FRAMES IN QUANTUM AND CLASSICAL INFORMATION THEORY

Emina Soljanin
Mathematical Sciences Research Center, Bell Labs

April 16, 2003

A FRAME

- A sequence $\left\{x_{i}\right\}$ of vectors in a Hilbert space with the property that there are constants $A, B \geq 0$ such that

$$
A\|x\|^{2} \leq \sum_{i}\left|\left\langle x, x_{i}\right\rangle\right|^{2} \leq B\|x\|^{2}
$$

for all x in the Hilbert space.

- Examples?

A SOURCE OF INFORMATION Classical

- Discrete: produces sequences of letters.
- Letters belong to a finite alphabet \mathcal{X}.

A SOURCE OF INFORMATION Classical

- Discrete: produces sequences of letters.
- Letters belong to a finite alphabet \mathcal{X}.
- Memoryless: each letter is produced independently.
- Probability of letter a is P_{a}.

A SOURCE OF INFORMATION Classical

- Discrete: produces sequences of letters.
- Letters belong to a finite alphabet \mathcal{X}.
- Memoryless: each letter is produced independently.
- Probability of letter a is P_{a}.
- Example: coin tossing with $\mathcal{X}=\{H, T\}$.

A SOURCE OF INFORMATION Quantum

- Letters are transmitted as d-dimensional unit-length vectors.

A SOURCE OF INFORMATION Quantum

- Letters are transmitted as d-dimensional unit-length vectors.
- $\left|e_{0}\right\rangle$ and $\left|e_{1}\right\rangle$ are the basis vectors of 2D space \mathcal{H}_{2} :

$$
\left|e_{0}\right\rangle=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad\left|e_{1}\right\rangle=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

- A qubit is a vector in $\mathcal{H}_{2}:|\psi\rangle=\alpha\left|e_{0}\right\rangle+\beta\left|e_{1}\right\rangle$

A SOURCE OF INFORMATION

Quantum

- Letters are transmitted as d-dimensional unit-length vectors.
- $\left|e_{0}\right\rangle$ and $\left|e_{1}\right\rangle$ are the basis vectors of 2D space \mathcal{H}_{2} :

$$
\left|e_{0}\right\rangle=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad\left|e_{1}\right\rangle=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

- A qubit is a vector in $\mathcal{H}_{2}:|\psi\rangle=\alpha\left|e_{0}\right\rangle+\beta\left|e_{1}\right\rangle$
- Example: $\mathcal{X}=\{0,1,2,3\}$,

$$
\begin{aligned}
& \left|\psi_{0}\right\rangle=\alpha_{0}\left|e_{0}\right\rangle+\beta_{0}\left|e_{1}\right\rangle \quad\left|\psi_{1}\right\rangle=\alpha_{1}\left|e_{0}\right\rangle+\beta_{1}\left|e_{1}\right\rangle \\
& \left|\psi_{2}\right\rangle=\alpha_{2}\left|e_{0}\right\rangle+\beta_{2}\left|e_{1}\right\rangle \quad\left|\psi_{3}\right\rangle=\alpha_{3}\left|e_{0}\right\rangle+\beta_{3}\left|e_{1}\right\rangle
\end{aligned}
$$

QUANTUM DISCRETE MEMORYLESS SOURCE

 The Density Matrix and Von Neumann Entropy- Source density matrix:

$$
\rho=\sum_{a \in \mathcal{X}} P_{a}\left|\psi_{a}\right\rangle\left\langle\psi_{a}\right|
$$

QUANTUM DISCRETE MEMORYLESS SOURCE The Density Matrix and Von Neumann Entropy

- Source density matrix:

$$
\rho=\sum_{a \in \mathcal{X}} P_{a}\left|\psi_{a}\right\rangle\left\langle\psi_{a}\right|
$$

- Von Neumann entropy of the source:

$$
\begin{aligned}
S(\rho) & =-\operatorname{Tr} \rho \log \rho \\
& =-\sum_{i} \lambda_{i} \log \lambda_{i}
\end{aligned}
$$

where λ_{i} are the eigenvalues of ρ.

QUANTUM DISCRETE MEMORYLESS SOURCE MB Example

$$
\left.\mathcal{X}=\{1,2,3\} \quad P_{1}=P_{2}=P_{3}=1 / 3 \quad \uparrow\left|\psi_{1}\right\rangle=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad \right\rvert\, \begin{gathered}
\left|\psi_{2}\right\rangle=\left[\begin{array}{c}
-1 / 2 \\
\sqrt{3} / 2
\end{array}\right]
\end{gathered}
$$

QUANTUM DISCRETE MEMORYLESS SOURCE MB Example

$$
\begin{aligned}
& \mathcal{X}\left.=\{1,2,3\} \quad P_{1}=P_{2}=P_{3}=1 / 3 \quad \nmid \psi_{1}\right\rangle=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& \rho=\frac{1}{3}\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right|+\frac{1}{3}\left|\psi_{2}\right\rangle\left\langle\psi_{2}\right|+\frac{1}{3}\left|\psi_{3}\right\rangle\left\langle\psi_{3}\right| \\
&=\frac{1}{2} I \\
& d=2 \\
&\left|\psi_{3}\right\rangle=\left[\begin{array}{c}
-1 / 2 \\
-\sqrt{3} / 2
\end{array}\right]
\end{aligned}
$$

QUANTUM DISCRETE MEMORYLESS SOURCE MB Example

$$
\begin{aligned}
\mathcal{X} & =\{1,2,3\} \quad P_{1}=P_{2}=P_{3}=1 / 3 \quad \uparrow\left|\psi_{1}\right\rangle=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
\rho & =\frac{1}{3}\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right|+\frac{1}{3}\left|\psi_{2}\right\rangle\left\langle\psi_{2}\right|+\frac{1}{3}\left|\psi_{3}\right\rangle\left\langle\psi_{3}\right| \\
& =\frac{1}{2} I \\
S(\rho) & =1
\end{aligned}
$$

QUANTUM DISCRETE MEMORYLESS SOURCE Vector Sequences

- Sequences of length n are d^{n}-dimensional vectors.
- Source vector-sequence (state):

$$
\left|\Psi_{\boldsymbol{x}}\right\rangle=\left|\psi_{x_{1}}\right\rangle \otimes \cdots \otimes\left|\psi_{x_{n}}\right\rangle, \quad x_{i} \in \mathcal{X}
$$

QUANTUM DISCRETE MEMORYLESS SOURCE Vector Sequences

- Sequences of length n are d^{n}-dimensional vectors.
- Source vector-sequence (state):

$$
\left|\Psi_{\boldsymbol{x}}\right\rangle=\left|\psi_{x_{1}}\right\rangle \otimes \cdots \otimes\left|\psi_{x_{n}}\right\rangle, \quad x_{i} \in \mathcal{X}
$$

- Among all states that come from the source, we can distinguish

$$
2^{n\left(S(\rho)-\varepsilon_{n}\right)}
$$

reliably.

SENDING PACKETS OVER LOSSY NETWORKS MB Example

Send $|\phi\rangle$ by sending ϕ_{0} and ϕ_{1}

SENDING PACKETS OVER LOSSY NETWORKS MB Example

Send $|\phi\rangle$ by sending ϕ_{0} and ϕ_{1}
Send $|\phi\rangle$ by sending $\left\langle\psi_{1} \mid \phi\right\rangle,\left\langle\psi_{2} \mid \phi\right\rangle,\left\langle\psi_{3} \mid \phi\right\rangle$

$$
\underbrace{\left|\left|\psi_{1}\right\rangle=\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right.} \quad{ }_{d=2}^{|\phi\rangle=\left[\begin{array}{l}
\phi_{1} \\
\phi_{0}
\end{array}\right]}
$$

$$
\left|\psi_{3}\right\rangle=\left[\begin{array}{c}
-1 / 2 \\
-\sqrt{3} / 2
\end{array}\right]
$$

SENDING PACKETS OVER LOSSY NETWORKS MB Example

Send $|\phi\rangle$ by sending ϕ_{0} and ϕ_{1}
Send $|\phi\rangle$ by sending $\left\langle\psi_{1} \mid \phi\right\rangle,\left\langle\psi_{2} \mid \phi\right\rangle,\left\langle\psi_{3} \mid \phi\right\rangle$

$$
\underbrace{\left|\psi_{1}\right\rangle=\left[\begin{array}{l}
-1 / 2 \\
\sqrt{3} / 2
\end{array}\right]}_{\left|\psi_{2}\right\rangle=\left[\begin{array}{l}
1 \\
0
\end{array}\right]}
$$

$$
|\phi\rangle=\frac{2}{3}\left(\left\langle\psi_{1} \mid \phi\right\rangle\left|\psi_{1}\right\rangle+\left\langle\psi_{2} \mid \phi\right\rangle\left|\psi_{2}\right\rangle+\left\langle\psi_{3} \mid \phi\right\rangle\left|\psi_{3}\right\rangle\right)
$$

SENDING PACKETS OVER LOSSY NETWORKS MB Example

Send $|\phi\rangle$ by sending ϕ_{0} and ϕ_{1}
Send $|\phi\rangle$ by sending $\left\langle\psi_{1} \mid \phi\right\rangle,\left\langle\psi_{2} \mid \phi\right\rangle,\left\langle\psi_{3} \mid \phi\right\rangle$

$$
\begin{aligned}
& \left|\psi_{1}\right\rangle=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& \underbrace{|\phi\rangle=\left[\begin{array}{l}
\phi_{1} \\
\phi_{0}
\end{array}\right]_{d=2}}_{d=2} .
\end{aligned}
$$

$$
\left|\psi_{3}\right\rangle=\left[\begin{array}{c}
-1 / 2 \\
-\sqrt{3} / 2
\end{array}\right]
$$

$$
\begin{aligned}
|\phi\rangle & =\frac{2}{3}\left(\left\langle\psi_{1} \mid \phi\right\rangle\left|\psi_{1}\right\rangle+\left\langle\psi_{2} \mid \phi\right\rangle\left|\psi_{2}\right\rangle+\left\langle\psi_{3} \mid \phi\right\rangle\left|\psi_{3}\right\rangle\right) \\
|\phi\rangle & =\frac{2}{3}\left(\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right|+\left|\psi_{2}\right\rangle\left\langle\psi_{2}\right|+\left|\psi_{3}\right\rangle\left\langle\psi_{3}\right|\right)|\phi\rangle
\end{aligned}
$$

SYNCHRONOUS CDMA SYSTEMS K users and processing gain N

- Each user has a signature $N \times 1$ length $-\sqrt{N}$ complex vector.
- Let s_{i} be the signature and p_{i} the power of user i for $1 \leq i \leq K$.

SYNCHRONOUS CDMA SYSTEMS
 K users and processing gain N

- Each user has a signature $N \times 1$ length $-\sqrt{N}$ complex vector.
- Let $s_{\boldsymbol{i}}$ be the signature and p_{i} the power of user i for $1 \leq i \leq K$.
- The received vector is given by

$$
\boldsymbol{r}=\sum_{i=1}^{K} \sqrt{p_{i}} b_{i} \boldsymbol{s}_{\boldsymbol{i}}+\boldsymbol{n}
$$

where

- b_{i} is the information symbol, for user $i, E\left[b_{i}\right]=0, E\left[b_{i}^{2}\right]=1$;
- \boldsymbol{n} is the (Gaussian) noise vector; $E[\boldsymbol{n}]=\mathbf{0}, E\left[\boldsymbol{n} \boldsymbol{n}^{\dagger}\right]=\sigma^{2} I_{N}$.

SYNCHRONOUS CDMA SYSTEMS The Sum Capacity

- Let user signatures and powers be given:

$$
S=\left[s_{1}, \ldots s_{K}\right] \text { and } P=\operatorname{diag}\left\{p_{1}, \ldots, p_{K}\right\}
$$

- The sum capacity:

$$
C_{\mathrm{sum}}=\frac{1}{2} \log \left[\operatorname{det}\left(I_{N}+\sigma^{-2} S P S^{\dagger}\right)\right]
$$

A COMMON MODEL The Object of Interest

- An ensemble:
- $K d$-dimensional unit-length vectors $\left|\psi_{i}\right\rangle$

A COMMON MODEL The Object of Interest

- An ensemble:
- $K d$-dimensional unit-length vectors $\left|\psi_{i}\right\rangle$
- K real numbers p_{i} such that $p_{1}+\cdots+p_{K}=1$.

A COMMON MODEL The Object of Interest

- An ensemble:
- $K d$-dimensional unit-length vectors $\left|\psi_{i}\right\rangle$
- K real numbers p_{i} such that $p_{1}+\cdots+p_{K}=1$.
- Two matrices:
- F is the $d \times K$ matrix whose columns are $\sqrt{p_{i}}\left|\psi_{i}\right\rangle$. Thus

$$
F F^{\dagger}=\sum_{i=1}^{K} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|
$$

A COMMON MODEL The Object of Interest

- An ensemble:
- $K d$-dimensional unit-length vectors $\left|\psi_{i}\right\rangle$
- K real numbers p_{i} such that $p_{1}+\cdots+p_{K}=1$.
- Two matrices:
- F is the $d \times K$ matrix whose columns are $\sqrt{p_{i}}\left|\psi_{i}\right\rangle$. Thus

$$
F F^{\dagger}=\sum_{i=1}^{K} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|
$$

- $F F^{\dagger}$ is the density matrix (frame operator)
- $F^{\dagger} F$ is the Gram matrix.

A FRAME

- An ensemble $\left\{\sqrt{p_{i}}\left|\psi_{i}\right\rangle\right\}$ of vectors in a Hilbert space with the property that there are constants $A, B \geq 0$ such that

$$
A\langle\varphi \mid \varphi\rangle \leq \sum_{i} p_{i}\left|\left\langle\varphi \mid \psi_{i}\right\rangle\right|^{2} \leq B\langle\varphi \mid \varphi\rangle
$$

for all $|\varphi\rangle$ in the Hilbert space.

A FRAME

- An ensemble $\left\{\sqrt{p_{i}}\left|\psi_{i}\right\rangle\right\}$ of vectors in a Hilbert space with the property that there are constants $A, B \geq 0$ such that

$$
A\langle\varphi \mid \varphi\rangle \leq \sum_{i} p_{i}\left|\left\langle\varphi \mid \psi_{i}\right\rangle\right|^{2} \leq B\langle\varphi \mid \varphi\rangle
$$

for all $|\varphi\rangle$ in the Hilbert space.

- Equivalently,

$$
A I_{d} \leq F F^{\dagger} \leq B I_{d}
$$

A COMMON MODEL Information Measures

- The Von Neumann entropy:

$$
S=-\operatorname{Tr} F F^{\dagger} \log F F^{\dagger}
$$

- The sum capacity:

$$
C_{\text {sum }}=\frac{1}{2} \log \left[\operatorname{det}\left(I_{d}+d \sigma^{-2} F F^{\dagger}\right)\right]
$$

A COMMON MODEL Information Measures

- The Von Neumann entropy:

$$
S=-\operatorname{Tr} F F^{\dagger} \log F F^{\dagger}
$$

- The sum capacity:

$$
C_{\mathrm{sum}}=\frac{1}{2} \log \left[\operatorname{det}\left(I_{d}+d \sigma^{-2} F F^{\dagger}\right)\right]
$$

- Both are maximized by

$$
F F^{\dagger}=
$$

A COMMON MODEL Information Measures

- The Von Neumann entropy:

$$
S=-\operatorname{Tr} F F^{\dagger} \log F F^{\dagger}
$$

- The sum capacity:

$$
C_{\text {sum }}=\frac{1}{2} \log \left[\operatorname{det}\left(I_{d}+d \sigma^{-2} F F^{\dagger}\right)\right]
$$

- Both are maximized by

$$
F F^{\dagger}=\frac{1}{d} I_{d}
$$

HOW TO MIX A DENSITY MATRIX

$F F^{\dagger}=\sum_{i=1}^{K} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$

- Two problems:
- classification of ensembles having a given density matrix,

HOW TO MIX A DENSITY MATRIX

$F F^{\dagger}=\sum_{i=1}^{K} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$

- Two problems:
- classification of ensembles having a given density matrix,
- characterization of PDs consistent with a given density matrix.

HOW TO MIX A DENSITY MATRIX

$F F^{\dagger}=\sum_{i=1}^{K} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$

- Two problems:
- classification of ensembles having a given density matrix,
- characterization of PDs consistent with a given density matrix.
- Let $\left\{p_{i}\right\}$ be a PD, and $p_{1} \geq p_{2} \geq \cdots \geq p_{K}$.

HOW TO MIX A DENSITY MATRIX

$$
F F^{\dagger}=\sum_{i=1}^{K} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|
$$

- Two problems:
- classification of ensembles having a given density matrix,
- characterization of PDs consistent with a given density matrix.
- Let $\left\{p_{i}\right\}$ be a PD, and $p_{1} \geq p_{2} \geq \cdots \geq p_{K}$.
- Let ρ be a density matrix, and $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{d}$ its eigenvalues.
- There exist vectors $\left|\psi_{i}\right\rangle$ such that $\rho=\sum_{i=1}^{K} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$ iff

$$
\sum_{i=1}^{n} p_{i} \leq \sum_{i=1}^{n} \lambda_{i} \text { for all } n<d
$$

HOW TO MIX A DENSITY MATRIX

$$
F F^{\dagger}=\frac{1}{d} I_{d}
$$

- For $\rho=\frac{1}{d} I_{d}$, condition

$$
\sum_{i=1}^{n} p_{i} \leq \sum_{i=1}^{n} \lambda_{i} \text { for all } n<d
$$

becomes $p_{1} \leq 1 / d$.

HOW TO MIX A DENSITY MATRIX

$$
F F^{\dagger}=\frac{1}{d} I_{d}
$$

- For $\rho=\frac{1}{d} I_{d}$, condition

$$
\sum_{i=1}^{n} p_{i} \leq \sum_{i=1}^{n} \lambda_{i} \text { for all } n<d
$$

becomes $p_{1} \leq 1 / d$.

- In CDMA, user i is said to be oversized if

$$
p_{i}>\frac{\sum_{j=i+1}^{K} p_{j}}{d-i}
$$

INTERFERENCE MEASURE IN CDMA Total Square Correlation (TSC)

- The Welch's lower bound to TSC (frame potential):

$$
\sum_{i=1}^{K} \sum_{j=1}^{K} p_{i} p_{j}\left|\left\langle\psi_{i} \mid \psi_{j}\right\rangle\right|^{2} \geq \frac{1}{d}
$$

INTERFERENCE MEASURE IN CDMA Total Square Correlation (TSC)

- The Welch's lower bound to TSC (frame potential):

$$
\sum_{i=1}^{K} \sum_{j=1}^{K} p_{i} p_{j}\left|\left\langle\psi_{i} \mid \psi_{j}\right\rangle\right|^{2} \geq \frac{1}{d}
$$

with equality iff $\sum_{i=1}^{K} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|=\frac{1}{d} I_{d}$.

- WBE sequences
- minimize the TSC
- maximize the sum capacity and Von Neumann entropy

INTERFERENCE MEASURE IN CDMA Total Square Correlation (TSC)

- The Welch's lower bound to TSC (frame potential):

$$
\sum_{i=1}^{K} \sum_{j=1}^{K} p_{i} p_{j}\left|\left\langle\psi_{i} \mid \psi_{j}\right\rangle\right|^{2} \geq \frac{1}{d}
$$

with equality iff $\sum_{i=1}^{K} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|=\frac{1}{d} I_{d}$.

- WBE sequences
- minimize the TSC
- maximize the sum capacity and Von Neumann entropy
- What does reducing TSC mean?

SOME COMMUNICATION CHANNELS

- Binary Symmetric Channel:

INPUT

OUTPUT

SOME COMMUNICATION CHANNELS

- Binary Symmetric Channel:

- Noisy Typewriter:

A CQ COMMUNICATION CHANNEL A Probabilistic Device

- Inputs: vectors $\left|\psi_{i}\right\rangle, i \in \mathcal{X}$.
- Outputs: vectors $\left|\varphi_{j}\right\rangle$ determined by the chosen measurement.
- Transition probabilities determined by the chosen measurement.

QUANTUM MEASUREMENT Von Neumann's Measurement

- A set of pairwise orthogonal projection operators $\left\{\Pi_{i}\right\}$.
- They form a complete resolution of the identity: $\sum_{i} \Pi_{i}=I$.

QUANTUM MEASUREMENT Von Neumann's Measurement

- A set of pairwise orthogonal projection operators $\left\{\Pi_{i}\right\}$.
- They form a complete resolution of the identity: $\sum_{i} \Pi_{i}=I$.
- For input $\left|\psi_{j}\right\rangle$, output $\Pi_{i}\left|\psi_{j}\right\rangle$ happens with probability $\left\langle\psi_{j}\right| \Pi_{i}\left|\psi_{j}\right\rangle$.

QUANTUM MEASUREMENT Von Neumann's Measurement

- A set of pairwise orthogonal projection operators $\left\{\Pi_{i}\right\}$.
- They form a complete resolution of the identity: $\sum_{i} \Pi_{i}=I$.
- For input $\left|\psi_{j}\right\rangle$, output $\Pi_{i}\left|\psi_{j}\right\rangle$ happens with probability $\left\langle\psi_{j}\right| \Pi_{i}\left|\psi_{j}\right\rangle$.
- Example:

QUANTUM MEASUREMENT Positive Operator-Valued Measure

- Any set of positive-semidefinite operators $\left\{E_{i}\right\}$.
- They form a complete resolution of the identity: $\sum_{i} E_{i}=I$.
- For input $\left|\psi_{j}\right\rangle$, output $E_{i}\left|\psi_{j}\right\rangle$ happens with probability $\left\langle\psi_{j}\right| E_{i}\left|\psi_{j}\right\rangle$.

QUANTUM MEASUREMENT Positive Operator-Valued Measure

- Any set of positive-semidefinite operators $\left\{E_{i}\right\}$.
- They form a complete resolution of the identity: $\sum_{i} E_{i}=I$.
- For input $\left|\psi_{j}\right\rangle$, output $E_{i}\left|\psi_{j}\right\rangle$ happens with probability $\left\langle\psi_{j}\right| E_{i}\left|\psi_{j}\right\rangle$.
- Example:

OPTIMAL QUANTUM MEASUREMENTS Some Open Problems

- POVMs minimizing the detection error-probability.

OPTIMAL QUANTUM MEASUREMENTS Some Open Problems

- POVMs minimizing the detection error-probability.
- POVMs attaining the accessible information (number of elements)

OPTIMAL QUANTUM MEASUREMENTS Some Open Problems

- POVMs minimizing the detection error-probability.
- POVMs attaining the accessible information (number of elements).
- Example:

OPTIMAL QUANTUM MEASUREMENTS Some Open Problems

- POVMs minimizing the detection error-probability.
- POVMs attaining the accessible information (number of elements).
- Example:

$$
\begin{aligned}
& \left|\widetilde{\psi_{1}}\right\rangle=\left[\begin{array}{c}
\sqrt{1-\alpha} \\
0 \\
\sqrt{\alpha}
\end{array}\right] \\
& \left|\psi_{1}\right\rangle=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& \begin{aligned}
&\left|\widetilde{\psi_{3}}\right\rangle= {\left[\begin{array}{c}
-\sqrt{1-\alpha} / 2 \\
-\sqrt{3} \sqrt{1-\alpha} / 2 \\
\sqrt{\alpha}
\end{array}\right] } \\
&\left|\widetilde{\psi_{2}}\right\rangle=\left[\begin{array}{c}
-\sqrt{1-\alpha} / 2 \\
\sqrt{3} \sqrt{1-\alpha} / 2 \\
\sqrt{\alpha}
\end{array}\right] \\
&\left|\psi_{3}\right\rangle=\left[\begin{array}{c}
-1 / 2 \\
-\sqrt{3} / 2
\end{array}\right]
\end{aligned}
\end{aligned}
$$

A SOURCE OF INFORMATION Classical

- Discrete: produces sequences of letters.
- Letters belong to a finite alphabet \mathcal{X}.
- Memoryless: each letter is produced independently.
- Probability of letter a is P_{a}.
- Example: coin tossing with $\mathcal{X}=\{H, T\}$.

CLASSICAL DISCRETE MEMORYLESS SOURCE Sequences and "Large" Sets

- Source sequence $\boldsymbol{x}=x_{1}, x_{2}, \ldots, x_{n}$ is in \mathcal{X}^{n}.
- $N(a \mid \boldsymbol{x})$ denotes the number occurrences of a in \boldsymbol{x}.

CLASSICAL DISCRETE MEMORYLESS SOURCE Sequences and "Large" Sets

- Source sequence $\boldsymbol{x}=x_{1}, x_{2}, \ldots, x_{n}$ is in \mathcal{X}^{n}.
- $N(a \mid \boldsymbol{x})$ denotes the number occurrences of a in \boldsymbol{x}.
- Consider all sequences \boldsymbol{x} for which

$$
\left|\frac{1}{n} N(a \mid \boldsymbol{x})-P_{a}\right| \leq \delta \text { for every } a \in \mathcal{X}
$$

They form the set of typical sequences $\mathrm{T}_{P, \delta}^{n}$.

CLASSICAL DISCRETE MEMORYLESS SOURCE Sequences and "Large" Sets

- Source sequence $\boldsymbol{x}=x_{1}, x_{2}, \ldots, x_{n}$ is in \mathcal{X}^{n}.
- $N(a \mid \boldsymbol{x})$ denotes the number occurrences of a in \boldsymbol{x}.
- Consider all sequences \boldsymbol{x} for which

$$
\left|\frac{1}{n} N(a \mid \boldsymbol{x})-P_{a}\right| \leq \delta \text { for every } a \in \mathcal{X}
$$

They form the set of typical sequences $\mathrm{T}_{P, \delta}^{n}$.

- Set $\mathrm{T}_{P, \delta}^{n}$ is probabilistically large:

$$
P^{n}\left(\mathrm{~T}_{P, \delta}^{n}\right) \geq 1-\epsilon_{n} .
$$

DISCRETE MEMORYLESS SOURCE Shannon Entropy

- $H(P)=-\sum_{a \in \mathcal{X}} P_{a} \log P_{a}$.

DISCRETE MEMORYLESS SOURCE Shannon Entropy

- $H(P)=-\sum_{a \in \mathcal{X}} P_{a} \log P_{a}$.
- Set $\mathbf{T}_{P, \delta}^{n}$ contains approximately $2^{n H(P)}$ sequences:

$$
2^{n\left[H(P)-\epsilon_{n}\right]} \leq\left|\mathrm{T}_{P, \delta}^{n}\right| \leq 2^{n\left[H(P)+\epsilon_{n}\right]}
$$

DISCRETE MEMORYLESS SOURCE Shannon Entropy

- $H(P)=-\sum_{a \in \mathcal{X}} P_{a} \log P_{a}$.
- Set $\mathrm{T}_{P, \delta}^{n}$ contains approximately $2^{n H(P)}$ sequences:

$$
2^{n\left[H(P)-\epsilon_{n}\right]} \leq\left|\mathrm{T}_{P, \delta}^{n}\right| \leq 2^{n\left[H(P)+\epsilon_{n}\right]}
$$

- The probability of typical sequences \boldsymbol{x} is approximately $2^{-n H(P)}$:

$$
2^{-n\left[H(P)+\epsilon_{n}^{\prime}\right]} \leq P_{\boldsymbol{x}} \leq 2^{-n\left[H(P)-\epsilon_{n}^{\prime}\right]}
$$

QUANTUM DISCRETE MEMORYLESS SOURCE Vector Sequences

- Sequences of length n are d^{n}-dimensional vectors:

$$
\begin{array}{cccc}
\left|e_{0}\right\rangle \otimes\left|e_{0}\right\rangle & \left|e_{0}\right\rangle \otimes\left|e_{1}\right\rangle & \left|e_{1}\right\rangle \otimes\left|e_{0}\right\rangle & \left|e_{1}\right\rangle \otimes\left|e_{1}\right\rangle \\
{\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]} & {\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]} & {\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]} & {\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]}
\end{array}
$$

QUANTUM DISCRETE MEMORYLESS SOURCE Vector Sequences

- Sequences of length n are d^{n}-dimensional vectors:

$$
\begin{gathered}
\left|e_{0}\right\rangle \otimes\left|e_{0}\right\rangle \\
{\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]}
\end{gathered}
$$

$$
\begin{gathered}
\left|e_{0}\right\rangle \otimes \mid e_{1} \\
{\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]}
\end{gathered}
$$

$$
\begin{gathered}
\left|e_{1}\right\rangle \otimes \mid e_{0} \\
{\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]}
\end{gathered}
$$

$$
\begin{gathered}
\left|e_{1}\right\rangle \otimes\left|e_{1}\right\rangle \\
{\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]}
\end{gathered}
$$

- Source vector-sequence (state)

$$
\left|\Psi_{\boldsymbol{x}}\right\rangle=\left|\psi_{x_{1}}\right\rangle \otimes\left|\psi_{x_{2}}\right\rangle \otimes \cdots \otimes\left|\psi_{x_{n}}\right\rangle, \quad x_{i} \in \mathcal{X}
$$

appears with probability $P_{\boldsymbol{x}}=P_{x_{1}} \cdot P_{x_{2}} \ldots \cdot P_{x_{n}}$.

QUANTUM DISCRETE MEMORYLESS SOURCE Vector Sequences

- Source vector-sequence (state)

$$
\left|\Psi_{x}\right\rangle=\left|\psi_{x_{1}}\right\rangle \otimes\left|\psi_{x_{2}}\right\rangle \otimes \cdots \otimes\left|\psi_{x_{n}}\right\rangle, \quad x_{i} \in \mathcal{X}
$$

appears with probability $P_{\boldsymbol{x}}=P_{x_{1}} \cdot P_{x_{2}} \cdot \ldots \cdot P_{x_{n}}$.

- Typical states $\left|\Psi_{x}\right\rangle \in \mathcal{H}^{2^{n}}$ correspond to typical sequences \boldsymbol{x}.
- There are approximately $2^{n H(P)}$ typical states.

QUANTUM DISCRETE MEMORYLESS SOURCE Typical Subspace

- Typical states $\left|\Psi_{\boldsymbol{x}}\right\rangle \in \mathcal{H}^{2^{n}}$ "live" in the typical subspace.

QUANTUM DISCRETE MEMORYLESS SOURCE Typical Subspace

- Typical states $\left|\Psi_{\boldsymbol{x}}\right\rangle \in \mathcal{H}^{2^{n}}$ "live" in the typical subspace.
- Typical subspace Λ_{n} of $\mathcal{H}^{2^{n}}$:

QUANTUM DISCRETE MEMORYLESS SOURCE Typical Subspace

- Typical states $\left|\Psi_{\boldsymbol{x}}\right\rangle \in \mathcal{H}^{2^{n}}$ "live" in the typical subspace.
- Typical subspace Λ_{n} of $\mathcal{H}^{2^{n}}$:

- The dimension of Λ_{n} is approximately $2^{n S(\rho)}$.

Code $\mathcal{C}=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{M}\right\} \subset \mathcal{X}^{n}$

- F is the $d^{n} \times M$ matrix whose columns are $\left|\psi_{x_{i}}\right\rangle / \sqrt{M}$. Thus

$$
F F^{\dagger}=\frac{1}{M} \sum_{i=1}^{M}\left|\Psi_{\boldsymbol{x}_{i}}\right\rangle\left\langle\Psi_{\boldsymbol{x}_{i}}\right| .
$$

Code $\mathcal{C}=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{M}\right\} \subset \mathcal{X}^{n}$

- F is the $d^{n} \times M$ matrix whose columns are $\left|\psi_{x_{i}}\right\rangle / \sqrt{M}$. Thus

$$
F F^{\dagger}=\frac{1}{M} \sum_{i=1}^{M}\left|\Psi_{\boldsymbol{x}_{i}}\right\rangle\left\langle\Psi_{\boldsymbol{x}_{i}}\right| .
$$

- $\left|\Psi_{\boldsymbol{x}_{1}}\right\rangle, \ldots,\left|\Psi_{\boldsymbol{x}_{M}}\right\rangle$ span \mathcal{U}, an r-dimensional subspace of $\mathcal{H}^{d^{n}}$.

Code $\mathcal{C}=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{M}\right\} \subset \mathcal{X}^{n}$

- F is the $d^{n} \times M$ matrix whose columns are $\left|\psi_{x_{i}}\right\rangle / \sqrt{M}$. Thus

$$
F F^{\dagger}=\frac{1}{M} \sum_{i=1}^{M}\left|\Psi_{\boldsymbol{x}_{i}}\right\rangle\left\langle\Psi_{\boldsymbol{x}_{i}}\right| .
$$

- $\left|\Psi_{\boldsymbol{x}_{1}}\right\rangle, \ldots,\left|\Psi_{\boldsymbol{x}_{M}}\right\rangle$ span \mathcal{U}, an r-dimensional subspace of $\mathcal{H}^{d^{n}}$.
- Perform the SVD of F and define a scaled projection on \mathcal{U} :

$$
F=\sum_{k=1}^{r} \sqrt{\lambda_{k}}\left|u_{k}\right\rangle\left\langle v_{k}\right|, \quad F F^{\dagger}=\sum_{k=1}^{r} \lambda_{k}\left|u_{k}\right\rangle\left\langle u_{k}\right|, \quad P_{\mathcal{U}}=\sum_{k=1}^{r} \frac{1}{r}\left|u_{k}\right\rangle\left\langle u_{k}\right|
$$

Code $\mathcal{C}=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{M}\right\} \subset \mathcal{X}^{n}$

- F is the $d^{n} \times M$ matrix whose columns are $\left|\psi_{x_{i}}\right\rangle / \sqrt{M}$. Thus

$$
F F^{\dagger}=\frac{1}{M} \sum_{i=1}^{M}\left|\Psi_{\boldsymbol{x}_{i}}\right\rangle\left\langle\Psi_{\boldsymbol{x}_{i}}\right| .
$$

- $\left|\Psi_{\boldsymbol{x}_{1}}\right\rangle, \ldots,\left|\Psi_{\boldsymbol{x}_{M}}\right\rangle$ span \mathcal{U}, an r-dimensional subspace of $\mathcal{H}^{d^{n}}$.
- Perform the SVD of F and define a scaled projection on \mathcal{U} :

$$
F=\sum_{k=1}^{r} \sqrt{\lambda_{k}}\left|u_{k}\right\rangle\left\langle v_{k}\right|, \quad F F^{\dagger}=\sum_{k=1}^{r} \lambda_{k}\left|u_{k}\right\rangle\left\langle u_{k}\right|, \quad P_{\mathcal{U}}=\sum_{k=1}^{r} \frac{1}{r}\left|u_{k}\right\rangle\left\langle u_{k}\right|
$$

- How far is $F F^{\dagger}$ from $P_{\mathcal{U}}$?

DISTANCES BETWEEN DENSITY MATRICES ρ and σ

- Trace distance:

$$
D(\sigma, \omega)=\frac{1}{2} \operatorname{Tr}|\sigma-\omega|
$$

$|A|$ denotes the positive square root of $A^{\dagger} A$.

DISTANCES BETWEEN DENSITY MATRICES

ρ and σ

- Trace distance:

$$
D(\sigma, \omega)=\frac{1}{2} \operatorname{Tr}|\sigma-\omega|
$$

$|A|$ denotes the positive square root of $A^{\dagger} A$.

- Uhlman Fidelity:

$$
F(\sigma, \omega)=\left\{\operatorname{Tr}\left[(\sqrt{\sigma} \omega \sqrt{\sigma})^{1 / 2}\right]\right\}^{2}
$$

- $1-F(\sigma, \omega) \leq D(\sigma, \omega) \leq \sqrt{1-F(\sigma, \omega)^{2}}$

DISTANCES BETWEEN DENSITY MATRICES

ρ and σ

- Trace distance:

$$
D(\sigma, \omega)=\frac{1}{2} \operatorname{Tr}|\sigma-\omega|
$$

$|A|$ denotes the positive square root of $A^{\dagger} A$.

- Uhlman Fidelity:

$$
F(\sigma, \omega)=\left\{\operatorname{Tr}\left[(\sqrt{\sigma} \omega \sqrt{\sigma})^{1 / 2}\right]\right\}^{2}
$$

- $1-F(\sigma, \omega) \leq D(\sigma, \omega) \leq \sqrt{1-F(\sigma, \omega)^{2}}$
- Frobenius (Hilbert-Schmidt)?

DISTANCES BETWEEN PD'S An Example

- $\mathcal{A}_{N}=\left\{a_{1}, \ldots, a_{N}\right\}$
- $N=2^{K}$ and $n=2^{k}$, with $k / K=c<1$.

DISTANCES BETWEEN PD'S An Example

- $\mathcal{A}_{N}=\left\{a_{1}, \ldots, a_{N}\right\}$
- $N=2^{K}$ and $n=2^{k}$, with $k / K=c<1$.
- Distributions P and Q :

$$
P\left(a_{i}\right)=\frac{1}{N}
$$

DISTANCES BETWEEN PD'S
 An Example

- $\mathcal{A}_{N}=\left\{a_{1}, \ldots, a_{N}\right\}$
- $N=2^{K}$ and $n=2^{k}$, with $k / K=c<1$.
- Distributions P and Q :

$$
P\left(a_{i}\right)=\frac{1}{N} \text { and } Q\left(a_{i}\right)=\left\{\begin{array}{cc}
1 / n, & 1 \leq i \leq n \\
0 & n+1 \leq i \leq N
\end{array}\right.
$$

DISTANCES BETWEEN PD'S
 An Example

- $\mathcal{A}_{N}=\left\{a_{1}, \ldots, a_{N}\right\}$
- $N=2^{K}$ and $n=2^{k}$, with $k / K=c<1$.
- Distributions P and Q :

$$
P\left(a_{i}\right)=\frac{1}{N} \text { and } Q\left(a_{i}\right)=\left\{\begin{array}{cc}
1 / n, & 1 \leq i \leq n \\
0 & n+1 \leq i \leq N
\end{array}\right.
$$

- $P\left(\left\{a_{n+1}, \ldots, a_{N}\right\}\right) \rightarrow 1$ as $k, K \rightarrow \infty$.

DISTANCES BETWEEN PD'S
 An Example

- $\mathcal{A}_{N}=\left\{a_{1}, \ldots, a_{N}\right\}$
- $N=2^{K}$ and $n=2^{k}$, with $k / K=c<1$.
- Distributions P and Q :

$$
P\left(a_{i}\right)=\frac{1}{N} \text { and } Q\left(a_{i}\right)=\left\{\begin{array}{cc}
1 / n, & 1 \leq i \leq n \\
0 & n+1 \leq i \leq N
\end{array}\right.
$$

- $P\left(\left\{a_{n+1}, \ldots, a_{N}\right\}\right) \rightarrow 1$ as $k, K \rightarrow \infty$.
- $\frac{1}{2} \sum_{i}\left|P\left(a_{i}\right)-Q\left(a_{i}\right)\right| \rightarrow 1$ and $\sum_{i}\left|P\left(a_{i}\right)-Q\left(a_{i}\right)\right|^{2} \rightarrow 0$.

A BASIS FOR Λ_{n}

- How far is $F F^{\dagger}$ from $P_{\mathcal{U}}$?

A BASIS FOR Λ_{n}

- How far is $F F^{\dagger}$ from $P_{\mathcal{U}}$?

$$
\left[\sum_{k=1}^{r}\left|\lambda_{k}-\frac{1}{r}\right|\right]^{2} \leq r \sum_{k=1}^{r}\left(\lambda_{k}-\frac{1}{r}\right)=r\left(\sum_{k=1}^{r} \lambda_{k}^{2}\right)-1
$$

A BASIS FOR Λ_{n}

- How far is $F F^{\dagger}$ from $P_{\mathcal{U}}$?

$$
\begin{aligned}
{\left[\sum_{k=1}^{r}\left|\lambda_{k}-\frac{1}{r}\right|\right]^{2} } & \leq r \sum_{k=1}^{r}\left(\lambda_{k}-\frac{1}{r}\right)=r\left(\sum_{k=1}^{r} \lambda_{k}^{2}\right)-1 \\
& =\frac{r}{M^{2}} \sum_{i=1}^{M} \sum_{j=1}^{M}\left|\left\langle\Psi_{\boldsymbol{x}_{i}} \mid \Psi_{\boldsymbol{x}_{j}}\right\rangle\right|^{2}-1
\end{aligned}
$$

A BASIS FOR Λ_{n}

- How far is $F F^{\dagger}$ from $P_{\mathcal{U}}$?

$$
\begin{aligned}
{\left[\sum_{k=1}^{r}\left|\lambda_{k}-\frac{1}{r}\right|\right]^{2} } & \leq r \sum_{k=1}^{r}\left(\lambda_{k}-\frac{1}{r}\right)=r\left(\sum_{k=1}^{r} \lambda_{k}^{2}\right)-1 \\
& =\frac{r}{M^{2}} \sum_{i=1}^{M} \sum_{j=1}^{M}\left|\left\langle\Psi_{\boldsymbol{x}_{i}} \mid \Psi_{\boldsymbol{x}_{j}}\right\rangle\right|^{2}-1 \\
& \leq \frac{1}{M} \sum_{i=1}^{M} \sum_{\substack{j=1 \\
j \neq i}}^{M}\left|\left\langle\Psi_{\boldsymbol{x}_{i}} \mid \Psi_{\boldsymbol{x}_{j}}\right\rangle\right|^{2}
\end{aligned}
$$

A BASIS FOR Λ_{n}

- How far is $F F^{\dagger}$ from $P_{\mathcal{U}}$?

$$
\begin{aligned}
{\left[\sum_{k=1}^{r}\left|\lambda_{k}-\frac{1}{r}\right|\right]^{2} } & \leq r \sum_{k=1}^{r}\left(\lambda_{k}-\frac{1}{r}\right)=r\left(\sum_{k=1}^{r} \lambda_{k}^{2}\right)-1 \\
& =\frac{r}{M^{2}} \sum_{i=1}^{M} \sum_{j=1}^{M}\left|\left\langle\Psi_{\boldsymbol{x}_{i}} \mid \Psi_{\boldsymbol{x}_{j}}\right\rangle\right|^{2}-1 \\
& \leq \frac{1}{M} \sum_{i=1}^{M} \sum_{\substack{j=1 \\
j \neq i}}^{M}\left|\left\langle\Psi_{\boldsymbol{x}_{i}} \mid \Psi_{\boldsymbol{x}_{j}}\right\rangle\right|^{2}
\end{aligned}
$$

- Use the random coding argument!

A BASIS FOR Λ_{n}
 The Random Coding Argument

- Averaging over all codes:

$$
E\left\{\sum_{i=1}^{M} \sum_{\substack{j=1 \\ j \neq i}}^{M}\left|\left\langle\Psi_{\boldsymbol{x}_{i}} \mid \Psi_{\boldsymbol{x}_{j}}\right\rangle\right|^{2}\right\}=M(M-1) \operatorname{Tr}\left(\rho^{\otimes n} \cdot \rho^{\otimes n}\right)
$$

A BASIS FOR Λ_{n}
 The Random Coding Argument

- Averaging over all codes:

$$
E\left\{\sum_{i=1}^{M} \sum_{\substack{j=1 \\ j \neq i}}^{M}\left|\left\langle\Psi_{\boldsymbol{x}_{i}} \mid \Psi_{\boldsymbol{x}_{j}}\right\rangle\right|^{2}\right\}=M(M-1) \operatorname{Tr}\left(\rho^{\otimes n} \cdot \rho^{\otimes n}\right) \Rightarrow
$$

- There exists a code \mathcal{C} with M codewords s.t.

$$
\left[\sum_{k=1}^{r}\left|\lambda_{k}-\frac{1}{r}\right|\right]^{2} \leq M \operatorname{Tr}\left(\rho^{\otimes n} \cdot \rho^{\otimes n}\right)
$$

A BASIS FOR Λ_{n} The Random Coding Argument

- Averaging over all codes:

$$
E\left\{\sum_{\substack{i=1}}^{M} \sum_{\substack{j=1 \\ j \neq i}}^{M}\left|\left\langle\Psi_{\boldsymbol{x}_{i}} \mid \Psi_{\boldsymbol{x}_{j}}\right\rangle\right|^{2}\right\}=M(M-1) \operatorname{Tr}\left(\rho^{\otimes n} \cdot \rho^{\otimes n}\right) \Rightarrow
$$

- There exists a code \mathcal{C} with M codewords s.t.

$$
\left[\sum_{k=1}^{r}\left|\lambda_{k}-\frac{1}{r}\right|\right]^{2} \leq M \operatorname{Tr}\left(\rho^{\otimes n} \cdot \rho^{\otimes n}\right) \Rightarrow
$$

- There exists a code $\mathcal{C},|\mathcal{C}|=2^{n R}$ s.t. on Λ_{n}

$$
\left[\sum_{k=1}^{r}\left|\lambda_{k}-\frac{1}{r}\right|\right]^{2} \leq 2^{-n\left(S(\rho)-\varepsilon_{n}-R\right)}
$$

COMBINATORICS AND GEOMETRY The MB Example

$$
\begin{aligned}
\mathcal{X} & =\{1,2,3\} \quad P_{1}=P_{2}=P_{3}=1 / 3 \quad\left|\quad \psi_{1}\right\rangle=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
\rho & =\frac{1}{3}\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right|+\frac{1}{3}\left|\psi_{2}\right\rangle\left\langle\psi_{2}\right|+\frac{1}{3}\left|\psi_{3}\right\rangle\left\langle\psi_{3}\right| \\
& =\frac{1}{2} I \\
S(\rho) & =1
\end{aligned}\left|\psi_{3}\right\rangle=\left[\begin{array}{c}
-1 / 2 \\
-\sqrt{3} / 2
\end{array}\right] \quad\left|\psi_{2}\right\rangle=\left[\begin{array}{c}
-1 / 2 \\
-\sqrt{3} / 2
\end{array}\right]
$$

COMBINATORICS AND GEOMETRY The MB Example

$$
\begin{aligned}
\mathcal{X} & =\{1,2,3\} \quad P_{1}=P_{2}=P_{3}=1 / 3 \quad \uparrow\left|\psi_{1}\right\rangle=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
\rho & =\frac{1}{3}\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right|+\frac{1}{3}\left|\psi_{2}\right\rangle\left\langle\psi_{2}\right|+\frac{1}{3}\left|\psi_{3}\right\rangle\left\langle\psi_{3}\right| \\
& =\frac{1}{2} I \\
S(\rho) & =1
\end{aligned}
$$

- There are 3^{n} typical vectors forming a frame in $H^{2^{n}}$.

COMBINATORICS AND GEOMETRY The MB Example

$$
\begin{aligned}
\mathcal{X} & =\{1,2,3\} \quad P_{1}=P_{2}=P_{3}=1 / 3 \quad \uparrow\left|\psi_{1}\right\rangle=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
\rho & =\frac{1}{3}\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right|+\frac{1}{3}\left|\psi_{2}\right\rangle\left\langle\psi_{2}\right|+\frac{1}{3}\left|\psi_{3}\right\rangle\left\langle\psi_{3}\right| \\
& =\frac{1}{2} I \\
S(\rho) & =1
\end{aligned}
$$

- There are 3^{n} typical vectors forming a frame in $H^{2^{n}}$.
- About 2^{n} of those vectors form a basis of $H^{2^{n}}$.
- Which ones?

