
Computing Factorial Numbers

Andreas Klappenecker

September 15, 2004

Factorial Numbers. If you have n different objects, then you can arrange
them in n× (n− 1)× · · · × 2× 1 ways. This number is called n factorial and is
usually written as n!. We give a simple example of a recursive MIPS assembly
language program that computes this number.

Our little program has the following structure:
1a 〈fac.asm 1a〉≡

〈string definitions 2c〉
.text
.globl main

〈factorial procedure 1b〉
〈main procedure 2d〉

In the main procedure, we prompt the user to input an integer n ≥ 0, call the
factorial procedure fac with the argument n, and output the result. We present
the program in the literate programming style, where 〈chunk〉 represents some
chunk of code that is explained in this document right after 〈chunk〉 ≡.

Calculation. If the input argument n is 0, then we return the result 1; oth-
erwise, we recursively calculate n! by the formula (n − 1)! × n. The procedure
assumes that the input argument is contained in the register $a0, and the result
is stored in $v0.

1b 〈factorial procedure 1b〉≡ (1a)

fac: bne $a0, $zero, gen # if $a0<>0, goto generic case
ori $v0, $zero, 1 # else set result $v0 = 1
jr $ra # return

gen: 〈save registers 2a〉
addiu $a0, $a0, -1 # $a0 = n-1
jal fac # $v0 = fac(n-1)
〈restore registers 2b〉
mul $v0, $v0, $a0 # $v0 = fac(n-1) x n
jr $ra # return

In a recursive procedure, we need to save the register $ra that contains the
return address before making the recursive procedure call, and restore the con-
tent of this register afterwards. In addition, we save the argument $a0 onto the

1

September 15, 2004 factorial.nw 2

stack; therefore, after restoring the registers, we can be sure that the register
$a0 contains again the value n. The code to save the two registers is given by

2a 〈save registers 2a〉≡ (1b)

addiu $sp, $sp, -8 # make room for 2 registers on stack
sw $ra, 4($sp) # save return address register $ra
sw $a0, 0($sp) # save argument register $a0=n

and the code to restore the two registers by
2b 〈restore registers 2b〉≡ (1b)

lw $a0, 0($sp) # restore $a0=n
lw $ra, 4($sp) # restore $ra
addiu $sp, $sp, 8 # multipop stack

This example illustrates that recursive procedures are not difficult to implement
in the MIPS assembly language.

Main procedure. It remains to provide some simple user interaction. The
main procedure asks the user to input a nonnegative integer n; a call to the
procedure fac performs the calculation. Finally, we print the resulting integer
n! and a newline.

The strings that are used in our main procedure are defined by
2c 〈string definitions 2c〉≡ (1a)

.data
en: .asciiz "n = "
eol: .asciiz "\n"

Using these string definition, we can formulate the main procedure as follows:
2d 〈main procedure 2d〉≡ (1a)

main: la $a0, en # print "n = "
li $v0, 4 #
syscall #
li $v0, 5 # read integer
syscall #
move $a0, $v0 # $a0 = $v0
jal fac # $v0 = fib(n)
move $a0, $v0 # $a0 = fib(n)
li $v0, 1 # print int
syscall #
la $a0, eol # print "\n"
li $v0, 4 #
syscall #

That’s it! It is a valuable exercise to implement an iterative algorithm to com-
pute factorial numbers. You should try to implement several recursive functions
until you feel comfortable with the register conventions and stack manipulations.

