
Chapter 2

A Randomized Algorithm for

Minimum Cuts

A randomized algorithm is an algorithm that receives, in addition to its input,
a stream of random bits which is used to make random choices. The random
bits are assumed to be independent of the input. A salient feature is that
repeated runs of a randomized algorithm with fixed input data will, in gen-
eral, not produce the same result. You might be perplexed that such a lack
of definiteness is desirable, but consider that this feature allows to transform
deterministic algorithms with bad worst case behaviour into randomized algo-
rithms that perform well with high probability on any input. I hope that the
next example can convey that randomized algorithms are often simple and
efficient.

§1 A Minimum Cut Algorithm

Let G = (V,E) be a connected, undirected, loopfree multigraph with n ver-
tices. A multigraph is like a graph but may contain multiple edges between
two vertices, as the following example shows.

A B

C D E

F

0 c© 2009 by Andreas Klappenecker. All rights reserved.

1

2 CHAPTER 2. A RANDOMIZED ALGORITHM FOR MINIMUM CUTS

A cut in the multigraph G = (V,E) is a partition of the vertex set V into two
disjoint nonempty sets V = V1∪V2. An edge with one end in V1 and the other
in V2 is said to cross the cut. The cut is often identified with the multiset of
crossing edges.

The term cut is chosen because the removal of the edges in a cut partitions
the multigraph. For example, if we partition V = {A,B,C,D,E, F} into the
sets V1 = {A,C} and V2 = {B,D,E,F} in the previous example, then this
cut has five crossing edges, and removing these edges yields the disconnected
multigraph:

A B

C D E

F

The size of the cut is given by the number of edges crossing the cut. Our goal
is to determine the minimum size of a cut in a given multigraph G.

We describe a very simple randomized algorithm for this purpose. If e is
an edge of a loopfree multigraph G, then the multigraph G/e is obtained from
G by contracting the edge e = {x, y}, that is, we identify the vertices x and y
and remove all resulting loops.

A B

C D E

F

{C,D}
=⇒

A B

D E

F

The above figure shows a multigraph G and the multigraph G/{C,D} resulting
from contracting an edge between C and D. We keep the label of one vertex
to avoid cluttered notations, but keep in mind that a node D in the graph
G/{C,D} really represents the set of all nodes that are identified with D.

Note that any cut of G/e induces a cut of G. For instance, in the above
example the cut {A,B} ∪ {D,E,F} in G/{C,D} induces the cut {A,B} ∪
{C,D,E,F} in G. In general, the vertices that have been identified in G/e
are in the same partition of G.

§1. A MINIMUM CUT ALGORITHM 3

The size of the minimum cut of G/e is at least the size of the minimum
cut of G, because all edges are kept. Thus we can use successive contractions
to estimate the size of the minimum cut of G. This is the basic idea of the
following randomized algorithm.

Contract(G)

Input: A connected loopfree multigraph G = (V,E) with at least 2 vertices.
1: while |V | > 2 do

2: Select e ∈ E uniformly at random;
3: G := G/e;
4: od;
5: return |E|.

Output: An upper bound on the minimum cut of G.

The algorithms Contract selects uniformly at random one of the remaining
edges and contracts this edge until two vertices remain. The cut determined
by this algorithm contains precisely the edges that have not been contracted.
Counting the edges between the remaining two vertices yields an estimate of
the size of the minimum cut of G.

The algorithm is best understood by an example. Figure 2.1 shows two
different runs of the algorithm Contract. Let us have a closer look at the run
shown in the left column of this figure. The multigraph provided as an input
is depicted in the top left. First the edge {D,E} is contracted. The resulting
graph is shown directly below. The edges {D,F}, {C,D}, and {B,D} are
respectively contracted in the remaining steps.

Each contraction identifies two vertices. The remaining two nodes A
and B in the final multigraph in the lower left represent the sets {A} and
{B,C,D,E, F}, since the contractions produced the identifications

E ∼ D ∼ F ∼ C ∼ B,

respectively. Therefore, the cut {A}∪{B} in the final multigraph corresponds
to the cut {A} ∪ {B,C,D,E, F} in the input multigraph.

Exercise 2.1 Describe the cut in the input graph that is induced by the cut

{C} ∪ {D} in the final multigraph in the right column of Figure 2.1. Assume

that {D,F} was the last contracted edge. If there is some ambiguity, then list

all possibilities.

The examples amply demonstrate some unsettling property of the algo-
rithm Contract: The algorithm does not always produce the correct size of

4 CHAPTER 2. A RANDOMIZED ALGORITHM FOR MINIMUM CUTS

A B

C D E

F

A B

C D

F

A B

C D

A B

D

A B

A B

C D E

F

A B

C D

F

B

C D

F

C D

F

C D

Fig. 2.1 Two different runs of the Contract algorithm. The algorithm does
not always produce the correct result. The run shown in the left column
correctly determines the minimum cut size to be 3. The run shown in the
right column fails to produce the correct result; here the algorithm will claim
that the size of the minimum cut is 6.

§2. ANALYSIS 5

the minimum cut. As we will see in the next section, it is not difficult to
show that the correct size of a minimum cut will be found by the algorithm
Contract with probability Ω(n2), where n denotes the number of vertices of
the multigraph. Repeating the algorithm O(n2 log n) times and choosing the
smallest value returned by the runs yields the correct size of the minimum cut
with high probability.

The beauty of this scheme is its simplicity. If G is represented as a labeled
graph, where the labels denote the multiplicity of the edges, then Contract
can be implemented with O(n2) operations; running the algorithm repeatedly,
as suggested before, yields at total of O(n4 log n) operations.

Remark. The running time of the best deterministic minimum cut algo-
rithm is O(nm + n2 log n), where m denotes the number of edges, that is, in
the labeled graph representation the running time is at most O(n3), see for
instance [2]. It turns out that size of the minimum cut can be determined with
high probability in O(n2 log3 n) steps using a refined version of the contraction
algorithm, see [1].

§2 Analysis

We now want to analyze the algorithm given in the previous section. Our goal
is to determine a lower bound on the probability that the algorithm correctly
determines the minimum cut. We will see that this algorithm produces the
correct answer with probability Ω(1/n2). We need remarkably few tools from
probability theory in this proof: All we need is the innocuous formula

Pr[E ∩ F] = Pr[E|F] Pr[F]

Exercise 2.2 Prove the following straightforward consequence of the previ-

ous formula

Pr[∩n
ℓ=1

Eℓ] =

(

n
∏

m=2

Pr[Em| ∩m−1

ℓ=1
Eℓ]

)

Pr[E1].

If you expand the formula then you will immediately see the pattern.

Let me motivate the approach taken in the analysis by emphasizing a spe-
cial case. Suppose that the multigraph has a uniquely determined minimum
cut. If the algorithm selects in this case any edge crossing this cut, then the
algorithm will fail to produce the correct result. The analysis is largely guided
by this observation.

6 CHAPTER 2. A RANDOMIZED ALGORITHM FOR MINIMUM CUTS

Exercise 2.3 Give an example of a connected, loopfree multigraph with at

least four vertices that has a uniquely determined minimum cut.

Let G = (V,E) be a loopfree connected multigraph with n = |V | vertices.
Note that each contraction reduces the number of vertices by one, so the
algorithm terminates after n − 2 steps.

Suppose that C is a particular minimum cut of G. Let Ei denote the
event that the algorithm selects in the ith step an edge that does not cross
the cut C. Therefore, the probability that no edge crossing the cut C is ever
picked during an execution of the algorithm is Pr[∩n−2

j=1
Ej]. By Exercise 2.2,

this probability can be calculated by

Pr[∩n−2

m=1
Em] =

(

n−2
∏

m=2

Pr[Em| ∩m−1

ℓ=1
Eℓ]

)

Pr[E1]. (2.1)

Suppose that the size of the minimum cut is k. This means that the
degree of each vertex is at least k, hence there exist at least kn/2 edges. The
probability to select an edge crossing the cut C in the first step is at most
k/(kn/2) = 2/n. Consequently, Pr[E1] ≥ 1 − 2/n = (n − 2)/n.

Similarly, at the beginning of the mth step, with m ≥ 2, there are n−m+1
remaining vertices. The minimum cut is still at least k, hence the multigraph
has at this stage at least k(n − m + 1)/2 edges. Assuming that none of the
edges crossing C was selected in an earlier step, the probability to select an
edge crossing the cut C is 2/(n − m + 1). It follows that

Pr
[

Em|
m−1
⋂

j=1

Ej

]

≥ 1 −
2

n − m + 1
=

n − m − 1

n − m + 1
.

Applying these lower bounds to the terms in equation (2.1) yields the result:

Pr
[

n−2
⋂

j=1

Ej

]

≥
n−2
∏

m=1

(

n − m − 1

n − m + 1

)

=
2

n(n − 1)
.

The last equality is obtained by canceling terms in the telescoping product.
In conclusion, we have shown that the contraction algorithm yields the

correct answer with probability at least Ω(1/n2).

Repetitions. We can repeatedly execute the randomized algorithm Con-
tract and take the minimum of all results. Recall from calculus that

(

1 +
x

n

)n
≤ ex,

BIBLIOGRAPHY 7

and, in fact, limn→∞

(

1 + x
n

)n
= ex. The probability that the algorithm fails to

produce the correct result in one execution is Pr[failure] = (1 − 2/n2). Recall
that for independent event E and F , the probability is given by Pr[E ∩ F] =
Pr[E] Pr[F]. Therefore, if we execute the algorithm n2/2 times, then the
probability that the repeated executions will never reveal the correct size of
the minimum cut is given by (1 − 2/n2)n

2/2 ≤ e−1. We can conclude that
repeating the contraction algorithm O(n2 log n) times yields the correct size
of the minimum cut with high probability.

Bibliography

[1] D.R. Karger and C. Stein. A new approach to the min-cut problem. J.

ACM, 43(4):601–640, 1996.

[2] M. Stoer and F. Wagner. A simple min-cut algorithm. J. ACM, 44(4):585–
591, 1997.

