
Propositional Logic
Andreas Klappenecker

Propositions

A proposition is a declarative sentence that is
either true or false (but not both).

Examples:

• College Station is the capital of the USA.
• There are fewer politicians in College Station than in Washington, D.C.
• 1+1=2
• 2+2=5

Propositional Variables

A variable that represents propositions is called a
propositional variable.

For example: p, q, r, ...

[Propositional variables in logic play the same role
as numerical variables in arithmetic.]

Propositional Logic

The area of logic that deals with propositions is
called propositional logic.

In addition to propositional variables, we have
logical connectives such as not, and, or,
conditional, and biconditional.

Syntax of Propositional Logic

Approach

We are going to present the propositional logic as a
formal language:

- we first present the syntax of the language

- then the semantics of the language.

[Incidentally, this is the same approach that is used
when defining a new programming language. Formal
languages are used in other contexts as well.]

Formal Languages

Let S be an alphabet.

We denote by S* the set of all strings over S,
including the empty string.

A formal language L over the alphabet S is a
subset of S*.

Syntax of Propositional Logic

Our goal is to study the language Prop of propositional
logic. This is a language over the alphabet ∑=S ∪ X ∪ B ,
where

- S = { a, a0, a1,..., b, b0, b1,... } is the set of symbols,

- X = {¬,∧,∨,⊕,→,↔} is the set of logical connectives,

- B = { (,) } is the set of parentheses.

We describe the language Prop using a grammar.

Grammar of Prop

⟨formula ⟩::= ¬ ⟨formula ⟩

| (⟨formula ⟩ ∧ ⟨formula ⟩)

| (⟨formula ⟩ ∨ ⟨formula ⟩)

| (⟨formula ⟩ ⊕ ⟨formula ⟩)

| (⟨formula ⟩ → ⟨formula ⟩)

| (⟨formula ⟩ ↔ ⟨formula ⟩)

| ⟨symbol ⟩

Example

Using this grammar, you can infer that

((a ⊕ b) ∨ c)

((a → b) ↔ (¬a ∨ b))

both belong to the language Prop, but

((a → b) ∨ c

does not, as the closing parenthesis is missing.

Meaning?

So far, we have introduce the syntax of
propositional logic. Thus, we know that

((a → b) ↔ (¬a ∨ b))

is a valid formula in propositional logic. However,
we do not know yet the meaning of this formula.
We need to give an unambiguous meaning to every
formula in Prop.

Semantics

Formation Tree

Each logical connective is enclosed in parentheses,
except for the negation connective ¬. Thus, we can
associate a unique binary tree to each proposition,
called the formation tree.

The formation tree contains all subformulas of a
formula, starting with the formula at its root and
breaking it down into its subformulas until you reach
the propositional variables at its leafs.

Formation Tree

A formation tree of a proposition p has a root labeled
with p and satisfies the following rules:

T1. Each leaf is an occurrence of a propositional variable
in p.

T2. Each internal node with a single successor is labeled
by a subformula ¬q of p and has q as a successor.

T3. Each internal node with two successors is labeled by a
subformula aXb of p with X in {∧,∨,⊕,→,↔} and has a as a

left successor and b as a right successor.

Example

The start symbol is �formula �. The terminal symbols are the elements in S,

the connectives, and the parentheses. We will refer to the elements in S as

propositional variables or variables for short.

Remark. We could have used any other countable set S to name the variables,

as long as it does not contain the parentheses and the connectives.

Example 3. The formula

((a ∧ b) ∨ ¬c)

belongs to the language of propositional logic. Indeed, this can be seen as

follows:

�formula � yields (�formula � ∨ �formula �)
yields ((�formula � ∧ �formula �) ∨ �formula �)
yields ((�formula � ∧ �formula �) ∨ ¬�formula �).

By applying the last rule three times, we get

((�symbol � ∧ �symbol �) ∨ ¬�symbol �),

and the symbols can be chosen to be a, b and c, respectively.

You might have wondered why each logical connective is enclosed in paren-

theses, except for the negation connective ¬. This ensures that we can associate

a unique binary tree to each proposition, called the formation tree. The for-

mation tree contains all subformulas of a proposition. A formation tree of a

proposition p has a root labeled with p and satisfies the following rules:

T1. Each leaf is an occurrence of a propositional variable in p.

T2. Each internal node with a single successor is labeled by a subformula ¬q
of p and has q as a successor.

T3. Each internal node with two successors is labeled by a subformula aXb of

p with X in {∧,∨,⊕,→,↔} and has a as a left successor and b as a right

successor.

Example 4. The formation tree of the formula ((a ∧ b) ∨ ¬c) is given by

((a ∧ b) ∨ ¬c)
✚✚

(a ∧ b)
❏❏✡✡

a b

¬c

c

Remark. In a course on compiler construction, you will learn how to write a

parser for languages such as the one that we have specified for propositional

logic. You can check out lex and yacc if you want to write a parser for propo-

sitional logic in C or C++ now. In Haskell, you can use for example the parser

generator Happy.

4

Assigning Meanings to Formulas

We know that each formula corresponds to a unique
binary tree.

We can evaluate the formula by

- giving each propositional variable an interpretation.

- defining the meaning of each logical connective

- propagate the truth values from the leafs to the root
in a unique way, so that we get a unambiguous evaluation
of each formula.

Semantics

Let B={t,f}. Assign to each connective a function M: B->B

that determines its semantics.
4 The Semantics of Propositional Logic

Let B = {t, f} denote the set of truth values, where t and f represent true
and false, respectively. We associate to the logical connective ¬ the function
M¬ : B→ B given by

P M¬(P)
f t
t f

Thus, M¬(P) is true if and only if P is false. This justifies the name negation
for this connective. The graph of the function M¬ given above is called the
truth table of the negation connective. Similarly, we associate to a connective
X in the set {∧,∨,⊕,→,↔} a binary function MX : B × B → B. The truth
tables of these connectives are as follows:

P Q M∧(P, Q) M∨(P,Q) M⊕(P, Q) M→(P, Q) M↔(P, Q)
f f f f f t t
f t f t t t f
t f f t t f f
t t t t f t t

You should very carefully inspect this table! It is critical that you memorize
and fully understand the meaning of each connective.

The semantics of the language Prop is given by assigning truth values to
each proposition in Prop. Clearly, an arbitrary assignment of truth values is
not interesting, since we would like everything to be consistent with the meaning
of the connectives that we have just learned. For example, if the propositions a
and b have been assigned the value t, then it is reasonable to insist that a ∧ b
be assigned the value t as well. Therefore, we will introduce the concept of a
valuation, which models the semantics of Prop in an appropriate way.

A valuation v : Prop→ B is a function that assigns a truth value to each
proposition in Prop such that
V1. v�¬a� = M¬(v�a�)
V2. v�(a ∧ b)� = M∧(v�a� , v�b�)
V3. v�(a ∨ b)� = M∨(v�a� , v�b�)
V4. v�(a⊕ b)� = M⊕(v�a� , v�b�)
V5. v�(a→ b)� = M→(v�a� , v�b�)
V6. v�(a↔ b)� = M↔(v�a� , v�b�)
holds for all propositions a and b in Prop. The properties V1–V6 ensure
that the valuation respects the meaning of the connectives. We can restrict a
valuation v to a subset of the set of proposition. If A and B are subsets of
Prop such that A ⊆ B, and vA : A → B and vB : B → B are valuations, then
vB is called an extension of the valuation vA if and only if vB coincides with
vA when restricted to A.

The consistency conditions V1-V6 are quite stringent, as the next theorem
shows.

5

4 The Semantics of Propositional Logic

Let B = {t, f} denote the set of truth values, where t and f represent true
and false, respectively. We associate to the logical connective ¬ the function
M¬ : B→ B given by

P M¬(P)
f t
t f

Thus, M¬(P) is true if and only if P is false. This justifies the name negation
for this connective. The graph of the function M¬ given above is called the
truth table of the negation connective. Similarly, we associate to a connective
X in the set {∧,∨,⊕,→,↔} a binary function MX : B × B → B. The truth
tables of these connectives are as follows:

P Q M∧(P, Q) M∨(P,Q) M⊕(P, Q) M→(P, Q) M↔(P, Q)
f f f f f t t
f t f t t t f
t f f t t f f
t t t t f t t

You should very carefully inspect this table! It is critical that you memorize
and fully understand the meaning of each connective.

The semantics of the language Prop is given by assigning truth values to
each proposition in Prop. Clearly, an arbitrary assignment of truth values is
not interesting, since we would like everything to be consistent with the meaning
of the connectives that we have just learned. For example, if the propositions a
and b have been assigned the value t, then it is reasonable to insist that a ∧ b
be assigned the value t as well. Therefore, we will introduce the concept of a
valuation, which models the semantics of Prop in an appropriate way.

A valuation v : Prop→ B is a function that assigns a truth value to each
proposition in Prop such that
V1. v�¬a� = M¬(v�a�)
V2. v�(a ∧ b)� = M∧(v�a� , v�b�)
V3. v�(a ∨ b)� = M∨(v�a� , v�b�)
V4. v�(a⊕ b)� = M⊕(v�a� , v�b�)
V5. v�(a→ b)� = M→(v�a� , v�b�)
V6. v�(a↔ b)� = M↔(v�a� , v�b�)
holds for all propositions a and b in Prop. The properties V1–V6 ensure
that the valuation respects the meaning of the connectives. We can restrict a
valuation v to a subset of the set of proposition. If A and B are subsets of
Prop such that A ⊆ B, and vA : A → B and vB : B → B are valuations, then
vB is called an extension of the valuation vA if and only if vB coincides with
vA when restricted to A.

The consistency conditions V1-V6 are quite stringent, as the next theorem
shows.

5

Semantics

4 The Semantics of Propositional Logic

Let B = {t, f} denote the set of truth values, where t and f represent true
and false, respectively. We associate to the logical connective ¬ the function
M¬ : B→ B given by

P M¬(P)
f t
t f

Thus, M¬(P) is true if and only if P is false. This justifies the name negation
for this connective. The graph of the function M¬ given above is called the
truth table of the negation connective. Similarly, we associate to a connective
X in the set {∧,∨,⊕,→,↔} a binary function MX : B × B → B. The truth
tables of these connectives are as follows:

P Q M∧(P, Q) M∨(P,Q) M⊕(P, Q) M→(P, Q) M↔(P, Q)
f f f f f t t
f t f t t t f
t f f t t f f
t t t t f t t

You should very carefully inspect this table! It is critical that you memorize
and fully understand the meaning of each connective.

The semantics of the language Prop is given by assigning truth values to
each proposition in Prop. Clearly, an arbitrary assignment of truth values is
not interesting, since we would like everything to be consistent with the meaning
of the connectives that we have just learned. For example, if the propositions a
and b have been assigned the value t, then it is reasonable to insist that a ∧ b
be assigned the value t as well. Therefore, we will introduce the concept of a
valuation, which models the semantics of Prop in an appropriate way.

A valuation v : Prop→ B is a function that assigns a truth value to each
proposition in Prop such that
V1. v�¬a� = M¬(v�a�)
V2. v�(a ∧ b)� = M∧(v�a� , v�b�)
V3. v�(a ∨ b)� = M∨(v�a� , v�b�)
V4. v�(a⊕ b)� = M⊕(v�a� , v�b�)
V5. v�(a→ b)� = M→(v�a� , v�b�)
V6. v�(a↔ b)� = M↔(v�a� , v�b�)
holds for all propositions a and b in Prop. The properties V1–V6 ensure
that the valuation respects the meaning of the connectives. We can restrict a
valuation v to a subset of the set of proposition. If A and B are subsets of
Prop such that A ⊆ B, and vA : A → B and vB : B → B are valuations, then
vB is called an extension of the valuation vA if and only if vB coincides with
vA when restricted to A.

The consistency conditions V1-V6 are quite stringent, as the next theorem
shows.

5

Valuations

4 The Semantics of Propositional Logic

Let B = {t, f} denote the set of truth values, where t and f represent true
and false, respectively. We associate to the logical connective ¬ the function
M¬ : B→ B given by

P M¬(P)
f t
t f

Thus, M¬(P) is true if and only if P is false. This justifies the name negation
for this connective. The graph of the function M¬ given above is called the
truth table of the negation connective. Similarly, we associate to a connective
X in the set {∧,∨,⊕,→,↔} a binary function MX : B × B → B. The truth
tables of these connectives are as follows:

P Q M∧(P, Q) M∨(P,Q) M⊕(P, Q) M→(P, Q) M↔(P, Q)
f f f f f t t
f t f t t t f
t f f t t f f
t t t t f t t

You should very carefully inspect this table! It is critical that you memorize
and fully understand the meaning of each connective.

The semantics of the language Prop is given by assigning truth values to
each proposition in Prop. Clearly, an arbitrary assignment of truth values is
not interesting, since we would like everything to be consistent with the meaning
of the connectives that we have just learned. For example, if the propositions a
and b have been assigned the value t, then it is reasonable to insist that a ∧ b
be assigned the value t as well. Therefore, we will introduce the concept of a
valuation, which models the semantics of Prop in an appropriate way.

A valuation v : Prop→ B is a function that assigns a truth value to each
proposition in Prop such that
V1. v�¬a� = M¬(v�a�)
V2. v�(a ∧ b)� = M∧(v�a� , v�b�)
V3. v�(a ∨ b)� = M∨(v�a� , v�b�)
V4. v�(a⊕ b)� = M⊕(v�a� , v�b�)
V5. v�(a→ b)� = M→(v�a� , v�b�)
V6. v�(a↔ b)� = M↔(v�a� , v�b�)
holds for all propositions a and b in Prop. The properties V1–V6 ensure
that the valuation respects the meaning of the connectives. We can restrict a
valuation v to a subset of the set of proposition. If A and B are subsets of
Prop such that A ⊆ B, and vA : A → B and vB : B → B are valuations, then
vB is called an extension of the valuation vA if and only if vB coincides with
vA when restricted to A.

The consistency conditions V1-V6 are quite stringent, as the next theorem
shows.

5

Uniqueness of Valuations
Theorem 1. If two valuations v and v� coincide on the set S of symbols, then
they coincide on the set Prop of all propositions.

Proof. Seeking a contradiction, we assume that there exist two valuations v and
v� that coincide on S, but do not coincide on Prop. Thus, the set

C = {a ∈ Prop | v�a� �= v��a�}

of counter examples is not empty. Choose a counter example a in C of minimal
length, where the length of the proposition is defined as the number of terminal
symbols. Then a cannot be of the form a = ¬b, since the minimality of the
counter example implies that v�b� = v��b�, which implies

v�a� = M¬(v�b�) = M¬(v��b�) = v��a� .

Similarly, a cannot be of the form bXc for some propositions b and c in Prop
and some connective X in {∧,∨,⊕,→,↔}. Indeed, by the minimality of the
counter example v�b� = v��b� and v�c� = v��c�, which implies

v�a� = MX(v�b� , v�c�) = MX(v��b� , v��c�) = v��a� .

Therefore, a must be a symbol in S, but both valuations coincide on the set S
of symbols, so a cannot be an element of C, which is a contradiction.

An interpretation of a proposition p in Prop is an assignment of truth
values to all variables that occur in p. More generally, an interpretation of a set
Y of propositions is an assignment of truth values to all variables that occur in
formulas in Y . The previous theorem states that an interpretation of Prop has
at most one extension to a valuation on Prop.

It remains to show that each interpretation of Prop has an extension to a
valuation. For this purpose, we define the degree of a proposition p in Prop,
denote deg p, as the number of occurrences of logical connectives in p. In other
words, the degree function satisfies the following properties:
D1. An element in S has degree 0.
D2. If a in Prop has degree n, then ¬a has degree n + 1.
D3. If a and b in Prop are respectively of degree na and nb, then aXb is of

degree na + nb + 1 for all connectives X in {∧,∨,⊕,→,↔}.

Example 5. The proposition ((a ∧ b) ∨ ¬c) is of degree 3.

Theorem 2. Each interpretation of Prop has a unique extension to a valuation.

Proof. We will show by induction on the degree of a proposition that an in-
terpretation v0 : S → B has an extension to a valuation v : Prop → B. The
uniqueness of this extension is obvious from Theorem 1.

We set v(a) = v0(a) for all a of degree 0. Then v is certainly a valuation on
the set of degree 0 propositions.

Suppose that v is a valuation for all propositions of degree less than n ex-
tending v0. If a is a proposition of degree n, then it has a unique formation tree.

6

Interpretation

Theorem 1. If two valuations v and v� coincide on the set S of symbols, then
they coincide on the set Prop of all propositions.

Proof. Seeking a contradiction, we assume that there exist two valuations v and
v� that coincide on S, but do not coincide on Prop. Thus, the set

C = {a ∈ Prop | v�a� �= v��a�}

of counter examples is not empty. Choose a counter example a in C of minimal
length, where the length of the proposition is defined as the number of terminal
symbols. Then a cannot be of the form a = ¬b, since the minimality of the
counter example implies that v�b� = v��b�, which implies

v�a� = M¬(v�b�) = M¬(v��b�) = v��a� .

Similarly, a cannot be of the form bXc for some propositions b and c in Prop
and some connective X in {∧,∨,⊕,→,↔}. Indeed, by the minimality of the
counter example v�b� = v��b� and v�c� = v��c�, which implies

v�a� = MX(v�b� , v�c�) = MX(v��b� , v��c�) = v��a� .

Therefore, a must be a symbol in S, but both valuations coincide on the set S
of symbols, so a cannot be an element of C, which is a contradiction.

An interpretation of a proposition p in Prop is an assignment of truth
values to all variables that occur in p. More generally, an interpretation of a set
Y of propositions is an assignment of truth values to all variables that occur in
formulas in Y . The previous theorem states that an interpretation of Prop has
at most one extension to a valuation on Prop.

It remains to show that each interpretation of Prop has an extension to a
valuation. For this purpose, we define the degree of a proposition p in Prop,
denote deg p, as the number of occurrences of logical connectives in p. In other
words, the degree function satisfies the following properties:
D1. An element in S has degree 0.
D2. If a in Prop has degree n, then ¬a has degree n + 1.
D3. If a and b in Prop are respectively of degree na and nb, then aXb is of

degree na + nb + 1 for all connectives X in {∧,∨,⊕,→,↔}.

Example 5. The proposition ((a ∧ b) ∨ ¬c) is of degree 3.

Theorem 2. Each interpretation of Prop has a unique extension to a valuation.

Proof. We will show by induction on the degree of a proposition that an in-
terpretation v0 : S → B has an extension to a valuation v : Prop → B. The
uniqueness of this extension is obvious from Theorem 1.

We set v(a) = v0(a) for all a of degree 0. Then v is certainly a valuation on
the set of degree 0 propositions.

Suppose that v is a valuation for all propositions of degree less than n ex-
tending v0. If a is a proposition of degree n, then it has a unique formation tree.

6

Interlude: Induction

Strong Induction

Suppose we wish to prove a certain assertion concerning
nonnegative integers.

Let A(n) be the assertion concerning the integer n.

To prove it for all n >= 0, we can do the following:

1) Prove that the assertion A(0) is true.

2) Assuming that the assertions A(k) are proved for all
k<n, prove that the assertion A(n) is true.

We can conclude that A(n) is true for all n>=0.

Example

Theorem: For all n >= 0, we have

1+2+...+ n = n(n+1)/2

Proof. We prove it by strong induction. The assertion A(n) is
the assertion of the theorem.

For n=0, we have 0 = 0(0+1)/2, hence A(0) is true.

Suppose that the assertion A(k) is true for integers 0<=k<n.

Then 1 + 2 +... + n-1 + n = (n-1)n/2 + n = ((n-1)n +2n)/2= (n2+n)/2

 = (n+1)n/2. Therefore, A(n) is true.

By the principle of strong induction, A(n) is true for all n>=0.

End of Interlude

Degree

Theorem 1. If two valuations v and v� coincide on the set S of symbols, then
they coincide on the set Prop of all propositions.

Proof. Seeking a contradiction, we assume that there exist two valuations v and
v� that coincide on S, but do not coincide on Prop. Thus, the set

C = {a ∈ Prop | v�a� �= v��a�}

of counter examples is not empty. Choose a counter example a in C of minimal
length, where the length of the proposition is defined as the number of terminal
symbols. Then a cannot be of the form a = ¬b, since the minimality of the
counter example implies that v�b� = v��b�, which implies

v�a� = M¬(v�b�) = M¬(v��b�) = v��a� .

Similarly, a cannot be of the form bXc for some propositions b and c in Prop
and some connective X in {∧,∨,⊕,→,↔}. Indeed, by the minimality of the
counter example v�b� = v��b� and v�c� = v��c�, which implies

v�a� = MX(v�b� , v�c�) = MX(v��b� , v��c�) = v��a� .

Therefore, a must be a symbol in S, but both valuations coincide on the set S
of symbols, so a cannot be an element of C, which is a contradiction.

An interpretation of a proposition p in Prop is an assignment of truth
values to all variables that occur in p. More generally, an interpretation of a set
Y of propositions is an assignment of truth values to all variables that occur in
formulas in Y . The previous theorem states that an interpretation of Prop has
at most one extension to a valuation on Prop.

It remains to show that each interpretation of Prop has an extension to a
valuation. For this purpose, we define the degree of a proposition p in Prop,
denote deg p, as the number of occurrences of logical connectives in p. In other
words, the degree function satisfies the following properties:
D1. An element in S has degree 0.
D2. If a in Prop has degree n, then ¬a has degree n + 1.
D3. If a and b in Prop are respectively of degree na and nb, then aXb is of

degree na + nb + 1 for all connectives X in {∧,∨,⊕,→,↔}.

Example 5. The proposition ((a ∧ b) ∨ ¬c) is of degree 3.

Theorem 2. Each interpretation of Prop has a unique extension to a valuation.

Proof. We will show by induction on the degree of a proposition that an in-
terpretation v0 : S → B has an extension to a valuation v : Prop → B. The
uniqueness of this extension is obvious from Theorem 1.

We set v(a) = v0(a) for all a of degree 0. Then v is certainly a valuation on
the set of degree 0 propositions.

Suppose that v is a valuation for all propositions of degree less than n ex-
tending v0. If a is a proposition of degree n, then it has a unique formation tree.

6

Extensions of Interpretations

Theorem 1. If two valuations v and v� coincide on the set S of symbols, then
they coincide on the set Prop of all propositions.

Proof. Seeking a contradiction, we assume that there exist two valuations v and
v� that coincide on S, but do not coincide on Prop. Thus, the set

C = {a ∈ Prop | v�a� �= v��a�}

of counter examples is not empty. Choose a counter example a in C of minimal
length, where the length of the proposition is defined as the number of terminal
symbols. Then a cannot be of the form a = ¬b, since the minimality of the
counter example implies that v�b� = v��b�, which implies

v�a� = M¬(v�b�) = M¬(v��b�) = v��a� .

Similarly, a cannot be of the form bXc for some propositions b and c in Prop
and some connective X in {∧,∨,⊕,→,↔}. Indeed, by the minimality of the
counter example v�b� = v��b� and v�c� = v��c�, which implies

v�a� = MX(v�b� , v�c�) = MX(v��b� , v��c�) = v��a� .

Therefore, a must be a symbol in S, but both valuations coincide on the set S
of symbols, so a cannot be an element of C, which is a contradiction.

An interpretation of a proposition p in Prop is an assignment of truth
values to all variables that occur in p. More generally, an interpretation of a set
Y of propositions is an assignment of truth values to all variables that occur in
formulas in Y . The previous theorem states that an interpretation of Prop has
at most one extension to a valuation on Prop.

It remains to show that each interpretation of Prop has an extension to a
valuation. For this purpose, we define the degree of a proposition p in Prop,
denote deg p, as the number of occurrences of logical connectives in p. In other
words, the degree function satisfies the following properties:
D1. An element in S has degree 0.
D2. If a in Prop has degree n, then ¬a has degree n + 1.
D3. If a and b in Prop are respectively of degree na and nb, then aXb is of

degree na + nb + 1 for all connectives X in {∧,∨,⊕,→,↔}.

Example 5. The proposition ((a ∧ b) ∨ ¬c) is of degree 3.

Theorem 2. Each interpretation of Prop has a unique extension to a valuation.

Proof. We will show by induction on the degree of a proposition that an in-
terpretation v0 : S → B has an extension to a valuation v : Prop → B. The
uniqueness of this extension is obvious from Theorem 1.

We set v(a) = v0(a) for all a of degree 0. Then v is certainly a valuation on
the set of degree 0 propositions.

Suppose that v is a valuation for all propositions of degree less than n ex-
tending v0. If a is a proposition of degree n, then it has a unique formation tree.

6

The immediate successors of a in the formation tree are labeled by subformulas
of a of degree less than n; hence, these successors have a valuation assigned.
Therefore, v has a unique extension to a using the consistency rules V1–V6.
We can conclude that v is a valuation on the set of all proposition of degree n
extending v0. Therefore, the claim follows by induction.

The key reason that the previous argument by induction works is that the
formation tree is unique. If there would exist several different trees for a single
formula, then such a recursive definition of a valuation would be ambiguous,
and the definition of the valuation v might not be well-defined.
Remark. Perhaps you would like to see a more direct argument based on the
grammar rather than on the degree of the formulas. One can use structural
induction, a generalization of induction to so-called freely generated recursively
defined sets. For a proof of the existence of valuations using structural induc-
tion, see [J.H. Gallier, Logic for Computer Science – Foundations of Automatic
Theorem Proving, John Wiley & Sons, 1987].

In this section, we have been a little bit pedantic by distinguishing the purely
syntactical form of a proposition such as (a → b) from its meaning M→(a, b).
Of course, it is a good idea to clearly distinguish between syntax and semantics
until the semantics of the connectives is clearly understood. From now on, we
will abuse notation and freely interpret (a→ b) as the function M→(a, b).

Summary. Informally, we can summarize the meaning of the connectives as
follows:
1) The and connective (a ∧ b) is true if and only if both a and b are true.
2) The or connective (a ∨ b) is true if and only if at least one of a, b is true.
3) The exclusive or (a⊕ b) is true if and only if precisely one of a, b is true.
4) The implication (a → b) is false if and only if the premise a is true and the

conclusion b is false.
5) The biconditional connective (a ↔ b) is true if and only if the truth values

of a and b are the same.
An interpretation of a subset S of Prop is an assignment of truth values to all
variables that occur in the propositions contained in S. We showed that there
exist a unique valuation extending an interpretation of all propositions.

5 Tautologies and Satisfiability

In the previous two sections, we have introduced the language of propositional
logic and gave the propositions a meaning using valuations. In this section, we
will see propositional logic “at work”.

A proposition p is called a tautology if and only if v�p� = t for all valuations
v on Prop.

A proposition p is a tautology if and only if p evaluates to t under each
interpretation of the variables in p. If the proposition p contains n variables,
then we have to check all 2n possible interpretations of p.

7

Summary

The immediate successors of a in the formation tree are labeled by subformulas
of a of degree less than n; hence, these successors have a valuation assigned.
Therefore, v has a unique extension to a using the consistency rules V1–V6.
We can conclude that v is a valuation on the set of all proposition of degree n
extending v0. Therefore, the claim follows by induction.

The key reason that the previous argument by induction works is that the
formation tree is unique. If there would exist several different trees for a single
formula, then such a recursive definition of a valuation would be ambiguous,
and the definition of the valuation v might not be well-defined.
Remark. Perhaps you would like to see a more direct argument based on the
grammar rather than on the degree of the formulas. One can use structural
induction, a generalization of induction to so-called freely generated recursively
defined sets. For a proof of the existence of valuations using structural induc-
tion, see [J.H. Gallier, Logic for Computer Science – Foundations of Automatic
Theorem Proving, John Wiley & Sons, 1987].

In this section, we have been a little bit pedantic by distinguishing the purely
syntactical form of a proposition such as (a → b) from its meaning M→(a, b).
Of course, it is a good idea to clearly distinguish between syntax and semantics
until the semantics of the connectives is clearly understood. From now on, we
will abuse notation and freely interpret (a→ b) as the function M→(a, b).

Summary. Informally, we can summarize the meaning of the connectives as
follows:
1) The and connective (a ∧ b) is true if and only if both a and b are true.
2) The or connective (a ∨ b) is true if and only if at least one of a, b is true.
3) The exclusive or (a⊕ b) is true if and only if precisely one of a, b is true.
4) The implication (a → b) is false if and only if the premise a is true and the

conclusion b is false.
5) The biconditional connective (a ↔ b) is true if and only if the truth values

of a and b are the same.
An interpretation of a subset S of Prop is an assignment of truth values to all
variables that occur in the propositions contained in S. We showed that there
exist a unique valuation extending an interpretation of all propositions.

5 Tautologies and Satisfiability

In the previous two sections, we have introduced the language of propositional
logic and gave the propositions a meaning using valuations. In this section, we
will see propositional logic “at work”.

A proposition p is called a tautology if and only if v�p� = t for all valuations
v on Prop.

A proposition p is a tautology if and only if p evaluates to t under each
interpretation of the variables in p. If the proposition p contains n variables,
then we have to check all 2n possible interpretations of p.

7

