
Euclid’s Algorithm

Andreas Klappenecker
CPSC 629 Analysis of Algorithms

We begin this course by revisiting an algorithm that is more than 2000 years
old. The algorithm was described in Book VII of Euclid’s Elements, but it
is certainly much older. You might recall that Euclid was one of the first
faculty members of the ‘Museum’ of Alexandria, an institution of higher ed-
ucation comparable to our universities today, which was founded around 300
B.C. Euclid’s Elements is a beautiful work that logically developed geometry
and other branches of mathematics; it is without a doubt one of the most
influential works in the history of science.

Integer Divisibility. Let us first recall some terminology, so that we have
a common language. An integer d is called a divisor of an integer a if there
exists an integer a′ such that a = a′d. An integer d is a common divisor of
integers a and b if there exist integers a′ and b′ such that a = a′d and b = b′d.

The greatest common divisor of two integers a and b that are not
both 0 is a common divisor d > 0 of a and b such that all other common
divisors of a and b divide d. We denote the greatest common divisor of a
and b by gcd(a, b). It is sometimes useful to define gcd(0, 0) = 0.

Notations. We write d | a for the fact that d is a divisor of a. We follow Knuth
and write a ⊥ b if the integers a and b are coprime, i.e., when gcd(a, b) = 1.

Euclid’s Algorithm. Euclid’s algorithm calculates the greatest common
divisor of two positive integers a and b. The algorithm rests on the obser-
vation that a common divisor d of the integers a and b has to divide the
difference a − b. Indeed, if a = a′d and b = b′d for some integers a′ and b′,
then a− b = (a′ − b′)d; hence, d divides a− b.

Algorithm E (Subtractive Algorithm for Greatest Common Divisors)
Input: a, b positive integers
Output: d = gcd(a, b)

while(a 6= b) do
(a, b) = (min(a, b), max(a, b)−min(a, b));

return a;

1

We have used the compound assignment (a, b) = (c, d) that assigns the values
of c and d respectively to a and b at the same time. An invariant of the
algorithm is the relation

gcd(a, b) = gcd(min(a, b), max(a, b)−min(a, b)).

The algorithm terminates because the values of a and b decrease in each
iteration but remain positive, so a and b must coincide after finitely many
steps. When the algorithm terminates, then the values of the variables a
and b coincide. We already noted that the gcd of the two variables remains
the same throughout the iterations. Since gcd(d, d) = d for any nonzero
integer d, we can conclude that the algorithm produces the correct result.

Example. Suppose that a = 34 and b = 19. Then the value of the variables
a and b in each iteration is

Iteration 0: (a, b) = (34, 19)
Iteration 1: (a, b) = (19, 15)
Iteration 2: (a, b) = (15, 4)
Iteration 3: (a, b) = (4, 11)
Iteration 4: (a, b) = (4, 7)
Iteration 5: (a, b) = (4, 3)
Iteration 6: (a, b) = (3, 1)
Iteration 7: (a, b) = (1, 2)
Iteration 8: (a, b) = (1, 1)

Therefore, gcd(34, 19) = gcd(1, 1) = 1.

Remark. You might have seen the Euclidean algorithm in another form that involves
division with remainder. We can easily derive that version from Algorithm E. Indeed, if
we calculate, for instance, gcd(15, 4) with the subtraction algorithm, then we get after
three subtractive steps

gcd(15, 4) = gcd(4, 11) = gcd(4, 7) = gcd(4, 3).

Note that these steps repeatedly subtract 4 until we obtain a number that is less than 4.
We can comprise these three steps in a single division with remainder step, gcd(15, 4) =
gcd(4, 15 mod 4), and arrive at the same result. We will detail the algorithm based on this
idea in the next paragraph.

Division with Remainder. Recall that the division with remainder of
an integer a by a nonzero integer b yields a quotient q = ba/bc and a
remainder a mod b = a− bba/bc.

2

Algorithm G (GCD with Division and Remainder)
Input: a, b positive integers
Output: d = gcd(a, b)

while (b 6= 0) do
(a, b) = (min(a, b), max(a, b) mod min(a, b));

return a;

The algorithm terminates after a finite number of iterations, since b is
replaced in each iteration by a smaller non-negative integer. We will estimate
in the next paragraph how many steps are needed in the worst case.

Example. Suppose that a = 34 and b = 19. Then Algorithm G takes the
following steps:

Iteration 0: (a, b) = (34, 19)
Iteration 1: (a, b) = (19, 15)
Iteration 2: (a, b) = (15, 4)
Iteration 3: (a, b) = (4, 3)
Iteration 4: (a, b) = (3, 1)
Iteration 5: (a, b) = (1, 0)

Exercise 1. If we assume that the input satisfies a > b > 0, then in each
iteration of Algorithm G the values of the variables a and b satisfy a > b.
Why? How does this allow you to simplify the algorithm?

We show now that the algorithm is correct. We denote by 〈a, b〉 the set
{ax + by |x, y ∈ Z}; this set is called the ideal generated by a and b in the
ring of integers. Notice that if 〈a, b〉 contains the integers c and d, then 〈c, d〉
is a subset of 〈a, b〉.

Lemma 1. If b 6= 0, then 〈a, b〉 = 〈b, a mod b〉.

Proof. The ideal 〈a, b〉 contains the remainder r = a mod b, since r = a− qb
with q = ba/bc. Thus, if b 6= 0 then the ideal 〈b, a mod b〉 is a subset of 〈a, b〉.
On the other hand, a is an element of the ideal 〈b, a mod b〉, since a = qb+ r.
Therefore, 〈a, b〉 is contained in the ideal 〈b, a mod b〉. It follows that the
ideals 〈a, b〉 and 〈b, a mod b〉 are the same.

The lemma shows that the ideal generated by the values of the variables
a and b in Algorithm G is an invariant of the loop. Indeed, since 〈a, b〉 =
〈b, a〉, the previous lemma implies 〈a, b〉 = 〈min(a, b), max(a, b)−min(a, b)〉.
Suppose that the variable a in Algorithm G contains the value g when the

3

algorithm terminates, then 〈a, b〉 = 〈g, 0〉. It follows that a and b are multiples
of g, hence g is a common divisor of a and b. On the other hand, g can be
expressed in the form g = ax + by. Therefore, each common divisor of a and
b divides g, hence g = gcd(a, b). This proves that Algorithm G is correct.

Analysis. We analyze the number of iterations that Algorithm G takes
in the worst case to compute the greatest common divisor. Recall that the
Fibonacci sequence (Fk)k≥0 is defined by F0 = 0, F1 = 1, and Fk = Fk−1 +
Fk−2 for k > 1. We will see that the worst case behavior is attained in the
input consists of two consecutive Fibonacci numbers.

Lemma 2. If a > b > 0 and Algorithm G performs k ≥ 1 iterations before
it terminates, then a ≥ Fk+2 and b ≥ Fk+1.

Proof. The statement is true for k = 1 iterations because, by assumption,
b ≥ 1 = F2 and a ≥ 2 = F3. Assume that the statement is true when
k− 1 iterations are made. We will prove that it is true when k iterations are
needed. Since k > 0, we have b > 0 and after one iteration the values of (a, b)
are substituted with the values (b, a mod b). By our induction hypothesis,
b ≥ Fk+1 and a mod b ≥ Fk. Since a > b, we have ba/bc ≥ 1; therefore

a ≥ b + (a− ba/bcb) = b + a mod b.

We can conclude that a ≥ Fk+2 = Fk+1 + Fk.

Lemma 3. Let φ = (1 +
√

5)/2. We have Fn+1 ≥ φn−1 for n ≥ 1.

Proof. We prove this by induction. For n = 1, we have F2 = 1 ≥ φ0. Assume
that the claim is true for all Fk with 2 ≤ k ≤ n. We have

Fn+1 = Fn + Fn−1 ≥ φn−2 + φn−3 = φn−2

(
1 +

1

φ

)
= φn−1.

Theorem 4. If a > b > 0, then Algorithm G terminates after at most
1 + logφ(b/ gcd(a, b)) iterations, where φ = (1 +

√
5)/2.

Proof. Note that Algorithm G takes the same number of steps for input (a, b)
and input (a/ gcd(a, b), b/ gcd(a, b)). Therefore, we can assume without loss

4

of generality that gcd(a, b) = 1, and it suffices to show that the algorithm
terminates after at most 1 + logφ b iterations.

Suppose that the algorithm terminates after n iterations. From Lemmas 1
and 2, we know that b ≥ Fn+1 ≥ φn−1. Taking logarithms, we get logφ b ≥
n− 1; hence, n ≤ 1 + logφ b. This proves the claim.

Corollary 5. Suppose that a and b are positive integers that can be repre-
sented by n-bits, that is, 0 < a, b < 2n. The bit-complexity of Algorithm G to
compute gcd(a, b) is at most O(n3).

Proof. By Theorem 4, Algorithm G needs O(b) iterations, and each remain-
der calculation can be done with O(n2) bit operations. We obtain the result
from O(b)O(n2) = O(n3).

If Algorithm G is implemented with long-number arithmetic and the num-
bers are not represented by the same numbers of bits throughout the rounds,
then the previous Corollary gives an overly pessimistic estimate of the run-
ning time. We can use an amortized analysis to arrive at a better bound of
O(n2) in that case.

Diophantine Equations. Recall that a diophantine equation is an equa-
tion in which only integer solutions are allowed. One application of the
Euclidean algorithm is to find the solution to one of the simplest diophan-
tine equations. Given integers a, b, and c, the task is to find a pair of integers
x and y such that

ax + by = c

holds. Such an equation may have infinitely many solutions or none.
Let us first derive a non-constructive solution to our problem.

Lemma 6. For integers a and b, we have 〈a, b〉 = 〈gcd(a, b), 0〉.

Proof. We note that 〈a, b〉 = 〈b, a〉 = 〈−a, b〉. Therefore, we can assume that
the ideal is generated by nonnegative integers. The claim certainly holds
when a = 0 or b = 0, since gcd(a, 0) = a and gcd(0, b) = b. If a and b are
positive integers, then the claim follows from our correctness argument of the
Euclidean algorithm, see the remarks following Lemma 1.

Theorem 7. Suppose that a, b and c are integers. The diophantine equation
ax + by = c has an integer solution if and only if gcd(a, b) divides c.

5

Proof. Since gcd(a, b) divides a and b, it must divide ax + by for any integer
x and y; thus gcd(a, b) must divide c.

Conversely, it follows from the previous lemma that gcd(a, b) = am + bn
for some integers n and m. Hence, if gcd(a, b) divides c, there must exist an
integer c′ such that

c = c′ gcd(a, b) = c′(am + bn) = a(c′m) + b(c′n).

This shows that x = c′m and y = c′m is a solution of ax + by = c.

The proof of the previous theorem shows that if we can express gcd(a, b)
as an integer linear combination of a and b, then we can solve the diophantine
equation ax + by = c. We derive an extended Euclidean algorithm to solve
this problem.

Extension. Suppose that a > b > 0. Recall that each iteration in the
Euclidean algorithm replaces (a, b) by (b, a mod b). We can formulate this as
a matrix multiplication:

(b, a mod b) = (a, b)

(
0 1
1 −q

)
, with q = ba/bc.

Suppose that the algorithm terminates after k iterations, then the operations
performed on (a, b) can be summarized in matrix notation by

(gcd(a, b), 0) = (a, b)

(
0 1
1 −q1

) (
0 1
1 −q2

)
· · ·

(
0 1
1 −qk

)
.

The product of the quotient matrices
(

0 1
1 −qi

)
gives a 2× 2 matrix such that

(gcd(a, b), 0) = (a, b)

(
r u
s v

)
,

and the first column of the resulting matrix gives the desired integers r and s.
The idea of the extended Euclidean algorithm is to keep track of the

product of the quotient matrices along with the remainder computation. For
example, the Euclidean algorithm computes the greatest common divisor
of 15 and 6 by the following swap and remainder steps (15, 6) → (6, 3) →

6

(3, 0). The extended Euclidean algorithm performs these steps in matrix
formulation, and records the product of the quotient matrices as follows:

0
BBBBB@

1 0
0 1

15 6

1
CCCCCA

(0 1
1 −2)

−−−−→

0
BBBBB@

0 1
1 −2
6 3

1
CCCCCA

(0 1
1 −2)

−−−−→

0
BBBBB@

1 −2
−2 5

3 0

1
CCCCCA
.

The left column of the last matrix contains integers r = 1, s = −2, and g = 3
so that g = ar + bs = 15× 1 + 6× (−2) = gcd(15, 6). We use matrices in the
formulation of the extended Euclidean algorithm for easier mnemonics:

Algorithm E (Extended GCD Algorithm)
Input: a, b positive integers, a > b > 0
Output: Integers (g, r, s) such that gcd(a, b) = g = ar + bs.

0
BBBBB@

r u
s v
a b

1
CCCCCA

:=

0
BBBBB@

1 0
0 1
a b

1
CCCCCA
;

while (b 6= 0) do
q := ba/bc;
0
BBBBB@

r u
s v
a b

1
CCCCCA

:=

0
BBBBB@

r u
s v
a b

1
CCCCCA

0
BB@

0 1
1 −q

1
CCA;

od;
return (a, r, s)

Exercise 2. Derive an algorithm that finds a integer solution to ax+ by = c
given integers a, b, and c; if no solutions exist, then the algorithm should
report that. Is it possible to derive all solutions from the solution that you
have given?

Continued Fractions. Algorithm G with input (a, b), where a > b, is
closely related to the continued fraction of the rational number a/b. If we
represent a in the form a = bq + r, with 0 ≤ r < b, then we can write the
fraction a/b in the form

a

b
=

bq + r

b
= q +

r

b
= q +

1

b/r
.

We can repeat this process for b/r since b > r. The process eventually
terminates because b and r are respectively smaller than a and b.

7

Example. We develop the continued fraction for 34/19 to illustrate this idea.
We have

34

19
= 1 +

15

19
= 1 +

1

19/15
= 1 +

1

1 + 4
15

= · · · = 1 +
1

1 + 1
3+ 1

1+1
3

.

The relation to the Euclidean algorithm is immediately apparent. Indeed,
compare the continued fraction with the quotient and remainder sequence
34 = 1× 19 + 15, 19 = 1× 15 + 4, 15 = 3× 4 + 3, and 4 = 1× 3 + 1.

The example clearly illustrates that the continued fraction notation is
somewhat cumbersome and eventually hard to read. We define

//x1, x2, . . . , xn// = 1/(x1 + 1/(x2 + 1/(· · · (xn−1 + 1/xn) · · ·))).

Every real number x in the range 0 ≤ x < 1 has a regular continued fraction
that is defined the following way: Define x0 = x, and for all n ≥ 0 such that
xn 6= 0, let

an+1 = b1/xnc, xn+1 = 1/xn − an+1. (1)

If xn = 0, then an+1 and xn+1 are not defined, and the regular continued
fraction for x is //a1, . . . , an//. By definition,

x = x0 =
1

a1 + x1

=
1

a1 + 1/(a2 + x2)
= · · ·

Therefore, x = //a1, . . . , an+xn//. It is not difficult to show that //a1, . . . , an//
is an extremely good approximation to x unless n is small. For instance,

π = 3 + //7, 15, 1, 292, 1, 1, 1, 2, 1, 3, . . . //

When x is a rational number, then the regular continued fraction corresponds
to Euclid’s algorithm. In fact, Gauss preferred the continued fraction rep-
resentation over the classical Euclidean algorithm and he even ignored the
Euclidean algorithm in his Disquisitiones.

Suppose that x = u/v, where u and v are integers such that u > v > 0.
Let us see how we can recover the Euclidean algorithm from the regular
continued fraction algorithm. Define u0 = u and v0 = v. We have x0 = v0/u0.
Suppose that xn = vn/un, then equation (1) yields

an+1 = bun/vnc xn+1 = un/vn − an+1 = (un mod vn)/vn.

8

Let us define
un+1 = vn, vn+1 = un mod vn.

Then xn = vn/un holds for all steps in the regular continued fraction algo-
rithm. The main point is that the two algorithms are basically two sides of
the same coin. In fact, the continued fraction algorithm is often used in more
detailed analysis of the Euclidean algorithm.

Chinese Remainder Theorem. We conclude with another classical ap-
plication of the Euclidean algorithm, the classical Chinese Remainder Theo-
rem.

Suppose we are to calculate modulo a number n, where n is the product
of two coprime integers, n = ab with a ⊥ b. Then is is often advantageous
to perform the calculations in parallel (modulo a) and (modulo b). In other
words, we represent the numbers from 0, . . . , n− 1 by their remainders. The
Chinese Remainder Theorem allows us to reconstruct the result as if the
computations were done modulo n.

Example. Let n = 3× 5 = 15. The numbers 0 ≤ x < 15 are respresented by
their remainder pairs (x mod 3, x mod 5) as follows:

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
x mod 3 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
x mod 5 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

You might notice that the pairs (x mod 3, x mod 5) do not repeat until x
reaches lcm(3, 5) = 15. Therefore, the map x 7→ (x mod 3, x mod 5) from
{0, . . . , 14} onto {0, 1, 2}×{0, 1, 2, 3, 4} is a bijection (one-on-one and onto).

Let us look at the problem more generally. A direct generalization of the
above property of remainders yields the following lemma:

Lemma 8. Suppose that a and b are integers such that gcd(a, b) = 1. We
have y ≡ x mod a and y ≡ x mod b if and only if y ≡ x mod ab.

The question is how we can reconstruct x from its remainder pair repre-
sentation (x mod a, x mod b). Since a and b are coprime, we can determine
with the help of the extended Euclidean algorithm some integers k and `
such that ak + b` = 1. It follows that

ak + b` ≡ b` ≡ 1 mod a,
ak + b` ≡ ak≡ 1 mod b.

9

Suppose now that we are given the residues xa and xb of x modulo a and b:

x≡xa mod a
x≡xb mod b

We claim that the map

(xa, xb) 7→ xab` + xbak mod n

reconstructs x. Indeed, by Lemma 8 it suffices to verify that y = xab`+xbak
is mapped to the same remainders modulo a and b as x:

y = xab` + xbak ≡ xab` ≡ xa mod a,
y = xab` + xbak ≡ xbak ≡ xb mod b,

so y ≡ x mod ab.
The main application of the Chinese Remainder Theorem is that arith-

metic operations such as addition and multiplication modulo n = ab can
be performed modulo a and modulo b. The advantage is that the calcula-
tions are performed with numbers of a smaller range. The moduli are often
chosen to be two numbers close to the wordlength of the machine, so that
multiprecision arithmetic is avoided.

Example. Let a = 34, b = 19; thus, n = 34 × 19 = 646. The extended
Euclidean algorithm shows that 34 × (−5) + 19 × 9 = 1. If we want to
multiply x = 40 and y = 20 modulo n, then we can do this by performing
the calculations modulo 34 and 19 and reconstruct the result.

x = 40 ≡ 6 mod 34
y = 20 ≡ 20 mod 34

xy ≡ 6× 20 ≡ 18 mod 34

x = 40 ≡ 2 mod 19
y = 20 ≡ 1 mod 19

xy ≡ 2 mod 19

We obtain the result modulo n = ab = 646 by the calculation

18× 19× 9 + 2× 34× (−5) ≡ 3078− 340 ≡ 154 mod 646

This coincides with 20× 40 = 800 ≡ 154 mod 646, as it should be.

Further Reading. It is interesting to see the manifold applications of
Euclid’s algorithm in number theory. John Stillwell’s book [“Elements of
Number Theory”, Springer-Verlag, 2003] gives a splendid exposition. We
have merely scratched the surface in our analysis of Euclid’s algorithm.
Knuth [“The Art of Computer Programming”, Volume 2, 3rd edition, Ad-
dison Wesley, 1998, Section 4.5.3] shows the relation to continued fractions
and discusses average case analysis.

10

