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A FRAME

e A sequence {x;} of vectors in a Hilbert space with the property
that there are constants A, B > 0 such that

Allz|* < ) [, ) * < Bllz||?

for all x in the Hilbert space.

e Examples?
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A SOURCE OF INFORMATION
Quantum

e Letters are transmitted as d-dimensional unit-length vectors.

e |¢g) and |e1) are the basis vectors of 2D space Hs:

a-[2] w=i

e A qubit is a vector in Ho: |¢) = aleg) + Bler)
e Example: X ={0,1,2,3},

1Y0) = agleo) + Boler) |v1) = aileo) + Biler)
12) = aaleg) + Baler) |¥3) = asleg) + Bsler).
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QUANTUM DISCRETE MEMORYLESS SOURCE °
The Density Matrix and Von Neumann Entropy

e Source density matrix:

P = Z Pa’¢a><¢a"

acX
e VVon Neumann entropy of the source:

S(p) =—Trplogp

=— ) Ailog A\,

where \; are the eigenvalues of p.



QUANTUM DISCRETE MEMORYLESS SOURCE
MB Example

X ={1,23} P=P,=P;=1/3 n|¢1>:[H

va) = | /4 ]/\w2>[ i |

_\/5/2



QUANTUM DISCRETE MEMORYLESS SOURCE
MB Example

o
|

{1,2,3} PL=P,=P;=1/3 “|¢1>={ (1) }
3101) (1] + 5lw2) (] + 3ls) (Y3

va) = | /4 ]/\w[ i |

_\/5/2




QUANTUM DISCRETE MEMORYLESS SOURCE
MB Example

X = {123} P=P=P=1/3 yuy=|]
po= lv) (] + 5lv2) (ol + §0s) (¢s]
= %I d=2
Slp) =1 /\
va) = | /0 | o= s

_\/5/2
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QUANTUM DISCRETE MEMORYLESS SOURCE °
Vector Sequences

e Sequences of length n are d"-dimensional vectors.

e Source vector-sequence (state):

(W) = ‘¢w1>®"'®|¢xn>a xr; € X.

e Among all states that come from the source, we can distinguish

2”(5(/0)_5n>

reliably.



SENDING PACKETS OVER LOSSY NETWORKS
MB Example

Send |¢) by sending ¢y and ¢

/z [ o]
d=2
|¢3>=[ L2 ] |¢2>=[ _1/2]

_\/5/2




SENDING PACKETS OVER LOSSY NETWORKS
MB Example

Send |¢) by sending ¢y and ¢ oy} = { 1 }
Send |¢) by sending (11|¢), (12|d), (13|d) ’

/z B ]dZZ
va) = | /0 | v = | s |
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SENDING PACKETS OVER LOSSY NETWORKS
MB Example

Send |¢) by sending ¢y and ¢
Send |¢) by sending (i1]¢), (¢2]¢), (¥3|®)

[¢3) = [ __\}3//22 ] [92) = [ ;%g ]

6) = 3((Y1] ) [1h1) + (2|} |Wb2) + (P3|} [13))



SENDING PACKETS OVER LOSSY NETWORKS

MB Example
Send |¢) by sending ¢y and ¢ o) = { 1 }
Send |¢) by sending (11|¢), (12|d), (13|d) ’
9=l %
d=2
- o[ 48

0) = 2({1|@)|101) + (Y| @) |1h2) + (Ws|d)|ws))
) = 2(|1) (1] + [W2) (W] + [¥3) (W3])| &)



SYNCHRONOUS CDMA SYSTEMS
K users and processing gain NV

e Each user has a signature N x 1 length-v//N complex vector.

e Let s; be the signature and p; the power of user ¢ for 1 < < K.
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SYNCHRONOUS CDMA SYSTEMS
K users and processing gain NV

e Each user has a signature N x 1 length-v//N complex vector.

e Let s; be the signature and p; the power of user ¢ for 1 < < K.

e The received vector is given by

K
r = Z V/Pibisi +m
i=1

where

— b; is the information symbol, for user ¢, E[b;] = 0, E[b?] = 1;
— n is the (Gaussian) noise vector; E[n] = 0, Elnn'] = ¢21y.



SYNCHRONOUS CDMA SYSTEMS
The Sum Capacity

e Let user signatures and powers be given:

S = [81,...8[(] and P = d|ag{plaapK}

e [he sum capacity:

1
Cium = 5 log[det(Iy + o 2SPST)]



A COMMON MODEL
The Object of Interest

e An ensemble:

— K d-dimensional unit-length vectors |1;)

10



A COMMON MODEL
The Object of Interest

e An ensemble:

— K d-dimensional unit-length vectors |;)
— K real numbers p; such that p; +--- 4+ px = 1.

10



A COMMON MODEL
The Object of Interest

e An ensemble:

— K d-dimensional unit-length vectors |;)
— K real numbers p; such that p; +--- 4+ px = 1.

e | wo matrices:

— F'is the d x K matrix whose columns are /p;|1);). Thus

K
FFT =" pili) (il
1=1

10



A COMMON MODEL
The Object of Interest

e An ensemble:

— K d-dimensional unit-length vectors |;)
— K real numbers p; such that p; +--- 4+ px = 1.

e | wo matrices:

— F'is the d x K matrix whose columns are /p;|1);). Thus

K
FFT =% pilts) (.
1=1

— FF'1 is the density matrix (frame operator)
— FTF is the Gram matrix.
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A FRAME

e An ensemble {,/p;|1;)} of vectors in a Hilbert space with the
property that there are constants A, B > 0 such that

Alplp) < sz-mawmz < B{i|e)

for all |¢) in the Hilbert space.
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A FRAME

e An ensemble {,/p;|1;)} of vectors in a Hilbert space with the
property that there are constants A, B > 0 such that

AwWOSE:mWM%W%SBwWO

for all |¢) in the Hilbert space.

e Equivalently,
Al, < FF' < BI,

11



A COMMON MODEL
Information Measures

e [he Von Neumann entropy:

S=—TrFF'log FF"

e [he sum capacity:

1
Copm = 5 log|det (I + dO'_QFFT)]

12



A COMMON MODEL
Information Measures

e [he Von Neumann entropy:

S=—TrFF'log FF"

e [he sum capacity:

1
Covm = 5 log[det(Ig + do 2FF")]

e Both are maximized by

FFT =

12



A COMMON MODEL
Information Measures

e [he Von Neumann entropy:

S=—TrFF'log FF"

e [he sum capacity:

1
Covm = 5 log[det(Ig + do 2FF")]

e Both are maximized by

1
FFT = gld.

12
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HOW TO MIX A DENSITY MATRIX .
FFf =350 pil) (]

e [wo problems:

— classification of ensembles having a given density matrix,
— characterization of PDs consistent with a given density matrix.

o Let {p;} bea PD,and p1 > py > --- > pg.

e Let p be a density matrix, and Ay > Ay > .-+ > Ay Its eigenvalues.

e There exist vectors [1;) such that p = Zfi1pi‘¢i><¢z‘\ iff

zn:pi < zn:)\i for all n < d.
i=1 i=1
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HOW TO MIX A DENSITY MATRIX :
FF' = 11,

e For p = éld, condition

mn mn
sz' < Z)"i for all n < d.
i=1 i=1

becomes p; < 1/d.

e In CDMA, user 7 is said to be oversized if

K
> P
j=it1

;>
EE R




INTERFERENCE MEASURE IN CDMA
Total Square Correlation (TSC)

e The Welch's lower bound to TSC (frame potential):

K K

> il (i) ? >

1=1 g=1

&Ir—‘
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e The Welch's lower bound to TSC (frame potential):

K K

> il (i) ? >

1=1 g=1

&Ir—‘
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INTERFERENCE MEASURE IN CDMA N
Total Square Correlation (TSC)

e The Welch's lower bound to TSC (frame potential):

Z szp]’ %\%

1=1 g=1

&Ir—‘

with equality iff 375% | pilvi) (4] = 2 I,

e \WBE sequences

— minimize the TSC
— maximize the sum capacity and Von Neumann entropy

e \What does reducing TSC mean?
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SOME COMMUNICATION CHANNELS

e Binary Symmetric Channel:

e Noisy Typewriter:

INPUT

INPUT

0 > 0
w
OUTPUT
w
1 > 1

H:;;?Z;\\\\.H ouTpUT

16



A CQ COMMUNICATION CHANNEL o
A Probabilistic Device

e Inputs: vectors |v;), i € X.
e Outputs: vectors |p;) determined by the chosen measurement.

e T[ransition probabilities determined by the chosen measurement.

ouTPUT

INPUT

i) :
EWzlwﬂ

: o)
|¢k>’%



QUANTUM MEASUREMENT
Von Neumann’s Measurement

e A set of pairwise orthogonal projection operators {II,}.

e They form a complete resolution of the identity: > . II; = I.
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QUANTUM MEASUREMENT 0
Von Neumann’s Measurement

e A set of pairwise orthogonal projection operators {II,}.

e They form a complete resolution of the identity: > . II; = I.

e For input |¢;), output II;|1);) happens with probability (;|IL;|1);).

e Example:

[Ty = [<=) (|
My =[T)(T|

|%0)
INPUT >< OUTPUT
|91) > 1)

(1] 1)




QUANTUM MEASUREMENT
Positive Operator-Valued Measure

e Any set of positive-semidefinite operators {F;}.
e They form a complete resolution of the identity: ) . E; = 1.

e For input |¢;), output E;|1);) happens with probability (v;|E;|1;).
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QUANTUM MEASUREMENT
Positive Operator-Valued Measure

e Any set of positive-semidefinite operators {F;}.
e They form a complete resolution of the identity: ) . E; = 1.
e For input |¢;), output E;|1);) happens with probability (v;|E;|1;).

e Example:

V1) |<¢0L@0>|2 .

11bo) lv0)

|©3)

lo0) l%0) [{(%ole3)|?

INPUT |<P3> OUTPUT

(1] p3) |

1) o|v1)

> 2
101) [{(Y1]e1)|
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OPTIMAL QUANTUM MEASUREMENTS *
Some Open Problems

e POVMs minimizing the detection error-probability.
e POVMs attaining the accessible information (number of elements).

e Example:
. V11—«
Y1) = { 0 ]
Ja
Hlo = o |

—VT—a/2 ] —VT—a/2 }

|@5>=[ ByT—a/2 D) = { BT ar
wa) = | T4y | wo = | Jala |

—V/3/2 V3/2



A SOURCE OF INFORMATION
Classical

Discrete: produces sequences of letters.

Letters belong to a finite alphabet X.

Memoryless: each letter is produced independently.
Probability of letter a is P,.

Example: coin tossing with X = {H,T'}.
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CLASSICAL DISCRETE MEMORYLESS SOURCE ~
Sequences and “Large” Sets

e Source sequence £= I1,L2,...,Ty 1S Iin X",
e N(a|x) denotes the number occurrences of a in x.

e Consider all sequences x for which

1
—N(alx) — P,| <6 forevery a€ X.
n

They form the set of typical sequences T ;.
e Set T% 5 is probabilistically large:

Pn( P5)>1_€n
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DISCRETE MEMORYLESS SOURCE
Shannon Entropy

e H(P)=—>  cxPalogh,
e Set T’ 5 contains approximately o (P) sequences:

gnlH(P)=enl < |1, | < gnlH(P)ten]

e The probability of typical sequences x is approximately 2~ ("),

o—n[H(P)+ep] <P, < o—n[H(P)—¢,]

23



QUANTUM DISCRETE MEMORYLESS SOURCE *
Vector Sequences

e Sequences of length n are d"-dimensional vectors:
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QUANTUM DISCRETE MEMORYLESS SOURCE

Vector Sequences

e Sequences of length n are d"-dimensional vectors:

o) ®leo) eo) @ er) ey @leo)  fer) ® Je)
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

e Source vector-sequence (state)

W) = [Vr,) @ [Vz,) @ -+ @ |Ug,,), T, € X,

appears with probability P, = P, - Py, - ... - P,

n-
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QUANTUM DISCRETE MEMORYLESS SOURCE ~
Vector Sequences

e Source vector-sequence (state)
Va) = [tho) @ [Yag) @ - @ [the,), T € X,
appears with probability P, = P, - P, - ... Py,
e Typical states |U,) € HZ" correspond to typical sequences x.

e There are approximately 277(¥) typical states.
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QUANTUM DISCRETE MEMORYLESS SOURCE *
Typical Subspace

e Typical states |¥,) € H?" “live” in the typical subspace.

e Typical subspace A,, of H2":
Ay,

1
’\ij> — |\ijAn> T ‘\ijA”>

AJ_

n

e The dimension of A,, is approximately 27°().



Code C ={xy,...,xp)} C A"
o [ is the d” x M matrix whose columns are |15.)/v M. Thus

1 M
1=1
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o [ is the d” x M matrix whose columns are |15.)/v M. Thus

1 M
1=1

o [Uy),..., ¥, ) span U, an r-dimensional subspace of H?".

e Perform the SVD of F' and define a scaled projection on U:

r

T r 1
F = W\ FFT = A P, — -
; k) (U], /.;:1 klug) (ug, U g T\uk><uk\
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Code C ={xy,...,xp)} C A"
o [ is the d” x M matrix whose columns are |15.)/v M. Thus

1 M
1=1

o [Uy),..., ¥, ) span U, an r-dimensional subspace of H?".

e Perform the SVD of F' and define a scaled projection on U:

r

T r 1
F = W\ FFT = A P, — -
; k) (U], /.;:1 klug) (ug, U g T\uk><uk\

k=1

e How far is FFT from P,?

27
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DISTANCES BETWEEN DENSITY MATRICES ~
p and o

e [race distance: .

D(o,w) = §Tr o — w|,

| A| denotes the positive square root of ATA.

e Uhlman Fidelity:

2

Fo,w) = { Tr[(Vowy/a) /7] |

e 1— F(o,w) < D(o,w) < /11— F(o,w)?

e Frobenius (Hilbert-Schmidt)?
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DISTANCES BETWEEN PD’S
An Example

o Ay ={a1,...,an}
o N =28 and n = 2% with k/K =c < 1.

e Distributions P and Q:

P(a;) = N and Q(a;) = {

e P{ans1,...,an}) = 1l as k, K — cc.

o 130, 1P(a;) — Qa:)| — 1 and X2, [P(a;) — Q(ay)[2 — 0.

29
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A BASIS FOR A,

e How far is FFT from P,?
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A BASIS FOR A,

e How far is FFT from P,?
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e Use the random coding argument!

S | =
N~
|
=
PR
]~

-
|
—_

(o, Wa,) I

(o, Var,) |

>~
=N

N———
|
—_

|
—_

30



A BASIS FOR A,
The Random Coding Argument

e Averaging over all codes:

E{ZZ ’<\Ijmz‘\pm3>|2} = MM —1) Tr(p®” : p®n)
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A BASIS FOR A,
The Random Coding Argument

e Averaging over all codes:

E{ZZ ’<\sz‘qjm3>|2} = MM —1) Tr(p®” : p®n)

e [ here exists a code C with M codewords s.t.

T 1 2
S l] < M o
k=1

=
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A BASIS FOR A,
The Random Coding Argument

e Averaging over all codes:

E{ii (Ve,| Ve, } = M(M — 1) Tr(p®™ - p®™)

7&

e [ here exists a code C with M codewords s.t.

r | 12
[Z’)\k _ ;u < MTr(p@m : p®n) N
k=1

e There exists a code C, |C| = 2™ s.t. on A,

{iw _ %” * < 9-n(S(0)—en—R)

k=1

=
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COMBINATORICS AND GEOMETRY
The MB Example

X = {123} P=P=P=1/3 quy=|]]
p = s1) (1| + 3lth2) (Wa| + 5|0s) (3]
— %I d=2
S(p) =

| va) = | /47 }/\w[ i

_\/§/2
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X o= {123} P=P=Py=1/3 yuy=|]]
po= lv) (W] + 5lv2) (ol + 50s) (vs]
— %I d=2
S(p) =1 / \
va) = | /0 | w2 = | ghe |

e There are 3" typical vectors forming a frame in H? .



COMBINATORICS AND GEOMETRY
The MB Example

X = {123} P=P=P=1/3 quy=|]]
p = glv1) (1] + gl2) (Pa| + 5ls) (3]

1
= 11

d=2
S(p) =1 /\
[¥3) = [ __\}5/32 } [¥2) = [ ;%g ]

e There are 3" typical vectors forming a frame in H? .

e About 2" of those vectors form a basis of H? .

e \Which ones?
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