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1A FRAME

• A sequence {xi} of vectors in a Hilbert space with the property

that there are constants A,B ≥ 0 such that

A‖x‖2 ≤
∑
i

|〈x, xi〉|2 ≤ B‖x‖2

for all x in the Hilbert space.

• Examples?
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3A SOURCE OF INFORMATION
Quantum

• Letters are transmitted as d-dimensional unit-length vectors.

• |e0〉 and |e1〉 are the basis vectors of 2D space H2:

|e0〉 =
[

0
1

]
|e1〉 =

[
1
0

]
• A qubit is a vector in H2: |ψ〉 = α|e0〉+ β|e1〉

• Example: X = {0, 1, 2, 3},

|ψ0〉 = α0|e0〉+ β0|e1〉 |ψ1〉 = α1|e0〉+ β1|e1〉
|ψ2〉 = α2|e0〉+ β2|e1〉 |ψ3〉 = α3|e0〉+ β3|e1〉.
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4QUANTUM DISCRETE MEMORYLESS SOURCE
The Density Matrix and Von Neumann Entropy

• Source density matrix:

ρ =
∑
a∈X

Pa|ψa〉〈ψa|.

• Von Neumann entropy of the source:

S(ρ) =−Tr ρ log ρ

=−
∑
i

λi log λi,

where λi are the eigenvalues of ρ.
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−
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X = {1, 2, 3} P1 = P2 = P3 = 1/3
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5QUANTUM DISCRETE MEMORYLESS SOURCE
MB Example

|ψ1〉 =

[
1
0

]

|ψ2〉 =

[
−1/2√

3/2

]
d = 2

|ψ3〉 =

[
−1/2

−
√

3/2

]

X = {1, 2, 3} P1 = P2 = P3 = 1/3

ρ = 1
3|ψ1〉〈ψ1|+ 1

3|ψ2〉〈ψ2|+ 1
3|ψ3〉〈ψ3|

= 1
2I

S(ρ) = 1
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Vector Sequences

• Sequences of length n are dn-dimensional vectors.

• Source vector-sequence (state):

|Ψx〉 = |ψx1〉 ⊗ · · · ⊗ |ψxn〉, xi ∈ X .

• Among all states that come from the source, we can distinguish

2n(S(ρ)−εn)

reliably.
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7SENDING PACKETS OVER LOSSY NETWORKS
MB Example

|ψ1〉 =

[
1
0

]

|ψ2〉 =

[
−1/2√

3/2

]
d = 2

|φ〉 =

[
φ1

φ0

]

|ψ3〉 =

[
−1/2

−
√

3/2

]

Send |φ〉 by sending φ0 and φ1

Send |φ〉 by sending 〈ψ1|φ〉, 〈ψ2|φ〉, 〈ψ3|φ〉

|φ〉 = 2
3(〈ψ1|φ〉|ψ1〉+ 〈ψ2|φ〉|ψ2〉+ 〈ψ3|φ〉|ψ3〉)

|φ〉 = 2
3(|ψ1〉〈ψ1|+ |ψ2〉〈ψ2|+ |ψ3〉〈ψ3|)|φ〉
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• Each user has a signature N × 1 length-
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N complex vector.

• Let si be the signature and pi the power of user i for 1 ≤ i ≤ K.



8SYNCHRONOUS CDMA SYSTEMS
K users and processing gain N

• Each user has a signature N × 1 length-
√
N complex vector.

• Let si be the signature and pi the power of user i for 1 ≤ i ≤ K.

• The received vector is given by

r =
K∑
i=1

√
pibisi + n

where

– bi is the information symbol, for user i, E[bi] = 0, E[b2i ] = 1;

– n is the (Gaussian) noise vector; E[n] = 0, E[nn†] = σ2IN .



9SYNCHRONOUS CDMA SYSTEMS
The Sum Capacity

• Let user signatures and powers be given:

S = [s1, . . . sK] and P = diag{p1, . . . , pK}

• The sum capacity:

Csum =
1
2

log[det(IN + σ−2SPS†)]
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10A COMMON MODEL
The Object of Interest

• An ensemble:

– K d-dimensional unit-length vectors |ψi〉
– K real numbers pi such that p1 + · · ·+ pK = 1.

• Two matrices:

– F is the d×K matrix whose columns are
√
pi|ψi〉. Thus

FF † =
K∑
i=1

pi|ψi〉〈ψi|.

– FF † is the density matrix (frame operator)

– F †F is the Gram matrix.
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• An ensemble {√pi|ψi〉} of vectors in a Hilbert space with the

property that there are constants A,B ≥ 0 such that

A〈ϕ|ϕ〉 ≤
∑
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for all |ϕ〉 in the Hilbert space.
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• An ensemble {√pi|ψi〉} of vectors in a Hilbert space with the

property that there are constants A,B ≥ 0 such that

A〈ϕ|ϕ〉 ≤
∑
i

pi|〈ϕ|ψi〉|2 ≤ B〈ϕ|ϕ〉

for all |ϕ〉 in the Hilbert space.

• Equivalently,

AId ≤ FF † ≤ BId
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12A COMMON MODEL
Information Measures

• The Von Neumann entropy:

S = −TrFF † logFF †

• The sum capacity:

Csum =
1
2

log[det(Id + dσ−2FF †)]

• Both are maximized by

FF † =
1
d
Id.
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13HOW TO MIX A DENSITY MATRIX
FF † =

∑K
i=1 pi|ψi〉〈ψi|

• Two problems:

– classification of ensembles having a given density matrix,

– characterization of PDs consistent with a given density matrix.

• Let {pi} be a PD, and p1 ≥ p2 ≥ · · · ≥ pK.

• Let ρ be a density matrix, and λ1 ≥ λ2 ≥ · · · ≥ λd its eigenvalues.

• There exist vectors |ψi〉 such that ρ =
∑K
i=1 pi|ψi〉〈ψi| iff

n∑
i=1

pi ≤
n∑
i=1

λi for all n < d.
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FF † = 1

dId

• For ρ = 1
dId, condition

n∑
i=1

pi ≤
n∑
i=1

λi for all n < d.

becomes p1 ≤ 1/d.



14HOW TO MIX A DENSITY MATRIX
FF † = 1

dId

• For ρ = 1
dId, condition

n∑
i=1

pi ≤
n∑
i=1

λi for all n < d.

becomes p1 ≤ 1/d.

• In CDMA, user i is said to be oversized if

pi >

K∑
j=i+1

pj

d− i



15INTERFERENCE MEASURE IN CDMA
Total Square Correlation (TSC)
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15INTERFERENCE MEASURE IN CDMA
Total Square Correlation (TSC)

• The Welch’s lower bound to TSC (frame potential):

K∑
i=1

K∑
j=1

pipj|〈ψi|ψj〉|2 ≥
1
d

with equality iff
∑K
i=1 pi|ψi〉〈ψi| =

1
d Id.

• WBE sequences

– minimize the TSC

– maximize the sum capacity and Von Neumann entropy

• What does reducing TSC mean?
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16SOME COMMUNICATION CHANNELS

• Binary Symmetric Channel:

1− w

1− w

w

winput
output

1

0

1

0

• Noisy Typewriter:

N

H

B

input output

N

H

B



17A CQ COMMUNICATION CHANNEL
A Probabilistic Device

• Inputs: vectors |ψi〉, i ∈ X .

• Outputs: vectors |ϕj〉 determined by the chosen measurement.

• Transition probabilities determined by the chosen measurement.

input

output

|ϕj〉

|ϕl〉

|ψi〉

|ψk〉

P (j|i)

P (l|k)
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18QUANTUM MEASUREMENT
Von Neumann’s Measurement

• A set of pairwise orthogonal projection operators {Πi}.

• They form a complete resolution of the identity:
∑
iΠi = I.

• For input |ψj〉, output Πi|ψj〉 happens with probability 〈ψj|Πi|ψj〉.

• Example:

|〈ψ0|↔〉|2

|〈ψ1|l 〉|2

input output

|ψ1〉

|ψ0〉

|l 〉

|↔〉
Π0 = |↔〉〈↔|

Π1 = | l 〉〈 l |

|↔〉

| l 〉
|ψ1〉

|ψ0〉



19QUANTUM MEASUREMENT
Positive Operator-Valued Measure

• Any set of positive-semidefinite operators {Ei}.

• They form a complete resolution of the identity:
∑
iEi = I.

• For input |ψj〉, output Ei|ψj〉 happens with probability 〈ψj|Ei|ψj〉.



19QUANTUM MEASUREMENT
Positive Operator-Valued Measure

• Any set of positive-semidefinite operators {Ei}.

• They form a complete resolution of the identity:
∑
iEi = I.

• For input |ψj〉, output Ei|ψj〉 happens with probability 〈ψj|Ei|ψj〉.

• Example:

|〈ψ1|ϕ3〉|2

|〈ψ0|ϕ3〉|2

|〈ψ0|ϕ0〉|2

|〈ψ1|ϕ1〉|2

input output

|ψ1〉

|ψ0〉

|ϕ1〉

|ϕ0〉

|ϕ3〉

|ϕ1〉

|ϕ0〉

|ψ1〉

|ψ0〉

|ϕ3〉
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20OPTIMAL QUANTUM MEASUREMENTS
Some Open Problems

• POVMs minimizing the detection error-probability.

• POVMs attaining the accessible information (number of elements).

• Example:

|ψ1〉 =

[
1
0

]

|ψ2〉 =

[
−1/2√

3/2

]
|ψ3〉 =

[
−1/2

−
√

3/2

]

|ψ̃1〉 =

 √
1− α
0√
α



|ψ̃2〉 =

 −
√

1− α/2√
3
√

1− α/2√
α

|ψ̃3〉 =

 −
√

1− α/2

−
√

3
√

1− α/2√
α





21A SOURCE OF INFORMATION
Classical

• Discrete: produces sequences of letters.

• Letters belong to a finite alphabet X .

• Memoryless: each letter is produced independently.

• Probability of letter a is Pa.

• Example: coin tossing with X = {H,T}.
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Sequences and “Large” Sets

• Source sequence x= x1, x2, . . . , xn is in Xn.

• N(a|x) denotes the number occurrences of a in x.

• Consider all sequences x for which∣∣∣1
n
N(a|x)− Pa

∣∣∣ ≤ δ for every a ∈ X .

They form the set of typical sequences TnP,δ.

• Set TnP,δ is probabilistically large:

Pn(TnP,δ) ≥ 1− εn.
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23DISCRETE MEMORYLESS SOURCE
Shannon Entropy

• H(P ) = −
∑
a∈X Pa logPa.

• Set TnP,δ contains approximately 2nH(P ) sequences:

2n[H(P )−εn] ≤ |TnP,δ| ≤ 2n[H(P )+εn]

• The probability of typical sequences x is approximately 2−nH(P ):

2−n[H(P )+ε′n] ≤ Px ≤ 2−n[H(P )−ε′n]



24QUANTUM DISCRETE MEMORYLESS SOURCE
Vector Sequences

• Sequences of length n are dn-dimensional vectors:

|e0〉 ⊗ |e0〉 |e0〉 ⊗ |e1〉 |e1〉 ⊗ |e0〉 |e1〉 ⊗ |e1〉
1
0
0
0




0
1
0
0




0
0
1
0




0
0
0
1


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Vector Sequences

• Sequences of length n are dn-dimensional vectors:

|e0〉 ⊗ |e0〉 |e0〉 ⊗ |e1〉 |e1〉 ⊗ |e0〉 |e1〉 ⊗ |e1〉
1
0
0
0




0
1
0
0




0
0
1
0




0
0
0
1


• Source vector-sequence (state)

|Ψx〉 = |ψx1〉 ⊗ |ψx2〉 ⊗ · · · ⊗ |ψxn〉, xi ∈ X ,

appears with probability Px = Px1 · Px2 · . . . · Pxn.
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Vector Sequences

• Source vector-sequence (state)

|Ψx〉 = |ψx1〉 ⊗ |ψx2〉 ⊗ · · · ⊗ |ψxn〉, xi ∈ X ,

appears with probability Px = Px1 · Px2 · . . . · Pxn.

• Typical states |Ψx〉 ∈ H2n correspond to typical sequences x.

• There are approximately 2nH(P ) typical states.
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26QUANTUM DISCRETE MEMORYLESS SOURCE
Typical Subspace

• Typical states |Ψx〉 ∈ H2n “live” in the typical subspace.

• Typical subspace Λn of H2n:

Λn

Λ⊥
n

|Ψx〉 = |Ψx
Λn〉+ |Ψx

Λ⊥n 〉

• The dimension of Λn is approximately 2nS(ρ).



27Code C = {x1, . . . ,xM} ⊂ X n

• F is the dn ×M matrix whose columns are |ψxi
〉/
√
M . Thus

FF † =
1
M

M∑
i=1

|Ψxi〉〈Ψxi|.
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27Code C = {x1, . . . ,xM} ⊂ X n

• F is the dn ×M matrix whose columns are |ψxi
〉/
√
M . Thus

FF † =
1
M

M∑
i=1

|Ψxi〉〈Ψxi|.

• |Ψx1〉, . . . , |ΨxM〉 span U , an r-dimensional subspace of Hdn.

• Perform the SVD of F and define a scaled projection on U :

F =
r∑

k=1

√
λk|uk〉〈vk|, FF † =

r∑
k=1

λk|uk〉〈uk|, PU =
r∑

k=1

1
r
|uk〉〈uk|

• How far is FF † from PU?
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ρ and σ

• Trace distance:

D(σ, ω) =
1
2

Tr |σ − ω|,
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1
2

Tr |σ − ω|,

|A| denotes the positive square root of A†A.

• Uhlman Fidelity:

F (σ, ω) =
{

Tr
[
(
√
σω
√
σ)1/2

]}2

.

• 1− F (σ, ω) ≤ D(σ, ω) ≤
√

1− F (σ, ω)2

• Frobenius (Hilbert-Schmidt)?
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An Example

• AN = {a1, . . . , aN}

• N = 2K and n = 2k, with k/K = c < 1.

• Distributions P and Q:

P (ai) =
1
N

and Q(ai) =

{
1/n, 1 ≤ i ≤ n

0 n+ 1 ≤ i ≤ N

• P ({an+1, . . . , aN}) → 1 as k,K →∞.

• 1
2

∑
i |P (ai)−Q(ai)| → 1 and

∑
i |P (ai)−Q(ai)|2 → 0.
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• How far is FF † from PU?

[ r∑
k=1

|λk −
1
r
|
]2

≤ r
r∑

k=1

(
λk −

1
r

)
= r

( r∑
k=1

λ2
k

)
− 1

=
r

M2

M∑
i=1

M∑
j=1

|〈Ψxi|Ψxj〉|
2 − 1

≤ 1
M

M∑
i=1

M∑
j=1
j 6=i

|〈Ψxi|Ψxj〉|
2

• Use the random coding argument!



31A BASIS FOR Λn

The Random Coding Argument

• Averaging over all codes:

E
{ M∑
i=1

M∑
j=1
j 6=i

|〈Ψxi|Ψxj〉|
2
}

= M(M − 1) Tr(ρ⊗n · ρ⊗n)



31A BASIS FOR Λn

The Random Coding Argument

• Averaging over all codes:

E
{ M∑
i=1

M∑
j=1
j 6=i

|〈Ψxi|Ψxj〉|
2
}

= M(M − 1) Tr(ρ⊗n · ρ⊗n) ⇒

• There exists a code C with M codewords s.t.

[ r∑
k=1

∣∣λk − 1
r

∣∣]2

≤M Tr(ρ⊗n · ρ⊗n)



31A BASIS FOR Λn

The Random Coding Argument

• Averaging over all codes:

E
{ M∑
i=1

M∑
j=1
j 6=i

|〈Ψxi|Ψxj〉|
2
}

= M(M − 1) Tr(ρ⊗n · ρ⊗n) ⇒

• There exists a code C with M codewords s.t.

[ r∑
k=1

∣∣λk − 1
r

∣∣]2

≤M Tr(ρ⊗n · ρ⊗n) ⇒

• There exists a code C, |C| = 2nR s.t. on Λn

[ r∑
k=1

∣∣λk − 1
r

∣∣]2

≤ 2−n(S(ρ)−εn−R)
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32COMBINATORICS AND GEOMETRY
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|ψ1〉 =

[
1
0

]

|ψ2〉 =

[
−1/2√

3/2

]
d = 2

|ψ3〉 =

[
−1/2

−
√

3/2

]

X = {1, 2, 3} P1 = P2 = P3 = 1/3

ρ = 1
3|ψ1〉〈ψ1|+ 1

3|ψ2〉〈ψ2|+ 1
3|ψ3〉〈ψ3|

= 1
2I

S(ρ) = 1

• There are 3n typical vectors forming a frame in H2n.

• About 2n of those vectors form a basis of H2n.

• Which ones?


