A Short Introduction to Stabilizer Codes

Andreas Klappenecker

Department of Computer Science Texas A&M University

Repetition Codes

Classical Codes

 $egin{array}{cccc} 0 & \mapsto & 000 \ 1 & \mapsto & 111 \end{array}$

Quantum Codes

 $egin{array}{ccc} |0
angle &\mapsto &|000
angle \ |1
angle &\mapsto &|111
angle \end{array}$

What kind of errors can be corrected?

Repetition Codes

The classical code is able to correct a single bit flip.

The quantum code is able to correct single bit flips,

 $X \otimes I \otimes I, \quad I \otimes X \otimes I, \quad I \otimes I \otimes X,$

and more!

Syndrome Calculation

Error	$X \otimes I \otimes I$	synarome	10
Error	$I\otimes X\otimes I$	syndrome	01
Error	$I\otimes I\otimes X$	syndrome	11

Linearity of Syndrome Calculation

Error $X \otimes I \otimes I$ syndrome10

Error $I \otimes X \otimes I$ syndrome 01

$$E = \frac{1}{\sqrt{2}} X \otimes I \otimes I + \frac{1}{\sqrt{2}} I \otimes X \otimes I$$

 $\frac{1}{\sqrt{2}}|10\rangle\otimes\left(X\otimes I\otimes I\left|\overline{\psi}\right\rangle\right)+\frac{1}{\sqrt{2}}|01\rangle\otimes\left(I\otimes X\otimes I\left|\overline{\psi}\right\rangle\right)$

Discretization of Errors

Consider errors $E = E_n \otimes \cdots \otimes E_1$ $E_i \in \{I, X, Y, Z\}$ $X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \ Y = XZ = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$

The weight of E is the number of $E_i \neq I$.

If a code Q corrects errors E of weight t or less, then Q can correct arbitrary errors affecting $\leq t$ qubits.

The Goal of the Game

A quantum error control code Q is a K-dimensional subspace of \mathbb{C}^{2^n} .

The goal is to find a quantum error control code which is able to correct (or detect) errors of weight t or less, where t is as large as possible.

The Stabilizer of a Code

Let $\mathcal{E}_n^+ = \{ E_n \otimes \cdots \otimes E_1 \mid E_i = I, X, Y, Z \}.$

Let $Q \leq \mathbb{C}^{2^n}$ be a quantum error control code.

The stabilizer of Q is defined to be the set

$$S = \{ M \in \mathcal{E}_n^+ \mid Mv = v \text{ for all } v \in Q \}.$$

S is a group, necessarily abelian if $Q \neq \{0\}$.

The Stabilizer of the Repetition Code

 $Q \leq {\rm C}^{2^3}$ is the 2-dimensional code spanned by $\begin{array}{l} |\overline{0}\rangle \ = \ |000\rangle \\ |\overline{1}\rangle \ = \ |111\rangle \end{array}$

The stabilizer of Q is given by

 $S = \{ I \otimes I \otimes I, \ Z \otimes Z \otimes I, \ I \otimes Z \otimes Z, \ Z \otimes I \otimes Z \}$

Stabilizer Codes

Let Q be a quantum error correcting code. Let S be the stabilizer of Q.

The code Q is called a stabilizer code if and only if the condition Mv = v for all $M \in S$ implies that $v \in Q$.

Q is the joint +1-eigenspace of the operators in S.

Is it a Stabilizer Code?

The repetition code is a stabilizer code. Why?

The code spanned by

$$|\overline{0}\rangle = \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle)$$

 $|\overline{1}\rangle = |11\rangle$

is not a stabilizer code. Why?

Projections and Dimensions

Let $Q \leq {\bf C}^{2^n}$ be a stabilizer code with stabilizer S. $P_Q = \frac{1}{|S|} \sum_{M \in S} M$

is an orthogonal projection onto Q. Indeed, check that $P_Q^2 = P_Q$ and $P_Q = P_Q^{\dagger}$ hold.

$$\dim Q = \mathrm{tr} P_Q = 2^n / |S|$$

Stabilizer Trivia

The repetition code is a stabilizer code.

Stabilizer S contains four elements,

 $S = \{ I \otimes I \otimes I, \ Z \otimes Z \otimes I, \ I \otimes Z \otimes Z, \ Z \otimes I \otimes Z \}$

Therefore, the projection operation ${\cal P}_Q$ associated with S gives

dim
$$Q = 2^3 / |S| = 2$$

Stabilizer versus Non-Stabilizer Codes

If Q is not a stabilizer code, and S is the stabilizer of Q, then

will project onto a space properly containing Q.

The Gretchen Question

How can we constuct good stabilizer codes?

What Next?

We discuss some constructions of stabilizer codes.

- We will have a closer look at errors.
- Symplectic geometry associated with stabilizer codes.
- Algebraic and combinatorial constructions.

Detectable Errors

An error E is detectable by a quantum code Q iff

$$P_Q E P_Q = c_E P_Q, \qquad c_E \in \mathbf{C}.$$

Distinguishable states $v, w \in Q$, $\langle v | w \rangle = 0$, remain distinguishable $\langle v | E | w \rangle = 0$.

Detection of the error does not reveal anything about the encoded state $\langle v|E|v\rangle = \langle v'|E|v'\rangle$.

Correctable Errors

A set $\mathcal{E} \subseteq \mathcal{E}_n^+$ of errors is correctable by a quantum code Q iff all errors in

$$\{E^{\dagger}F \,|\, E, F \in \mathcal{E}\}$$

are detectable.

No confusion principle: $v \perp w$ implies $Ev \perp Fw$. Syndrome measurement does not reveal the encoded state.

Errors in Stabilizer Codes

$$XZ = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = -ZX$$

Error operators in \mathcal{E}_n^+ (tensor products of I, X, Y, Z) either

- commute EF = FE
- or anticommute EF = -FE.

Errors in Stabilizer Codes

Let S be the stabilizer of a quantum code Q.

If an error E anticommutes with some $M \in S$, then E is detectable by Q.

Indeed,

 $P_Q E P_Q = P_Q E M P_Q = -P_Q M E P_Q = -P_Q E P_Q.$ hence $P_Q E P_Q = 0.$

Errors: the Good, the Bad, and the Ugly

Let S be the stabilizer of a stabilizer code Q.

An error E is good if it does not affect the encoded information, e.g. $E \in S$.

An error E is bad if it is detectable, e.g. anticommutes with some $M \in S$.

An error E is ugly if it cannot be detected.

Examples of the Good, the Bad, and the Ugly

Let Q be the repetition code.

- **Good** $Z \otimes Z \otimes I$ $Z \otimes Z \otimes I |111\rangle = |111\rangle$
- Bad $X \otimes I \otimes I$
- Ugly $X \otimes X \otimes X$ $X \otimes X \otimes X |111\rangle = |000\rangle$

Error Correction Capabilities

Let Q be a stabilizer code with stabilizer S. Let C(S) the commutator of S in \mathcal{E}_n^+ .

All errors outside $C(S) - \langle \pm S \rangle$ can be detected.

If $C(S) - \langle \pm S \rangle$ does not contain errors of weight $\leq 2t$, then Q can correct errors of weight $\leq t$. Why?

Error Correction Capabilities

Suppose that \mathcal{E} contains all errors of weight $\leq t$.

Then $E^{\dagger}F$ has weight $\leq 2t$. Show: $E^{\dagger}F$ is detectable

If $E^{\dagger}F \notin C(S)$, then $E^{\dagger}F$ anticommutes with some $M \in S$, hence is detectable.

If $E^{\dagger}F \in \langle \pm S \rangle$, then $E^{\dagger}F$ is good, hence detectable.

Short Summary

Any M_1, M_2 in the stabilizer S commute.

Detectable errors anticommute with some M in S or are elements in S (up to a sign).

Task: Find a short description of these properties.

Notation

Denote by X_a , $a = (a_n, \ldots, a_1) \in \mathbf{F}_2$, the operator

 $X_a = X^{a_n} \otimes \ldots \otimes X^{a_1}.$

For instance, $X_{110} = X^1 \otimes X^1 \otimes X^0 = X \otimes X \otimes I$.

Operators in \mathcal{E}_n^+ are of the form $\pm X_a Z_b$.

Symplectic Geometry

Consider

$$M_1 = X_a Z_b \qquad M_2 = X_c Z_d$$

When do M_1 and M_2 commute?

$$M_{1}M_{2} = X_{a}Z_{b}X_{c}Z_{d} = (-1)^{b \cdot c}X_{a+b}Z_{b+d}$$
$$M_{2}M_{1} = X_{c}Z_{d}X_{a}Z_{b} = (-1)^{a \cdot d}X_{a+b}Z_{b+d}$$

 M_1, M_2 commute iff $a \cdot d + b \cdot c = 0 \mod 2$.

Short Description of a Stabilizer

Suppose that S is the stabilizer of a 2^k -dimensional stabilizer code. Then $|S| = 2^{n-k}$.

S can be generated by n - k operators $X_a Z_b$.

Let $H = (H_x | H_z)$ be an $(n - k) \times 2n$ matrix over F_2 .

The rows of H contain the vectors (a|b).

Short Description of a Stabilizer

Let

 $S = \{ I \otimes I \otimes I, \ Z \otimes Z \otimes I, \ I \otimes Z \otimes Z, \ Z \otimes I \otimes Z \}$

S is generated by $Z \otimes Z \otimes I$ and $Z \otimes I \otimes Z$.

 $H = \left(\begin{array}{c} 000 & | \ 110 \\ 000 & | \ 101 \end{array}\right)$

(a|b) = (000|110) and (c|d) = (000|101)

 $a \cdot d + b \cdot c = 000 \cdot 101 + 110 \cdot 000 = 0$

The New Language

The commutator C(S) contains all the ugly errors.

Modulo a sign, each operator in C(S) is of the form

 $M = X_a Z_b$

with $a \cdot d + b \cdot c = 0$ for all $X_c Z_d \in S$. Hence

 $(a|b) \perp (c|d)$

w.r.t. the symplectic inner product.

The New Language

If $|S| = 2^{n-k}$, then $|C(S)| = 2 \cdot 2^{n+k}$.

 $[2^{n+k}$ because of the symplectic duality, twice because of the signs \pm]

Adding 2k rows to H gives a new matrix G describing the commutator C(S). Recall that ugly errors are contained in $C(S) - \langle \pm S \rangle$.

The Repetition Code Revisited

$$G = \begin{pmatrix} 000 & 110 \\ 000 & 101 \\ \hline 111 & 000 \\ 000 & 111 \end{pmatrix}$$

G is the generator matrix of a code. Minimum distance is 2. The minimum distance needs to be \geq 3 to correct an arbitrary error.

The Repetition Code Revisited II

 M_1, M_2 generate the stabilizer S k operators \overline{X}_k mapping to X_a 's k operators \overline{Z}_k mapping to Z_b 's Codewords $|c_1\rangle = \overline{X}_1^{c_1} \sum_{M \in S} M |000\rangle$

A Comparison of Notations

Stabilizer Smatrix HCommutator C(S)matrix GUgly errors $\subseteq C(S) - \langle \pm S \rangle$ $\langle G \rangle - \langle H \rangle$ Correct t errorsMinDist($\langle G \rangle - \langle H \rangle$) $\geq 2t + 1$.

The [[5,1,3]] Code

One can check that all linear combinations of rows of

G have at least weight 3.

weight(
$$(a|b)$$
) = $|\{i | a_i = 1 \text{ or } b_i = 1\}|$

The [[5,1,3]] Code

Codewords

$$\begin{array}{l} |\overline{0}\rangle &=& \sum_{\substack{M \in S \\ |\overline{1}\rangle } &=& \frac{M \in S}{X} |\overline{0}\rangle \end{array}$$

Shor's [[9,1,3]] Code

M_1	000	000	000	110	000	000
M_2	000	000	000	101	000	000
M_{3}	000	000	000	000	110	000
M_{4}	000	000	000	000	101	000
M_{5}	000	000	000	000	000	110
M_{6}	000	000	000	000	000	101
M_{7}	111	111	000	000	000	000
M_{8}	111	000	111	000	000	000
\overline{X}	111	111	111	000	000	000
\overline{Z}	000	000	000	111	111	111

Conclusions and Outlook

- Symplectic binary code allow simple design.
- \bullet Connections with codes over $F_4.$
- Good quantum codes exist.
- Resilient Quantum Computers