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Repetition Codes

Classical Codes
0 7→ 000
1 7→ 111

Quantum Codes
|0〉 7→ |000〉
|1〉 7→ |111〉

What kind of errors can be corrected?



Repetition Codes

The classical code is able to correct a single bit flip.

The quantum code is able to correct single bit flips,

X ⊗ I ⊗ I, I ⊗X ⊗ I, I ⊗ I ⊗X,

and more!



Syndrome Calculation

|ψ〉
|0〉
|0〉

|0〉
|0〉

Error X ⊗ I ⊗ I syndrome 10

Error I ⊗X ⊗ I syndrome 01

Error I ⊗ I ⊗X syndrome 11



Linearity of Syndrome Calculation

Error X ⊗ I ⊗ I syndrome 10

Error I ⊗X ⊗ I syndrome 01

E =
1√
2

X ⊗ I ⊗ I +
1√
2

I ⊗X ⊗ I

1√
2
|10〉 ⊗

(
X ⊗ I ⊗ I

∣∣∣ψ
〉)

+
1√
2
|01〉 ⊗

(
I ⊗X ⊗ I

∣∣∣ψ
〉)



Discretization of Errors

Consider errors E = En ⊗ · · · ⊗ E1 Ei ∈ {I, X, Y, Z}

X =


 0 1

1 0


 , Z =


 1 0

0 −1


 , Y = XZ =


 0 −1

1 0


 .

The weight of E is the number of Ei 6= I.

If a code Q corrects errors E of weight t or less, then

Q can correct arbitrary errors affecting ≤ t qubits.



The Goal of the Game

A quantum error control code Q is a K-dimensional

subspace of C2n
.

The goal is to find a quantum error control code which

is able to correct (or detect) errors of weight t or less,

where t is as large as possible.



The Stabilizer of a Code

Let E+
n = {En ⊗ · · · ⊗ E1 |Ei = I, X, Y, Z}.

Let Q ≤ C2n
be a quantum error control code.

The stabilizer of Q is defined to be the set

S = {M ∈ E+
n |Mv = v for all v ∈ Q}.

S is a group, necessarily abelian if Q 6= {0}.



The Stabilizer of the Repetition Code

Q ≤ C23
is the 2-dimensional code spanned by

|0〉 = |000〉
|1〉 = |111〉

The stabilizer of Q is given by

S = {I ⊗ I ⊗ I, Z ⊗ Z ⊗ I, I ⊗ Z ⊗ Z, Z ⊗ I ⊗ Z}



Stabilizer Codes

Let Q be a quantum error correcting code.

Let S be the stabilizer of Q.

The code Q is called a stabilizer code if and only if

the condition Mv = v for all M ∈ S implies that v ∈ Q.

Q is the joint +1-eigenspace of the operators in S.



Is it a Stabilizer Code?

The repetition code is a stabilizer code. Why?

The code spanned by

|0〉 = 1√
2
(|01〉+ |10〉)

|1〉 = |11〉
is not a stabilizer code. Why?



Projections and Dimensions

Let Q ≤ C2n
be a stabilizer code with stabilizer S.

PQ =
1

|S|
∑

M∈S
M

is an orthogonal projection onto Q.

Indeed, check that P2
Q = PQ and PQ = P

†
Q hold.

dimQ = trPQ = 2n/|S|



Stabilizer Trivia

The repetition code is a stabilizer code.

Stabilizer S contains four elements,

S = {I ⊗ I ⊗ I, Z ⊗ Z ⊗ I, I ⊗ Z ⊗ Z, Z ⊗ I ⊗ Z}

Therefore, the projection operation PQ associated with

S gives

dimQ = 23/|S| = 2



Stabilizer versus Non-Stabilizer Codes

If Q is not a stabilizer code, and S is the stabilizer of

Q, then

1

|S|
∑

M∈S
M

will project onto a space properly containing Q.



The Gretchen Question

How can we constuct good stabilizer codes?



What Next?

We discuss some constructions of stabilizer codes.

• We will have a closer look at errors.

• Symplectic geometry associated with stabilizer codes.

• Algebraic and combinatorial constructions.



Detectable Errors

An error E is detectable by a quantum code Q iff

PQEPQ = cEPQ, cE ∈ C.

Distinguishable states v, w ∈ Q, 〈v|w〉 = 0, remain

distinguishable 〈v|E|w〉 = 0.

Detection of the error does not reveal anything about

the encoded state 〈v|E|v〉 = 〈v′|E|v′〉.



Correctable Errors

A set E ⊆ E+
n of errors is correctable by a quantum

code Q iff all errors in

{E†F |E, F ∈ E}

are detectable.

No confusion principle: v⊥w implies Ev⊥Fw. Syn-

drome measurement does not reveal the encoded state.



Errors in Stabilizer Codes

XZ =


 0 1

1 0





 1 0

0 −1


 = −ZX

Error operators in E+
n (tensor products of I, X, Y, Z)

either

• commute EF = FE

• or anticommute EF = −FE.



Errors in Stabilizer Codes

Let S be the stabilizer of a quantum code Q.

If an error E anticommutes with some M ∈ S, then E

is detectable by Q.

Indeed,

PQEPQ = PQEMPQ = −PQMEPQ = −PQEPQ.

hence PQEPQ = 0.



Errors: the Good, the Bad, and the Ugly

Let S be the stabilizer of a stabilizer code Q.

An error E is good if it does not affect the encoded

information, e.g. E ∈ S.

An error E is bad if it is detectable, e.g. anticommutes

with some M ∈ S.

An error E is ugly if it cannot be detected.



Examples of the Good, the Bad, and the Ugly

Let Q be the repetition code.

Good Z ⊗ Z ⊗ I Z ⊗ Z ⊗ I |111〉 = |111〉
Bad X ⊗ I ⊗ I

Ugly X ⊗X ⊗X X ⊗X ⊗X |111〉 = |000〉



Error Correction Capabilities

Let Q be a stabilizer code with stabilizer S.

Let C(S) the commutator of S in E+
n .

All errors outside C(S)− 〈±S〉 can be detected.

If C(S)−〈±S〉 does not contain errors of weight ≤ 2t,

then Q can correct errors of weight ≤ t. Why?



Error Correction Capabilities

Suppose that E contains all errors of weight ≤ t.

Then E†F has weight ≤ 2t. Show: E†F is detectable

If E†F 6∈ C(S), then E†F anticommutes with some

M ∈ S, hence is detectable.

If E†F ∈ 〈±S〉, then E†F is good, hence detectable.



Short Summary

Any M1, M2 in the stabilizer S commute.

Detectable errors anticommute with some M in S or

are elements in S (up to a sign).

Task: Find a short description of these properties.



Notation

Denote by Xa, a = (an, . . . , a1) ∈ F2, the operator

Xa = Xan ⊗ . . .⊗Xa1.

For instance, X110 = X1 ⊗X1 ⊗X0 = X ⊗X ⊗ I.

Operators in E+
n are of the form ±XaZb.



Symplectic Geometry

Consider

M1 = XaZb M2 = XcZd

When do M1 and M2 commute?

M1M2 = XaZbXcZd = (−1)b·cXa+bZb+d

M2M1 = XcZdXaZb = (−1)a·dXa+bZb+d

M1, M2 commute iff a · d + b · c = 0 mod 2.



Short Description of a Stabilizer

Suppose that S is the stabilizer of a 2k-dimensional

stabilizer code. Then |S| = 2n−k.

S can be generated by n− k operators XaZb.

Let H = (Hx|Hz) be an (n− k)× 2n matrix over F2.

The rows of H contain the vectors (a|b).



Short Description of a Stabilizer

Let

S = {I ⊗ I ⊗ I, Z ⊗ Z ⊗ I, I ⊗ Z ⊗ Z, Z ⊗ I ⊗ Z}

S is generated by Z ⊗ Z ⊗ I and Z ⊗ I ⊗ Z.

H =


 000 110

000 101




(a|b) = (000|110) and (c|d) = (000|101)

a · d + b · c = 000 · 101 + 110 · 000 = 0



The New Language

The commutator C(S) contains all the ugly errors.

Modulo a sign, each operator in C(S) is of the form

M = XaZb

with a · d + b · c = 0 for all XcZd ∈ S. Hence

(a|b)⊥ (c|d)

w.r.t. the symplectic inner product.



The New Language

If |S| = 2n−k, then |C(S)| = 2 · 2n+k.

[2n+k because of the symplectic duality, twice because

of the signs ±]

Adding 2k rows to H gives a new matrix G describing

the commutator C(S). Recall that ugly errors are

contained in C(S)− 〈±S〉.



The Repetition Code Revisited

G =




000 110
000 101
111 000
000 111




G is the generator matrix of a code.

Minimum distance is 2. The minimum distance needs

to be ≥ 3 to correct an arbitrary error.



The Repetition Code Revisited II

M1 000 110
M2 000 101
X1 111 000
Z1 000 111

M1, M2 generate the stabilizer S

k operators Xk mapping to Xa’s

k operators Zk mapping to Zb’s

Codewords |c1〉 = X
c1
1

∑

M∈S
M |000〉



A Comparison of Notations

Stabilizer S matrix H

Commutator C(S) matrix G

Ugly errors ⊆ C(S)− 〈±S〉 〈G〉 − 〈H〉
Correct t errors MinDist(〈G〉 − 〈H〉) ≥ 2t + 1.



The [[5,1,3]] Code

G =




10010 01100
01001 00110
10100 00011
01010 10001
11111 00000
00000 11111




One can check that all linear combinations of rows of

G have at least weight 3.

weight((a|b)) = |{i |ai = 1 or bi = 1}|



The [[5,1,3]] Code

Codewords

|0〉 =
∑

M∈S
M |00000〉

|1〉 = X |0〉



Shor’s [[9,1,3]] Code

M1 000 000 000 110 000 000
M2 000 000 000 101 000 000
M3 000 000 000 000 110 000
M4 000 000 000 000 101 000
M5 000 000 000 000 000 110
M6 000 000 000 000 000 101
M7 111 111 000 000 000 000
M8 111 000 111 000 000 000
X 111 111 111 000 000 000
Z 000 000 000 111 111 111



Conclusions and Outlook

• Symplectic binary code allow simple design.

• Connections with codes over F4.

• Good quantum codes exist.

• Resilient Quantum Computers


