


Propositions
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A proposition is a declarative sentence that is
either true or false (but not both).

Examples:

e College Station is the capital of the USA.

e There are fewer politicians in College Station than in Washington, D.C.
o 1+1=2

e 2+2=5




Propositional Variables
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A variable that represents propositions is called a
propositional variable.

For example: p, q, r, ...

[Propositional variables in logic play the same role
as nhumerical variables in arithmetic.]




Propositional Logic
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The area of logic that deals with propositions is
called propositional logic.

In addition to propositional variables, we have
logical connectives such as not, and, or,
conditional, and biconditional.







Approach

AT B L Tt ST PG s 8 Kt 5= IV ST S22 IR v SRR 2 S tanie . PR, o et gewr s ST o

We are going to present the propositional logic as a
formal language:

- we first present the syntax of the language
- then the semantics of the language.

[Incidentally, this is the same approach that is used
when defining a new programming language. Formal
languages are used in other contexts as well.]




Formal Languages
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Let S be an alphabet.

We denote by S* the set of all strings over S,
including the empty string.

A formal language L over the alphabet S is a
subset of S*.




Syntax of Proposmonal Loglc
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Our goal is to study the language Prop of propositional
logic. This is a language over the alphabet =S u X u B,

where
-S={aq,ao ai,..,b, bg, by,... } is the set of symbols,

- X = {-~.A,v,®,—,<}is the set of logical connectives,

-B={(,)} is the set of parentheses.

We describe the language Prop using a grammar.




Grammar of Prop
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(formula »::=- (formula )
(¢formula ) A (formula ))
(¢formula ) v (formula »)

(¢formula ) ® (formula ))

((formula > — (formula »)

(¢formula > < (formula ))

(symbol )




Example
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Using this grammar, you can infer that
((a ® b) v ¢)
((@ = b) < (~a v b))

both belong to the language Prop, but
((a— b) vc

does not, as the closing parenthesis is missing.
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So far, we have introduce the syntax of
propositional logic. Thus, we know that

((@—b) < (-a v b))

is a valid formula in propositional logic. However,
we do not know yet the meaning of this formula.
We need to give an unambiguous meaning to every
formula in Prop.







Formation Tree
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Each logical connective is enclosed in parentheses,
except for the negation connective -. Thus, we can
associate a unique binary tree to each proposition,
called the formation tree.

The formation tree contains all subformulas of a
formula, starting with the formula at its root and
breaking it down into its subformulas until you reach
the propositional variables at its leafs.




Formation Tree
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A formation tree of a proposition p has a root labeled
with p and satisfies the following rules:

T1. Each leaf is an occurrence of a propositional variable
in p.

T2. Each internal node with a single successor is labeled
by a subformula -q of p and has q as a successor.

T3. Each internal node with two successors is labeled by a
subformula aXb of p with X in{A,v,®,—,<}and has aas a

left successor and b as a right successor.







Assighing Meanmgs to Formulas
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We know that each formula corresponds fo a unique
binary tree.

We can evaluate the formula by
- giving each propositional variable an interpretation.
- defining the meaning of each logical connective

- propagate the truth values from the leafs to the root
in a unique way, so that we get a unambiguous evaluation

of each formula.




Semantics
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Let B={t,f}. Assign to each connective a function M: B->B

that determines its semantics.

P | M_(P)

f t

t f
fo=h f f f t t
Pt f t t t f
A 2 f t t f f
t ¢t t t f t t




Semantics
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The semantics of the language Prop is given by assigning truth values to
each proposition in Prop. Clearly, an arbitrary assignment of truth values is
not interesting, since we would like everything to be consistent with the meaning
of the connectives that we have just learned. For example, if the propositions a
and b have been assigned the value t, then it is reasonable to insist that a A b
be assigned the value t as well. Therefore, we will introduce the concept of a
valuation, which models the semantics of Prop in an appropriate way.




Valuations
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A valuation v: Prop — B is a function that assigns a truth value to each
proposition in Prop such that

V1. v[-a] = M- (v[a])

V2. v[(anb)] = Mn(v]a], v][b])
V3. v[(aVb)] = My(v]a],v[b])
V4. v[(a®b)] = Mg(v[a],v[b])
V5. v[(a — b)] = M_.(v[a] , v[0])
V6. vf(a < b)] = M, (v]a],v[b])

holds for all propositions a and b in Prop. The properties V1-V6 ensure
that the valuation respects the meaning of the connectives. We can restrict a
valuation v to a subset of the set of proposition. If A and B are subsets of
Prop such that A C B, and v4: A — B and vg: B — B are valuations, then
vp is called an extension of the valuation v, if and only if vp coincides with
v4 when restricted to A.




Uniqueness of Valuations
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Theorem 1. If two valuations v and v’ coincide on the set S of symbols, then
they coincide on the set Prop of all propositions.

Proof. Seeking a contradiction, we assume that there exist two valuations v and
v’ that coincide on S, but do not coincide on Prop. Thus, the set

C = {a € Prop |v[a] # v'[a]}

of counter examples is not empty. Choose a counter example a in C' of minimal
length, where the length of the proposition is defined as the number of terminal
symbols. Then a cannot be of the form a = —b, since the minimality of the
counter example implies that v[b] = v’[b], which implies

va] = M- (v]b]) = M- (v"[b]) = v'[a] -

Similarly, a cannot be of the form bXc for some propositions b and ¢ in Prop
and some connective X in {A,V,®,—,«<}. Indeed, by the minimality of the
counter example v[b] = v'[b] and v[c] = v'[¢], which implies

va] = Mx (v[b] , v[c]) = Mx (v'[b] , v'[¢]) = v'[a] -

Therefore, a must be a symbol in S, but both valuations coincide on the set S
of symbols, so a cannot be an element of C, which is a contradiction. []




Interpretation
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An interpretation of a proposition p in Prop is an assignment of truth
values to all variables that occur in p. More generally, an interpretation of a set
Y of propositions is an assignment of truth values to all variables that occur in
formulas in Y. The previous theorem states that an interpretation of Prop has
at most one extension to a valuation on Prop.







S*rong Induc’rlon
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Suppose we wish to prove a certain assertion concerning
honnegative integers.

Let A(n) be the assertion concerning the integer n.
To prove it for all n>= 0, we can do the following:
1) Prove that the assertion A(O) is true.

2) Assuming that the assertions A(k) are proved for all
k<n, prove that the assertion A(n) is true.

We can conclude that A(n) is true for all n>=0.




Example
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Theorem: For all n>= 0, we have
1+2+ ..+ n = n(n+1)/2

Proof. We prove it by strong induction. The assertion A(n) is
the assertion of the theorem.

For n=0, we have O = 0(0+1)/2, hence A(O) is true.

Suppose that the assertion A(k) is true for integers O<=k<n,
Thenl+2 +.. +n-1+n=(n-1)n/2 + n = ((n-1)n +2n)/2= (n°+n)/2
= (n+1)n/2. Therefore, A(n) is true.

By the principle of strong induction, A(n) is true for all n>=0.







Degree
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It remains to show that each interpretation of Prop has an extension to a
valuation. For this purpose, we define the degree of a proposition p in Prop,
denote deg p, as the number of occurrences of logical connectives in p. In other
words, the degree function satisfies the following properties:

D1. An element in S has degree 0.

D2. If a in Prop has degree n, then —a has degree n + 1.

D3. If ¢ and b in Prop are respectively of degree n, and n;, then aXb is of
degree n, + np + 1 for all connectives X in {A,V,®, —, < }.

Example 5. The proposition ((a A b) V —c) is of degree 3.




Extensions of Interpretations
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Theorem 2. Each interpretation of Prop has a unique extension to a valuation.

Proof. We will show by induction on the degree of a proposition that an in-
terpretation vg: S — B has an extension to a valuation v: Prop — B. The
uniqueness of this extension is obvious from Theorem 1.

We set v(a) = vg(a) for all a of degree 0. Then v is certainly a valuation on
the set of degree 0 propositions.

Suppose that v is a valuation for all propositions of degree less than n ex-
tending vgy. If a is a proposition of degree n, then it has a unique formation tree.

The immediate successors of a in the formation tree are labeled by subformulas
of a of degree less than n; hence, these successors have a valuation assigned.
Therefore, v has a unique extension to a using the consistency rules V1-V6.
We can conclude that v is a valuation on the set of all proposition of degree n
extending vg. Therefore, the claim follows by induction. []




Summary
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Summary. Informally, we can summarize the meaning of the connectives as
follows:
1) The and connective (a A b) is true if and only if both a and b are true.

2) The or connective (a V b) is true if and only if at least one of a, b is true.
3) The exclusive or (a @ b) is true if and only if precisely one of a, b is true.
4) The implication (@ — b) is false if and only if the premise a is true and the

conclusion b is false.
5) The biconditional connective (a < b) is true if and only if the truth values
of a and b are the same.
An interpretation of a subset S of Prop is an assignment of truth values to all
variables that occur in the propositions contained in S. We showed that there
exist a unique valuation extending an interpretation of all propositions.




