A Short Introduction to Stabilizer Codes

Andreas Klappenecker
Department of Computer Science
Texas A\&M University

Repetition Codes

\(\begin{aligned} Classical Codes \& 0 \& \mapsto 000
\& 1 \& \mapsto 111\end{aligned}\)
Quantum Codes \(\quad \begin{array}{rlrl}|0\rangle \& \mapsto|000\rangle
\& |1\rangle \& \mapsto|111\rangle\end{array}\)

What kind of errors can be corrected?

Repetition Codes

The classical code is able to correct a single bit flip.

The quantum code is able to correct single bit flips,

$$
X \otimes I \otimes I, \quad I \otimes X \otimes I, \quad I \otimes I \otimes X
$$

and more!

Syndrome Calculation

Error $X \otimes I \otimes I \quad$ syndrome $\quad 10$
Error $I \otimes X \otimes I \quad$ syndrome $\quad 01$
Error $I \otimes I \otimes X \quad$ syndrome $\quad 11$

Linearity of Syndrome Calculation

Error	$X \otimes I \otimes I$	syndrome	10
Error	$I \otimes X \otimes I$	syndrome	01

$$
E=\frac{1}{\sqrt{2}} X \otimes I \otimes I+\frac{1}{\sqrt{2}} I \otimes X \otimes I
$$

$$
\frac{1}{\sqrt{2}}|10\rangle \otimes(X \otimes I \otimes I|\bar{\psi}\rangle)+\frac{1}{\sqrt{2}}|01\rangle \otimes(I \otimes X \otimes I|\bar{\psi}\rangle)
$$

Discretization of Errors

Consider errors $E=E_{n} \otimes \cdots \otimes E_{1} \quad E_{i} \in\{I, X, Y, Z\}$

$$
X=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), Z=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right), Y=X Z=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)
$$

The weight of E is the number of $E_{i} \neq I$.

If a code Q corrects errors E of weight t or less, then Q can correct arbitrary errors affecting $\leq t$ qubits.

The Goal of the Game

A quantum error control code Q is a K-dimensional subspace of C^{2}.

The goal is to find a quantum error control code which is able to correct (or detect) errors of weight t or less, where t is as large as possible.

The Stabilizer of a Code

Let $\mathcal{E}_{n}^{+}=\left\{E_{n} \otimes \cdots \otimes E_{1} \mid E_{i}=I, X, Y, Z\right\}$.

Let $Q \leq \mathbf{C}^{2^{n}}$ be a quantum error control code.

The stabilizer of Q is defined to be the set

$$
S=\left\{M \in \mathcal{E}_{n}^{+} \mid M v=v \text { for all } v \in Q\right\}
$$

S is a group, necessarily abelian if $Q \neq\{0\}$.

The Stabilizer of the Repetition Code

$Q \leq \mathbf{C}^{2^{3}}$ is the 2-dimensional code spanned by

$$
\begin{aligned}
|\overline{0}\rangle & =|000\rangle \\
|\overline{1}\rangle & =|111\rangle
\end{aligned}
$$

The stabilizer of Q is given by

$$
S=\{I \otimes I \otimes I, Z \otimes Z \otimes I, I \otimes Z \otimes Z, Z \otimes I \otimes Z\}
$$

Stabilizer Codes

Let Q be a quantum error correcting code.
Let S be the stabilizer of Q.

The code Q is called a stabilizer code if and only if the condition $M v=v$ for all $M \in S$ implies that $v \in Q$.
Q is the joint +1 -eigenspace of the operators in S.

Is it a Stabilizer Code?

The repetition code is a stabilizer code. Why?

The code spanned by

$$
\begin{aligned}
|\overline{0}\rangle & =\frac{1}{\sqrt{2}}(|01\rangle+|10\rangle) \\
|\overline{1}\rangle & =|11\rangle
\end{aligned}
$$

is not a stabilizer code. Why?

Projections and Dimensions

Let $Q \leq \mathbf{C}^{2^{n}}$ be a stabilizer code with stabilizer S.

$$
P_{Q}=\frac{1}{|S|} \sum_{M \in S} M
$$

is an orthogonal projection onto Q.
Indeed, check that $P_{Q}^{2}=P_{Q}$ and $P_{Q}=P_{Q}^{\dagger}$ hold.

$$
\operatorname{dim} Q=\operatorname{tr} P_{Q}=2^{n} /|S|
$$

Stabilizer Trivia

The repetition code is a stabilizer code.

Stabilizer S contains four elements,

$$
S=\{I \otimes I \otimes I, Z \otimes Z \otimes I, I \otimes Z \otimes Z, Z \otimes I \otimes Z\}
$$

Therefore, the projection operation P_{Q} associated with S gives

$$
\operatorname{dim} Q=2^{3} /|S|=2
$$

Stabilizer versus Non-Stabilizer Codes

If Q is not a stabilizer code, and S is the stabilizer of Q, then

$$
\frac{1}{|S|} \sum_{M \in S} M
$$

will project onto a space properly containing Q.

The Gretchen Question

How can we constuct good stabilizer codes?

What Next?

We discuss some constructions of stabilizer codes.

- We will have a closer look at errors.
- Symplectic geometry associated with stabilizer codes.
- Algebraic and combinatorial constructions.

Detectable Errors

An error E is detectable by a quantum code Q iff

$$
P_{Q} E P_{Q}=c_{E} P_{Q}, \quad c_{E} \in \mathbf{C}
$$

Distinguishable states $v, w \in Q,\langle v \mid w\rangle=0$, remain distinguishable $\langle v| E|w\rangle=0$.

Detection of the error does not reveal anything about the encoded state $\langle v| E|v\rangle=\left\langle v^{\prime}\right| E\left|v^{\prime}\right\rangle$.

Correctable Errors

A set $\mathcal{E} \subseteq \mathcal{E}_{n}^{+}$of errors is correctable by a quantum code Q iff all errors in

$$
\left\{E^{\dagger} F \mid E, F \in \mathcal{E}\right\}
$$

are detectable.

No confusion principle: $v \perp w$ implies $E v \perp F w$. Syndrome measurement does not reveal the encoded state.

Errors in Stabilizer Codes

$$
X Z=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right)=-Z X
$$

Error operators in \mathcal{E}_{n}^{+}(tensor products of I, X, Y, Z) either

- commute $E F=F E$
- or anticommute $E F=-F E$.

Errors in Stabilizer Codes

Let S be the stabilizer of a quantum code Q.

If an error E anticommutes with some $M \in S$, then E is detectable by Q.

Indeed,

$$
P_{Q} E P_{Q}=P_{Q} E M P_{Q}=-P_{Q} M E P_{Q}=-P_{Q} E P_{Q}
$$

hence $P_{Q} E P_{Q}=0$.

Errors: the Good, the Bad, and the Ugly

Let S be the stabilizer of a stabilizer code Q.

An error E is good if it does not affect the encoded information, e.g. $E \in S$.

An error E is bad if it is detectable, e.g. anticommutes with some $M \in S$.

An error E is ugly if it cannot be detected.

Examples of the Good, the Bad, and the Ugly

Let Q be the repetition code.

Good

$$
Z \otimes Z \otimes I
$$

$$
Z \otimes Z \otimes I|111\rangle=|111\rangle
$$

Bad $\quad X \otimes I \otimes I$
Ugly $\quad X \otimes X \otimes X \quad X \otimes X \otimes X|111\rangle=|000\rangle$

Error Correction Capabilities

Let Q be a stabilizer code with stabilizer S.
Let $C(S)$ the commutator of S in \mathcal{E}_{n}^{+}.

All errors outside $C(S)-\langle \pm S\rangle$ can be detected.

If $C(S)-\langle \pm S\rangle$ does not contain errors of weight $\leq 2 t$, then Q can correct errors of weight $\leq t$. Why?

Error Correction Capabilities

Suppose that \mathcal{E} contains all errors of weight $\leq t$.

Then $E^{\dagger} F$ has weight $\leq 2 t$. Show: $E^{\dagger} F$ is detectable

If $E^{\dagger} F \notin C(S)$, then $E^{\dagger} F$ anticommutes with some $M \in S$, hence is detectable.

If $E^{\dagger} F \in\langle \pm S\rangle$, then $E^{\dagger} F$ is good, hence detectable.

Short Summary

Any M_{1}, M_{2} in the stabilizer S commute.

Detectable errors anticommute with some M in S or are elements in S (up to a sign).

Task: Find a short description of these properties.

Notation

Denote by $X_{a}, a=\left(a_{n}, \ldots, a_{1}\right) \in \mathbf{F}_{2}$, the operator

$$
X_{a}=X^{a_{n}} \otimes \ldots \otimes X^{a_{1}}
$$

For instance, $X_{110}=X^{1} \otimes X^{1} \otimes X^{0}=X \otimes X \otimes I$.

Operators in \mathcal{E}_{n}^{+}are of the form $\pm X_{a} Z_{b}$.

Symplectic Geometry

Consider

$$
M_{1}=X_{a} Z_{b} \quad M_{2}=X_{c} Z_{d}
$$

When do M_{1} and M_{2} commute?

$$
\begin{aligned}
& M_{1} M_{2}=X_{a} Z_{b} X_{c} Z_{d}=(-1)^{b \cdot c} X_{a+b} Z_{b+d} \\
& M_{2} M_{1}=X_{c} Z_{d} X_{a} Z_{b}=(-1)^{a \cdot d} X_{a+b} Z_{b+d}
\end{aligned}
$$

M_{1}, M_{2} commute iff $a \cdot d+b \cdot c=0 \bmod 2$.

Short Description of a Stabilizer

Suppose that S is the stabilizer of a 2^{k}-dimensional stabilizer code. Then $|S|=2^{n-k}$.
S can be generated by $n-k$ operators $X_{a} Z_{b}$.

Let $H=\left(H_{x} \mid H_{z}\right)$ be an $(n-k) \times 2 n$ matrix over \mathbf{F}_{2}.

The rows of H contain the vectors $(a \mid b)$.

Short Description of a Stabilizer

Let

$$
S=\{I \otimes I \otimes I, Z \otimes Z \otimes I, I \otimes Z \otimes Z, Z \otimes I \otimes Z\}
$$

S is generated by $Z \otimes Z \otimes I$ and $Z \otimes I \otimes Z$.

$$
H=\left(\begin{array}{l|l}
000 & 110 \\
000 & 101
\end{array}\right)
$$

$$
(a \mid b)=(000 \mid 110) \text { and }(c \mid d)=(000 \mid 101)
$$

$$
a \cdot d+b \cdot c=000 \cdot 101+110 \cdot 000=0
$$

The New Language

The commutator $C(S)$ contains all the ugly errors.

Modulo a sign, each operator in $C(S)$ is of the form

$$
M=X_{a} Z_{b}
$$

with $a \cdot d+b \cdot c=0$ for all $X_{c} Z_{d} \in S$. Hence

$$
(a \mid b) \perp(c \mid d)
$$

w.r.t. the symplectic inner product.

The New Language

If $|S|=2^{n-k}$, then $|C(S)|=2 \cdot 2^{n+k}$.
[2^{n+k} because of the symplectic duality, twice because of the signs \pm]

Adding $2 k$ rows to H gives a new matrix G describing the commutator $C(S)$. Recall that ugly errors are contained in $C(S)-\langle \pm S\rangle$.

The Repetition Code Revisited

$$
G=\left(\begin{array}{c|c}
000 & 110 \\
000 & 101 \\
\hline 111 & 000 \\
000 & 111
\end{array}\right)
$$

G is the generator matrix of a code.
Minimum distance is 2 . The minimum distance needs to be ≥ 3 to correct an arbitrary error.

The Repetition Code Revisited II

$$
\begin{array}{c||c|c}
M_{1} & 000 & 110 \\
M_{2} & 000 & 101 \\
\hline \bar{X}_{1} & 111 & 000 \\
\bar{Z}_{1} & 000 & 111
\end{array}
$$

M_{1}, M_{2} generate the stabilizer S
k operators \bar{X}_{k} mapping to X_{a} 's
k operators \bar{Z}_{k} mapping to Z_{b} 's
Codewords $\quad\left|c_{1}\right\rangle=\bar{X}_{1}^{c_{1}} \sum_{M \in S} M|000\rangle$

A Comparison of Notations

Stabilizer S
Commutator $C(S)$
Ugly errors $\subseteq C(S)-\langle \pm S\rangle$
Correct t errors
matrix H
matrix G
$\langle G\rangle-\langle H\rangle$
MinDist $(\langle G\rangle-\langle H\rangle) \geq 2 t+1$.

The [[5,1,3]] Code

$$
G=\left(\begin{array}{c|c}
10010 & 01100 \\
01001 & 00110 \\
10100 & 00011 \\
01010 & 10001 \\
\hline 1111 & 00000 \\
00000 & 11111
\end{array}\right)
$$

One can check that all linear combinations of rows of G have at least weight 3.
weight $((a \mid b))=\mid\left\{i \mid a_{i}=1\right.$ or $\left.b_{i}=1\right\} \mid$

The [[5,1,3]] Code

Codewords

$$
\begin{aligned}
|\overline{0}\rangle & =\sum_{M \in S} M|00000\rangle \\
|\overline{1}\rangle & =\bar{X}|\overline{0}\rangle
\end{aligned}
$$

Shor's [[9,1,3]] Code

M_{1}	000	000	000	110	000	000
M_{2}	000	000	000	101	000	000
M_{3}	000	000	000	000	110	000
M_{4}	000	000	000	000	101	000
M_{5}	000	000	000	000	000	110
M_{6}	000	000	000	000	000	101
M_{7}	111	111	000	000	000	000
M_{8}	111	000	111	000	000	000
\bar{X}	111	111	111	000	000	000
\bar{Z}	000	000	000	111	111	111

Conclusions and Outlook

- Symplectic binary code allow simple design.
- Connections with codes over \mathbf{F}_{4}.
- Good quantum codes exist.
- Resilient Quantum Computers

