
CPSC 321 Computer Architecture
Fall Semester 2004

Single Cycle MIPS–Lite Processor in Verilog
Due Date: Tuesday, 11-16-2004, at 23:59:59, via turnin.

Work in groups of up to two students

1 Objective

In this project you will build a single-cycle processor. You will need to verify that it executes a
given subset of the MIPS instruction set.

2 Datapath Design

Implement the needed components in Verilog. You may use behavioral or a combination of behav-
ioral and structural Verilog features. All Verilog models should correspond to realistic components,
such as, registers, comparators, shifters, etc. No super-composite components, eg, a branch unit that
takes in the opcode, operands, and PC, and outputs a new PC, or something similar to that. You
will be given a number of basic datapath components which you may use or extend. All storage
elements are negative-edge triggered.

2.1 Datapath Components

There are a few components you will need for your processor, including the following. We suggest
you start by designing these sub-components:

ALU 32–bit ALU,

Extender sign/zero extender,

Multiplexers m16x2, m32x2, m32x3, m32x5, m5x2: multiplexers with various widths and number
of inputs,

Register reg32: 32–bit register,

Register File regfile: register file,

Shifter Arithmetic logical, multi-bit shifting unit.

Instruction Memory 2K–words deep, 32–bit wide, (using “SRAM”), initial content will be loaded
from within the Verilog code.

Data Memory 4K–words deep, 32–bit wide, no initial contents.

There should be an arithmetic/logical multi-bit (32) shifter external to the ALU. Further-
more, instructions such as slt should have effect outside the ALU, as specified in the textbook.
slt $rd, $rs, $rt should subtract the two operands, and then generate the appropriate result

value for the destination register. Your datapath should then store this result back in the destination
register.

2.2 Provided Components

A number of datapath components are provided as examples of building larger behavioral constructs
in Verilog. You may use these components. The following files are available, from the class
website:

• SingleCycleProc.v A skeleton module for your processor. You need to fill in the missing
parts of this file to complete the processors.

• ALU behav.v A behavioral implementation of the ALU you would need for this project.

• signextend.v A sign extender.

• lshift2.v A left-shift-by-two module.

• IdealMemory.v, DMeminit.v, IMeminit.v A behavioral implementation of the ideal data
and instruction memories, and files to initialize their contents. We will provide additional
memory contents files later for evaluation and test purposes.

• mux.v Multiplexors of various sizes.

2.3 Component Propagations Delays

All of your Verilog components must incorporate “reasonable” propagation delays. For each com-
ponent, think about how that component would be implemented using discrete gates. Use this
mental discrete gate implementation to estimate the delays to use. There is no exact right or wrong
answer for the delays to use. However, if the delays are too large or too small, you will be asked to
justify your decision. The delay models may be kept simple, ie, one delay value can be used for an
entire component (which should be the maximum worst-case delay). For the datapath controller
you should use a delay of 20∆T .

Please look through the Verilog code of the provided components for examples of how to specify
propagation delays for the various components and how to support edge-triggered clocking. You
should try to use reasonable delays for the blocks with storage elements.

2.4 Resetting and Initializing the Data-paths

Your data-paths must employ an active-low, master reset signal, called Reset L. This signal should
be kept at the de-asserted level at all times, except when the processor is being reset. To reset the

2

processor, drive Reset L low for at least 10 integral clock cycles and then reset Reset L to high
level. The master reset should feed into all reset types of signals of the datapath, such as those of
the register file. You have to provide a unit that is external to the main control units that contains
at least one register called IPC. This register supplies the first Program Counter (PC) that your
processor should execute after “reset”. IPC and all other input control signals should be driven by
the top level test module of your model.

3 Testing and Diagnostic Programs

You should write diagnostic programs to test your MIPS-Lite processor. These programs should
exercise all instructions your datapath supports. Remember, a single cycle processor does not have
delay slots in the lw $rt, imm16($rs) nor in the conditional branch instructions.

Your program should be written such that the result of the test is “displayed” on the STD-
OUT. In general, you can display the internal state of a module by using appropriately coded
$display("..."); statements from within the module. For instance, you can use $display("Reg[rt]
= %b ...", Reg[rt]) statements in a module to print on the STDOUT the contents of a register
“rt”. It is important to write good diagnostic programs to test your hardware because it will
simplify your life later on when you have to debug a more complicated processor.

4 Single-Cycle Data-Path

Develop an implementation in Verilog of a single-cycle processor for a subset of the MIPS architecture
given below.

4.1 Supported Instructions

Build a single-cycle datapath that implements the following subset of MIPS instructions.

Type Instructions
arithmetic (unsigned) addu, subu, addiu

arithmetic (signed) add, sub, addi

logical and, andi, or, ori, xor, xori

shift sll, sra, srl

compare slt, slti, sltu

control beq, bne, bgez, bltz, j, jr, jal

data transfer lw, sw, lui

Make sure to verify the coding of instructions such as bgez in Appendix A. Note that the “rt”
field is actually used to distinguish instructions bgez and bltz. Use the actual MIPS machine
language instruction formats, given in the back cover of your textbook.

3

4.2 Verilog Controller for the Datapath

Build the Control Unit (CU) for the single-cycle datapath. You may use any behavioral Verilog
instruction available to develop the CU. This CU should take the exact bits from the 32-bit in-
struction and generate the control signals. You must add any control signals necessary to read
instructions off the instruction memory, and the “next instruction logic” to generate the Program
Counter (PC) of the instruction which needs to be fetched next.

The Verilog code that specifies the behavior of your CU must be well structured. Use the Verilog
‘define SYMBOL code_to_substitute as much as possible and specify upper bounds for units as
parameter n = Note: Recall that in the Single-Cycle Processor, everything should take place
in one clock cycle TCC. Make sure that you are using sufficiently (but not excessively) long clock
period TCC, for your Single-Cycle Processor. Turn in a copy of the output matrix for the control unit,
processor schematic, diagnostic program(s), and a simulation log that shows the correct execution
of the test MIPS programs.

You will have to include detailed justification for the selection of TCC in your Single-Cycle
Processor. You need to be prepared to demonstrate evidence for this justification, in terms of
longest combinational circuit paths in your design. Hint: use Verilog to measure the times it takes
to compute signal propagations within your data-path.

5 Deliverables

Design Notebook (30pts)
Please keep a design notebook that documents your design process and all the steps in the program
development; it should document the progress that you made while writing your code (keep track
of date and time). Write the design notebook while you are developing the software, do not write
it after the fact.
Your notebook should keep a log of all the errors that you make; it should be handwritten with
a pen that is not erasable; printouts documenting your progress should be glued in. The grading
of your design notebook will take into account the clarity, regularity, legibility and organization of
your annotations.
You also need to turnin the control matrix for the control unit.

Verilog Program (40pts)
Turn in your verilog program via the turnin command. Ensure that your program is clearly com-
mented.

Project Demonstration (30pts)
Project demonstrations should be completed within a week after submission. Failure to demon-
strate will result in a Fail grade on the project.

4

6 Dishonesty

Make sure that you complete the assignment by yourself. Do not copy the code from others, nor
provide others with your code. Refrain from copying and modifying the code from other sources.

5

