces.

• Compare the costs of all these splits:
• best case cost for computing the product of 

the two pieces
• plus the cost of multiplying the two products

• Take the best one
• M(i,j) = mink(M(i,k) + M(k+1,j) + di-1dkdj)
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Defining M(i,j) Recursively

(Ai ·…· Ak)·(Ak+1 ·… · Aj)

P1 P2

•minimum cost to compute P1 is M(i,k)
•minimum cost to compute P2 is M(k+1,j)
•cost to compute P1· P2 is di-1dkdj
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Step 2:  Find Dependencies 

1 2 3 4 5
1 0
2 n/a 0
3 n/a n/

a
0

4 n/a n/
a

n/
a

0
5 n/a n/

a
n/
a

n/
a

0

GOAL!
M:

computing the pink
square requires the
purple ones:  to the
left and below.
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Defining the Dependencies

• Computing M(i,j) uses 
• everything in same row to the left:  
 M(i,i), M(i,i+1), …, M(i,j-1)
• and everything in same column below:
 M(i,j), M(i+1,j),…,M(j,j)
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Step 3:  Identify Order for 

• Recall the dependencies between 
subproblems just found

• Solve the subproblems (i.e., fill in the 
table entries) this way:
•  go along the diagonal
• start just above the main diagonal
•  end in the upper right corner (goal)
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Order for Solving Subproblems

1 2 3 4 5
1 0
2 n/a 0
3 n/a n/

a
0

4 n/a n/
a

n/
a

0
5 n/a n/

a
n/
a

n/
a

0

M:

1 2 3 4
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Pseudocode

for i := 1 to n do M[i,i] := 0
for d := 1 to n-1 do  // diagonals
   for i := 1 to n-d to // rows w/ an entry on d-th diagonal
      j := i + d           // column corresp. to row i on d-th diagonal
      M[i,j] := infinity
      for k := 1 to j-1 to
         M[i,j] := min(M[i,j], M[i,k]+M[k+1,j]+di-1dkdj)

      endfor
   endfor
endfor

running time O(n3)

pay attention here
to remember actual
sequence of mults.
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Example

M: 1 2 3 4
1 0 1200 700 1400

2 n/a 0 400 650

3 n/a n/a 0 10,000

4 n/a n/a n/a 0

1: A is 30x1
2: B is 1x40
3: C is 40x10
4: D is 10x25
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Keeping Track of the Order

• It's fine to know the cost of the 
cheapest order, but what is that 
cheapest order?

• Keep another array S and update it 
when computing the minimum cost in the 
inner loop

• After M and S have been filled in, then 
call a recursive algorithm on S to print 
out the actual order
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Modified Pseudocode

for i := 1 to n do M[i,i] := 0

for d := 1 to n-1 do  // diagonals

   for i := 1 to n-d to // rows w/ an entry on d-th diagonal

      j := i + d           // column corresponding to row i on d-th diagonal
      M[i,j] := infinity

      for k := 1 to j-1 to

         M[i,j] := min(M[i,j], M[i,k]+M[k+1,j]+di-1dkdj)

         if previous line changed value of M[i,j] then S[i,j] := k

      endfor

   endfor

endfor

keep track of cheapest split point
found so far:  between Ak and Ak+1
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Example

M: 1 2 3 4
1 0 1200 700 1400

2 n/a 0 400 650

3 n/a n/a 0 10,000

4 n/a n/a n/a 0

1: A is 30x1
2: B is 1x40
3: C is 40x10
4: D is 10x25

1

2

3

1

3

1S:



35

Using S to Print Best Ordering

Call Print(S,1,n) to get the entire ordering.

Print(S,i,j):
   if i = j then output "A" + i   //+ is string concat
   else 
      k := S[i,j]
      output "(" + Print(S,i,k) + Print(S,k+1,j) + ")"


