


Motivation
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Induction is an axiom which allows us to prove
that certain properties are true for all positive
integers (or for all nonnegative integers, or all
integers >= some fixed nhumber)




Induction Principle
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Let A(n) be an assertion concerning the integer n.

If we want to show that A(n) holds for all
positive integer n, we can proceed as follows:

Induction basis: Show that the assertion A(1)
holds.

Induction step: For all positive integers n, show
that A(n) implies A(n+1).




Standard Example
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For all positive integers n, we have
A(n) = 1+42+..+n = n(n+1)/2
Induction basis:
Since 1 = 1(1+1)/2, the assertion A(1) is true.
Induction step:
Suppose that A(n) holds. Then

142+, +n+(n+1) = n(n+1)/2 + n+1 = (n® + n+2n+2)/2
= (n+1)(n+2)/2,

hence A(n+1) holds. Therefore, the claim follows by induction

on n.
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The Main Points
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We established in the induction basis that the
assertion A(1) is true.

We showed in the induction step that A(n+1)
holds, assuming that A(n) holds.

In other words, we showed in the induction step
that A(n)->A(n+1) holds for all n>= 1.




Example 2
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Theorem: For all positive integers n, we have
1+3+5+.. +(2n-1) = n?

Proof. We prove this by induction on n. Let A(n) be the
assertion of the theorem.

Induction basis: Since 1 = 12, it follows that A(1) holds.
Induction step: Suppose that A(n) holds. Then

1+3+5+_ +(2n-1)+(2n+1) = n+2n+1 = (n+1)?

holds. In other words, A(n) implies A(n+1).
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Quuz
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Theorem: We have
12+ 2%+ ...+ n° = n(n+1)(2n+1)/6
for all n>= 1.

Proof. Your turnlll
Let B(n) denote the assertion of the theorem.

Induction basis:

Since 1% = 1(1+1)(2+1)/6, we can conclude that B(1) holds.




Inductive step: Suppose that B(n) holds. Then
12+ 22 + .. + n? + (n+1)?= n(n+1)(2n+1)/6 + (n+1)?
Expanding the right hand side yields

n3/3 + 3n%/2 + 13n/6 + 1

One easily verifies that this is equal to
(n+1)(n+2)(2(n+1)+1)/6

Thus, B(n+1) holds.

Therefore, the proof follows by induction on n.
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Tip
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How can you verify whether your algebra is
correct?

Use http://www.wolframalpha.com

[Not allowed in any exams, though. Sorry!]







Billiard Balls
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"Theorem": All billiard balls have the same color.
Proof: By induction, on the number of billiard balls.

Induction basis:

Our theorem is certainly true for n=1. [

Induction step:

Assume the theorem holds for n billiard balls. We prove it
for n+l1. Look at the first n billiard balls among the n+1. By
induction hypothesis, they have the same color. Now look at
the last n billiard balls. They have the same color. Hence all
n+1 billiard balls have the same color.
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Weird Properties of Positive Integers
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“Theorem": For all positive integers n, we have n=n+1.

"Proof": Suppose that the claim is true for n=k. Then

k+tl = (k) +1=(k+1)+1
by induction hypothesis. Thus, k+1=k+2.

Therefore, the theorem follows by induction on n.
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Maximally Weird!
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“Theorem": For all positive integers n, if a and b are positive
integers such that max{a,b}=n, then a=b.

Proof: By induction on n. The result holds for n=1, i.e., if max
{a,b}=1,thena=b =1,

Suppose it holds for n, i.e., if max {a,b} = n, thena = b. Now
suppose max {a, b} = n + 1.

Case l:a-1>b - 1. Then axb. Hence a=max{a,b}=n+1.
Thusa-1=nandmax{a-1,b-1}=n.

By induction, a-1=b-1. Hence a=b.

Case2:b-12a-1.

Same argument.
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Maximally Weird!
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Fallacy: In the proof we used the inductive hypothesis to
conclude max{a-1,b-1}=n=a-1=b-1.

However, we can only use the inductive hypothesis if a-1and b -
1 are positive integers. This does not have to be the case as the

example b=1 shows.
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Factorials
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Theorem. Zz(z') =(n+ 1! -1.
i=0

By convention: 0! =1

Induction basis:

Since 0 = 1 — 1, the claim holds for n = 0.
Induction Step:

Suppose the claim is true for n.Then
n—+1 n

Z i(i)) = (m+Dn+ 1)+ ZZ(@')
= = e Sl ZZOJr 1)! — 1 by ind. hyp.
(n+2)(n+ 1! -1
= (n+2) -1




DIVISIbIIITy
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Theorem: For all positive integers n, the number
7n-2n

is divisible by b.

Proof: By induction.

Induction basis. Since 7-2=5, the theorem holds
for n=1.
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Divisibility
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Inductive step:

Suppose that 7"-2"is divisible by 5. Our goal is to show that
this implies that 7™!-2"1is divisible by 5. We note that

7012l = 737 25 20= By 7N 2x7N-2x2" = Bx 7" +2(7"-2"),
By induction hypothesis, (7"-2") = 5k for some integer k.
Hence, 7™1-2™1= 5x7" +2x5k = 5(7"+2Kk), so

7m1-2m1=5 x some integer.

Thus, the claim follows by induction on n.
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STrong Induc’rlon
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Suppose we wish to prove a certain assertion concerning
positive integers.

Let A(n) be the assertion concerning the integer n.
To prove it for all n>= 1, we can do the following:
1) Prove that the assertion A(1) is true.

2) Assuming that the assertions A(k) are proved for all
k<n, prove that the assertion A(n) is true.

We can conclude that A(n) is true for all n>=1.
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STrong Induc‘rlon
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Induction basis:
Show that A(1) is true.
Induction step:
Show that (A(1) A... AA(n)) — A(n+1)

holds for all n >=1.
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PosTage
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Theorem: Every amount of postage that is at
least 12 cents can be made from 4-cent and b-

cent stamps.
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PosTage
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Proof by induction on the amount of postage.
Induction Basis:
If the postage is
12 cents = use three 4 cent stamps
13 cents = use two 4-cent and one 5-cent stamp.
14 cents = use one 4-cent and two 5-cent stamps.
15 cents = use three 5-cent stamps.
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PosTage
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Inductive step:

Suppose that we have shown how to construct postage
for every value from 12 up through k. We need to show
how to construct k + 1 cents of postage.

Since we've already proved the induction basis, we may
assume that k + 1 > 16. Since k+1 > 16, we have (k+1)-4 >
12. By inductive hypothesis, we can construct postage for
(k + 1) - 4 cents using m 4-cent stamps and n 5-cent

stamps for some non-negative integers m and n. In other
words ((k + 1) - 4) = 4m + 5n; hence, k+1 = 4(m+1)+bn.
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Quiz
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Why did we need to establish four cases in the
induction basis?

Isn't it enough to remark that the postage for
12 cents is given by three 4 cents stamps?
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Another Example Sequence
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Theorem: Let a sequence (an) be defined as follows:
ap=1, a;=2, a,=3,
a, = a,_+a, »*+a, 3 for all integers k>3.
Then a, < 2" for all integers n0.  P(n)
Proof. Induction basis:
The statement is true for n=0, since ay=1¢1=2°
for n=1: since a;=2 <2=2"

for n=2: since a,=3 ¢4=2°
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Sequence (con’r d)
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Inductive step:
Assume that is true for all i with O<i<k, that is,
a < 2' for all O<i<k, where k>2.
Show that is true: a < 2X
Q= Ay 1+Qy o+0y 3 ¢ 2K 14+2k242K3
¢ 20+21+  +2k-342Kk-24 2k
= 2k-1 < 2k

Thus, IS true by strong induction.
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