ISIT 2009, Seoul, Korea, June 28 - July 3, 2009

Storage Coding for Wear Leveling in Flash Memories

Anxiao (Andrew) Jiang Robert Mateescu Eitan Yaakobi
Jehoshua Brudk Paul H. Siegél Alexander Vardy Jack K. Wolf
*Department of Computer Science fcalifornia Institute of Technology {Electrical and Computer Engineering
Texas A&M University 1200 E California Blvd., Mail Code 136-93 University of California, San Diego
College Station, TX 77843, U.S.A. Pasadena, CA 91125, U.S.A. La Jolla, CA 92093, U.S.A.
ajiang@cs.tamu.edu {mateescu,brudi@paradise.caltech.edu {eyaakobi,psiegel,avardy,jwdt@ucsd.edu

Abstract—NAND flash memories are currently the most widely that usesO(n log 1) block erasures for moving data amomg
used flash memories. In a NAND flash memory, although a cell plocks. With coding, only one empty auxiliary block is needed,
block consists of many pages, to rewrite one page, the whole a4 \we present a very efficient algorithm based on coding

block needs to be erased and reprogrammed. Block erasures
determine the longevity and efficiency of flash memories. So when over GF(Z) that uses onlyn erasures. We further present a

data is frequently reorganized, which can be characterized as a coding-based algorithm using at mast — 1 erasures, which
data movement process, how to minimize block erasures becomesis worst-case optimal. Although minimizing erasures for every

an important challenge. In this paper, we show that coding instance is NP hard, both algorithms that use coding achieve

can significantly reduce block erasures for data movement, and an approximate ratio of two with respect to an optimal solution
present several optimal or nearly optimal algorithms. While the hat minimi th b f block

sorting-based non-coding schemes requir®(n log n) erasures to that minimizes the num _er ol block erasures. .
move data amongn blocks, coding-based schemes use Or@(i’l) There have been mUltlple recent works on COdlng for flash

erasures and also optimize the utilization of storage space. memories, including codes for efficient rewriting [5] [7] [11],
error-correcting codes [4], and rank modulation for reliable
cell programming [8] [10]. This paper is the first work on

Flash memories have become the most widely used naerage coding at the page level instead of the cell level, and
volatile electronic memories. They have two basic typethe topic itself is also distinct from all previous works.
NAND and NOR flash memories [6]. Between them, NAND Due to limited space, we skip some details in this paper.
flash is currently used much more often due to its higher ddt#terested readers are referred to [9] for the full analysis.
density. In a NAND flash, floating-gate cells are organized as
blocks Each block is further partitioned into multipfgages Il. TERMS AND CONCEPTS
and every read or write operation accesses a page as a Udffinition 1 (DATA MOVEMENT PROBLEM) There aren
Typically, a page has 2 to 4KB of data, and 64 pages forBlocks storing data in the flash memory, where every block
a block [6]. The flash memory has a uniqbeock erasure hasm pages. The blocks are denotedBy . .., B,, and then
property: although every page can be written individuallages in blocB; are denoted by; 1,...,pimfori=1,...,n.
to rewrite a page (namely, to change its content), the thlgt“(i, j) andp(i, j) be two functions:
block must be erased and then reprogrammed. Every block can L
endurel0* ~ 10° erasures, after which the flash memory may ~ ®(i, /) < {1,...,n} x{1,...,m} —{1,...,n};
break down. Block erasures also reduce the quality of cells B, j) AL, ony x{1,... ,m} —{1,...,m}.
and the general efficiency. So it is critical to minimize blockrhe gata in page; ; is denoted byb; ; and needs to be moved
erasures. For this reason, numerowesar levelingtechniques jntg pagep,; : T for (i,j) € {'1,“_,”} x{1,...,m}.
have been used to balance the erasures of blocks [6]. ali) Blij) P

(Clearly, the functions:(i, j) andf3(i, j) together have to form

In a flash memory, data often needs to be moved. Fgrpermutation for thenn pages. To avoid trivial cases, we
example, files can have their segments scattered due to mggs,me that every block has at least one page whose data needs
ifications, and need to be reassembled later. Files of similgfpe moved to another block.)
statistics may also need to be grouped for easier informations ,;mper of empty blocks, calleauxiliary blocks can be
access. To facilitate data movement, a flash translation layglaq in the data movement process, and they need to be erased
(FTL) is usually used in flash file systems to map logical daig the end. The objective is to minimize the total number of

pages to physical pages [6]. How to minimize block erasur@#,ck erasures in the data movement process.
during the data movement process remains a main challenge.

In this paper, we show that coding techniques can sig-The challenge is that a block must be erased before any of
nificantly reduce block erasures for data movement. Besidés pages is modified. Let us first define some terms. There
erasures, we also consider coding complexity and the exé@ two useful graph representations for the data movement
storage space needed for data movement. We show thaiblem: thetransition graphand abipartite graph In the
without coding, at least two empty blocks are needed tmnsition graphG = (V, E), |V| = n vertices represent the
facilitate data movement, and present a sorting-based solutiodata blocksBs, . .., By. If y pages of data need to be moved

I. INTRODUCTION

978-1-4244-4313-0/09/$25.00 ©2009 IEEE 1229



ISIT 2009, Seoul, Korea, June 28 - July 3, 2009

@ = 2z 3 4 5 ° to a block-permutation set. If we remove those edges, we get

a bipartite graph of degree — 1 for every vertex. (See Fig. 1
(c), (d).) Similarly, we can find another perfect matching and
further reduce the graph to regular degree- 2. In this way,
we partition thenm edges intom block-permutation sets.|

A perfect matching can be found using the Ford-Fulkerson

Algorithm [3] for computing maximum flow in time (n%m).
So we can partition them pages intom block-permutation
s Y NS S sets in timeO(n?m?).

IIl. CODING FORMINIMIZING AUXILIARY BLOCKS

1 33|41 |43 | 23| 63 | 53
2 21| 42 | 61 | 22 | 32 | 52
3 13 1311|1262 | 11| 51

Fig. 1. Data movement witm = 6,m = 3. (a) The permutation . .
table. The numbers with coordinatés j) are «(i, ), B(i, j). For example, In__thls paper, we fOC_US on the scenario where as few
(«(1,1),8(1,1)) = (3,3), and («(1,2),3(1,2)) = (2,1). (b) Transition auxiliary blocks as possible are used in the data movement

graph. (c) The bipartite graph representation. #ihhick edges are a perfect process. In this section, we show that coding techniques can

matching (a block-permutation set). (d) After removing a perfect matchi r% .. h b " ili block f d il

from the bipartite graph. Here far=1,...,n, vertexi represents blocl;. Inimize the number of auxiliary blocks. Afterwards, we wi
study how to use coding to minimize block erasures.

from B; to Bj, then there arg directed edges from; to B; in A, Data Movement without Coding

G. G is aregular directed graph with outgoing edges anét  \yhen coding is not used, data is directly copied from page
Incoming e?Iges for every vertex. In thépartite graphH = 4 ha4e |t can be shown that in the worst case, more than one
(ViU Vy, E), V1 and V, each has: vertices that represent 5 sijiary block is needed for data movement. (Please see [9]
then blocks. Ify pages of data are moved fraBato Bj, there ¢ 5 getajled analysis.) We now show that two auxiliary blocks
arey directed edges from verte; € V; to vertexB; € Va.  5p0 gufficient. The next algorithm operates in a way similar to
The two graphs are equivalent but are used in different proof hpje sort. And it sorts the data of the block-permutation

o data sets in parallel. The two auxiliary blocks are denoted by
Definition 2 (BLOCK-PERMUTATION SET AND SEMI- Bo and B,

CYCLE) A set ofn pages{pi,j,, 2,js- - Pn,j, } IS a@block-
permutation setif {a(1,j1),«(2,j2),...,&(n jn)} = Algorithm5 (BUBBLE-SORFBASED DATA MOVEMENT)

{1,2,...,-7’1}. If {plrj]’p21j2,..'lpnrjﬂ} IS 'a block- FOfizl,...,Tl—l
permutation set, then the data they originally store — g, j=i+1,...,n

{D1,j;,D2,j,,---, Dy, } — is called a block-permutation CopyB; into By andB; into B); EraseB; andB;;
data set Fork=1,...,m

Let z ¢ {1,2,...,11}.. An ordered set of pages LetD;, ;, andD,, ;, be the two pages of data By
(Pio,jos Pirjis -1 Pizy o) 1S @ semi-cycleif for k= and B, respectively, that belong to theth block-
0,1,...,z2=1, &(i, jk) = ik+1mod z- permutation data set. L@t ;, be the unique page in

. B B; such that some data of theth block-permutation

Example 3 The data movement problem in Fijexemplifies data set needs to be moved into it.
the construction of the transition and bipartite graphs. The If a(ip, j2) = i (which impliesf(iz, j») = js and

nm = 18 pages can be partitioned into three block-permutation

a(i1, j1) # i), copyD;, ;, into p; i, ; otherwise, copy
sets:  {p11, P22 32042 P53, Poits P12/ P21, P33s s v

Dilrj into Pi,j3-
Pajs P52, Pe2}s (P13, P23, P3P, P51, Pest The block —  yyitingg B; them pages of data iy andB} but not
permutation sets can be further decomposed into six semi- R /
in B;. EraseB, andB,,.
cycles: (ps3, p1,1,P32:061), (P22, P42); (P52, P33, P12 . -
P21, P43, P62); (P1,3), (P23, P3,1,Pa1), (P51, P6,3)- In the above algorithm, for every block-permutation data

set, its data is not only sorted in parallel with other block-

Theorem 4 The nm pages can be partitioned into block- Permutation data sets, but is also always dispersedhiocks
permutation sets. Therefore, then pages of data can be(Wwith every block holding one page of its data). The algorithm

partitioned inton block-permutation data sets. uses O(nz) erasures. If instead of bubble sorting, we use
more efficient sorting networks such as the Batcher sorting

Proof: The data movement problem can be representgétwork [2] or the AKS network [1], the number of erasures
by the bipartite graph where every edge represents a pagean be further reduced t0(nlog?n) and O(nlogn), re-
whose data needs to be moved into another block. (See Figpkctively. For simplicity we skip the details.

(c) for an example.) For=1,...,n, anyi vertices in the top ) ) B

layer haveim outgoing edges and therefore are connected fo Storage Coding with One Auxiliary Block

at leasti vertices in the bottom layer. So by Hall's theorem for In Algorithm 5, the only function of the auxiliary block,
matching in bipartite graphs [3], the bipartite graph has a pemd B}, is to store the data in the data blocks B; when the
fect matching. The edges of the perfect matching correspodatta in B;, B; is being swapped. We now show how coding

1230



ISIT 2009, Seoul, Korea, June 28 - July 3, 2009

can help reduce the number of auxiliary blocks to one, which 2ol B[ B2 [ Bs [ Bs 1Bs[ Be |Br[Bs]] Operation |
is clearly optimal. LetBy denote the only auxiliary block, and forward pass
y op - 0 : Yy y , T 23] 45 6 7]8 5 @64
let po,1,Po2,---,pom denote its pages. For = 1,...,m, 194 2 | 3| 4 [5] 6 |[7]8 5, @ 5
statically store in pageg , the bit-wise exclusive-OR of the [1©4[2®5 3 1 415/ 6 [7]8 03D 80 @ &4
: ’ : Tod2053a1 4 [5] 6 |78 54 B 07
n pages of data in thé-th block-permutation data set. We oI5 e 1287 1713 55
ma}ke one change in Algorithm_ 5: when the dataBi-r,]B]: IS Maiz2a5361407 506 VAR Cgpy52
being swapped, instead of erasing them together, we first erase 42530 1[4 7[5 D 6] 6 718 57 & bg
B; and write data intd;, then erasé; and write data int;. 1691 ;692 3691 11@;;@2 2 ;@S o 8 copy ds
This is feasible becaud&, always provides enough redundant DAUIEOPDIG7PE @
data. The number of block erasures is of the same order gs backward pass
. 4D 4[2®5[301[4®7[5D 6] 6 [7D 8] 8 07 ® b6 D O3B o D &y
before. 10426530140 7[506]6|7@8] [3][6D 03 Do D6y @ g
10420530140 7506]6 K 55 Doy Doy
IV. EFFICIENT STORAGE CODING OVER GF(2) 194265301140 7506] | 2 |83 04 © 019 6
104205301407 6] 2 [8[3] 08006 ®d%
In this section, we present a data movement algorithm thgt®42©53® 1 7 [6] 2 |8]3 5 Do
uses only one auxiliary block arth erasures. The algorithm }gi 285 - i ; Z g g g glggé
uses coding ove6F(2) and is very efficient. T R s B e E—

For convenience, let us assume for now that every block
has only one page. The results will be naturally extended
to the general case. L&y denote the auxiliary block, and
let po denote its page. For = 1,...,n, let p; denote the  The correctness of Algorithm 6 depends on whether the data
page inB;, and letD; denote the data originally ip;. Let written into a page can always be derived from the existing
a:{1,...,n} — {1,...,n} be the permutation such thatdata in the flash memory blocks. Theorem 8 shows this is true.
D; needs to be moved intp,;. Let a~! be the inverse
permutation ofx. Say that then pages can be partitionedTheorem 8 When Algorithm 6 is running, at any moment,
into t semi-cycles, denoted Wy, ..., C;. Every semi-cycleC; V 1 < i < n, if the dataD; is not in then + 1 blocks
(1 <i < t) has a special page call¢dil, defined as follows: Bg, B, - .., By, then there must exist a set of daf®; ®
if p; is thetail of C;, then for every other page, € C;, j > k. Dj,,Dj, ®Dj,, D}, & Dj,,...,Dj,_, & Dy, Dy} that all exist
We use %b” to represent the bit-wise exclusive-OR of datain then -+ 1 blocks. ThereforeD; can be easily obtained by
The following algorithm consists of two passes: floeward computing the bit-wise exclusive-OR of the data in the set.
assand thebackward passlt uses2n erasures. Note that in . . ) .
Fhe algorithm below, wtrw)enever some data is to be written into Proof. Consider a semi-cyclé; (1 < i < {). Denote its

a page, that data can be efficiently computed from the existiﬁeglgeS oYy, Piy, - Pii.- Without loss of generality (WLOG),
assumex(i;) = ijyq for j=1,2,...,x -1, anda(iy) = i1.

data in the flash memory blocks. The detail will be clear Iate'{IOW imagine a directed cyclf as follows: S hasx vertices

<i< i ) . :
ﬁles?ng\%% ti?]?gvtr%e_b:ozknfhgtaolri(l)irlfz’i Irhigritaai ggat needs torepresentlng the dafa;,, D;,, ..., D;,; there is a directed edge
9 y ) from Dl-], to Dl-],+1 for j =1,...,x—1, and a directed edge

from D;, to D;." Let every directed edge irs represent
the bit-wise exclusive-OR of the data represented by its two

Fig. 2. Example execution of Algorithm 6.

Algorithm 6 (GF(2)-CODING-BASED DATA MOVEMENT)

FORWARD PASS: endpoint vertices.
Fori=1,2,...,ndo: _ _ Consider theforward passin the algorithm. In this pass,
If p; is not the tail of its semi-cycle, writ®; © D -1 every time some data represented by a verte$ is erased,
into p;_1; otherwise, writeD; into p;_1. Then, erasé;;  the data represented by the directed edge entering that vertex

BACKWARD PASS:
Fori=n,n—1,...,1do:
Write Da—l(l‘) into p;. EraseB;_1.

already exists. So for every vertex fiwhose data has been
erased, there is a directed path $nentering it with this
property: “the data represented by the edges in this path, as
well as the data represented by the starting vertex of the path,
Example 7 Figure 2 gives an example of the executiony| exist in the blocks.” This is the same condition stated in

of Algorithm 6 with n = 8 andt = 2. Here the theorem. Thebackward passan be analyzed similarly.
(a(1),a(2),...,a(8)) ) = (3, 61, 8,1,2,5,4,7). (Please see [9] for details). So the conclusion holds. m
(Consequently, (a™*(1),a(2),...,a”(8)) = Algorithm 6 can be easily extended to the case where a

(4,51,7,6,2,8,3).) The two  semi-cycles  areplock hasm > 1 pages. Use the algorithm to process the

(P1,p3,ps, 7. p4) and (p2,pe ps). In Figure 2, each plock-permutation data sets in parallel, in the same way as
row is a step of Algorithm6. The numbers are the data inAIgorithm 5. Specifically, fori = 1,...,nandj=1,...,m,

the blocks. (For convenience, we uséo denote datd; in et p,,; » denote the unique page B} such that some data
the figure.) The rightmost column describes the computatigfithe j-th block-permutation data set needs to be moved into
performed for this step, whefe denotes the data iy then. p, ., . In the algorithm, every timeB; is erased, write the

1231



ISIT 2009, Seoul, Korea, June 28 - July 3, 2009

data related to th¢-th block-permutation data set infg,; ). B; is erased. The data written iy, for 0 < h <i—1, is
Since every block-permutation set occupies exactly one page= Y} _, y,’jDk, and the data written ip,, fori+1 < h <

in each block, there will be no conflict in writing. n, is oy = Dy. The matrix representation of this problem is
V. STORAGE CODING WITH MINIMIZED ERASURES 1 1 - 1 D, )
In this section, we present an algorithm that uses at most no v o T gz :
2n — 1 erasures, which is worst-case optimal. We further show non Yo | S| di
that minimizing erasures for every instance is NP hard, but our N : Oi+1
algorithm provides a 2-approximation. y’fl 7/2*1 syl Dy,_1 :
On—iyxi  In—i Dy s
n

A. Optimal Solution with Canonical Labelling

The n blocks can be labelled bg, ..., B, in n! different where 0,_;,; is the zero matrix of siz&n —i) x i, and
ways. Lety be an integer in{0,1,...,n —2}. We call a I,_; is the unit matrix of size(n — i) x (n —i). Since this
labelling of blocks that satisfies the following constraint aatrix is invertible it is possible to generate all data pages
canonical labelling with parametey: “V i € {y+ 1,y + and in particular the required data that has to be written in
2,...,n—2}andj € {i+2,i+3,...,n}, no data in p;. Similarly, it is possible to show for the two other steps
B; needs to be moved intd;.” Trivially, any labelling is that the matrix, representing the linear combination of pages
a canonical labelling with parameter — 2. However, it is after erasing each block, is invertible. For the sake of space
difficult to find a canonical labelling that minimizes we omit the full proof and it appears in [9]. [ ]

We now present a data-movement algorithm for blocks

that have a canonical labelling with parameterit uses one Theorem 11 Assume r is sufficiently large. Lety ¢
auxiliary blockBy, and uses +y 41 < 2n —1 erasures. For {0 1 .. n — 2}. There is a data-movement solution using
convenience, let us again assume that every block contajps. y 4 1 erasures if and only if there is a canonical block
only one page, and lep;, D;, o, a~! be as defined in the labelling with parametey.
previous section. Let denote the number of bits in a pade.
The algorithm can be naturally generalized for the general Proof: First, assume that there is a data-movement solu-
case, where every block has > 1 pages, in the same waytion usingn + y + 1 erasures. Since every block (including the
introduced in the previous section. auxiliary block) is erased at least once, there are at leasy
blocks that are erased only once in the solution. Rick y
Algorithm 9 (DATA MOVEMENT WITH LINEAR CODING) blocks erased only once and label then’B?_g;l, Byi2,...,Bn
This algorithm is for blocks that have a canonical labelling witthis way: “in the solution, whery+1 < i < j<mn,B;
parametey € {0,1,...,n—2}. Letyy,ys,..., v bedistinct is erased beford;.” Label the othery blocks asBy, ..., By

non-zero elements in the fieG@lF (2"). arbitrarily. Let us use contradiction to prove that no dat& jn
Step 1: Fori = 0,1,...,y do: EraseB; (fori = 0 there is needs to be moved intB;, wherei > y+1,j>i+2.

no need to erasky), and write intap; the datey ;! _; v; Dx. Assume some data iA; needs to be moved intB;. After
STEP2:Fori=y+1,y+2,...,n do: EraseB;, and write B; is erased, that data must be written iipbecauseB; is

into p; the dataD -1 ;). erased only once. When the solution era8gs; (which is
STEP 3: Fori = y,y —1,...,1 do: EraseB;, and write into pefore erasingB;), the data mentioned above exists in both

the pagep; the dataD -1 ;). B; and B;. However, note that at the end of the solution all

nm pages are located in their designated location. But, it is
Theorem 10 Algorithm 9 is correct and uses +y +1 < impossible to generate them using only: — 1 data pages, so
2n — 1 erasures. (Note that the algorithm assumes that H#re is a contradiction. Therefore, we have found a canonical
blocks have a canonical labelling with parametgr labelling with parametey. The other direction of the proof
comes from the existence of Algorithm 9. ]

Proof: We show that each time a blodg; is erased it ) .
is possible to generate all data pages using the current data We can easily make Algorithm 9 usk: — 1 erasures by

written in the othem pages. Denote by;, 0 < i < n, the USIN9Y =1 -2 and an arbitrary block labellingn — 1

current data written in each page, which is a linear combin§asures are also necessary in the worst case. To see that,
tion of the n data pages. The linear combination written ir(thSlder the case where every block has some data that needs

each page can be represented by a matrix multiplication to be moved into every other blpck, Wh_ere a canonical Ia_lbellmg
must havey = n — 2. So Algorithm 9 is worst-case optimal.
H-(Dy,Dy,...,D)T = (80,...,8i-1,8111,..,6n)T.

The matrix H defines the linear combination of data page@' Optimization for All Instances

written in each page. Consider the first step when the blockA specific instance of the data movement problem may
1 _ _ _ L require less tha2n — 1 erasures. So it is interesting to find
Whenr is greater than what is needed by Algorithm 9 (which is nearl

always true in practice), we can partition each page into bit strings of éﬂ algorithm that mihimizes the number of erasures for every
appropriate length, and apply the algorithm to the strings in parallel. instance. The following theorem shows that this is NP hard.

1232



ISIT 2009, Seoul, Korea, June 28 - July 3, 2009

Case 1: One of v, v, 03} is in the MSS ofG'. WLOG,
say it is v1. At most two vertices — say and ¢ — in
{w1,wy, w3lw € N(v)} can be in the MSS, because oth-
erwise due to the bi-directional edges between themwagnd
there would be no way to place them in the MSS. Let us
removeb, ¢ from the MSS and add,, v3 right afterv; in the
MSS. It is simple to see that we get another MSS.

Case 2: Two of v, v5,v3} are in the MSS of5’. WLOG,

Fig. 3. NP hardness of the data movement problem. (a) A simple undirecedy they arev; and v,. At most one vertex — say — in

graphGy. (b) T‘he corresp(_)nding regular directed gr{:(F{h Here every edge w1, Wy, w3|w c N(U)} can be in the MSS, for a similar
between two different vertices has arrows on both sides, representing the two .
directed edges of opposite directions between those two vertices. There [€8SON as Case 1. In the MSS, let us remgveovev; right

symbol xi beside every directed loop, representingarallel loops of that behindvy, and addvs right behindov,. Again, we get an MSS.
vertex. So in this way, we can easily convert any MSS into an MSS

L satisfying the conditions ii€CLAIM 1. SOCLAIM 1 is true.
Theorem 12 For the data movement problem, itis NP hard to - x\\m 2: “A set of vertices{w(1), w(2),...,w(k)} is

minimize the number of erasures for every given instance.

a maximum independent set @ if and only if the set

Proof: It has been shown in Theorem 11 and its prod¥ vertices (w(1)1, w(1)2, w(1)3, w(2)1, w(2)2, w(2)s, ...,
that minimizing the number of erasures is as hard as findi#k)1, w(k)2,w(k)3) is an MSS ofG'." It is simple to see
a canonical block labelling with a minimized paramegeiSo  that this is a consequence 6LAM 1.
we just need to show that finding a canonical labelling with SO given a canonical labelling with minimized parameer
minimized y is NP hard. We prove it by a reduction from thdor the data movement problem wi as the transition graph,

NP hardMAXIMUM INDEPENDENTSET problem. in polynomial time we can convert it into an MSS Gf, from
Let Gy = (Vq, Ey) be any simple undirected graph. Lethat into an MSS of5’ satisfying the conditions oELAIM 1,
d(v) denote the degree of vertex € V, and letA = and finally into a maximum independent set@f So it is NP

maxqey, d(v) denote the maximum degree G§. We build hard to 'fir.ld.a. canonical labelling with mipimized parameter
a regular directed grap6’ = (V; UV, U V3, E') as follows. V- Sp minimizing the. number of erasures is NP hard. m

Let |Vo| = |Va| = |Va| = |Vs]. For allo € Vj, there are Sm.ce every algorl'thm uses at least:- 1 erasures, apd
three corresponding verticas € Vy,v, € Vy,v3 € Va. If Algorithm 9 can easily achiev@én — 1 erasures (by setting
there is an undirected edge betweerw € V, in Gy, then ¥ =7 —2), the algorithm is a 2-approximation.

there are two directed edges of opposite directions between ACKNOWLEDGMENT

ando; fori=1,2,3andj=1,2,3. Forallv € Vo, there are  1pis work was supported in part by the NSF CAREER
also two directed edges of opposite directions betweems  award CCF-0747415, NSF grant ECCS-0802107, Caltech Lee
and betweervy, v3. Add some loops to the vertices i@  center for Advanced Networking, and the Center for Magnetic
to make all vertices have the same out-degree and in-deggge.oding Research at University of California, San Diego.
3A + 2. See Fig. 3 for an example.

The graphG’ naturally corresponds to a data movement REFERENCES
problem withn = 3|Vy| andm = 3A + 2, whereG' is its [1] M. Ajtai, J. Komios and E. Szen;]édi, “Arf1 O(n log n) sorting network,”

it it ; ; ; ; in Proc. ACM Symposium on Theory of Computipg. 1-9, 1983.

trans.ltlon graph (.The transition graph .IS de_flned in Section ”'} K.E. Batcher, “Sorting networks and their applications,”Hroceedings
Finding a canonical block labelling with minimized parameter” of the AFIPS Spring Joint Computer Conferenpp. 307-314, 1968.

y for this data movement problem is equivalent to findin?ﬂ B. Bollobas,Modern Graph TheoryChapter 3, Springer, 2002.
4]

t — 1 — vy vertices — with the value of maximized — inG’ Y. Cassuto, M. Schwartz, V. Bohossian and J. Bruck, “Codes for multi-
y ! level flash memories: Correcting asymmetric limited-magnitude errors,”

ay, ay ay Proc. IEEE Int. Symp. Information Theory (IS)J2007, p. 1176-1180.
rrert s [5] H. Finucane, Z. Liu and M. Mitzenmacher, “Designing floating codes for

such that fori = 1,2,...,t—2andj=i+2,i+3,...,t, expected performanceProc._ 46th Annual Allerton Conferenc2008. _

h . di ,d ’ d ! f J + ’" + ’h ’ [6] E.GalandS. Toledo, “Algorithms and data structures for flash memories,”

there is no directed edge from to ;. We call such a set in ACM Computing Surveysol. 37, no. 2, pp. 138-163, June 2005.

of t vertices — witht maximized — theMAXIMUM SEMI- [7] A. Jiang, V. Bohossian and J. Bruck, “Floating codes for joint infor-

INDEPENDENTSET of G’. For all v Vy, let N(v) denote mation storage in write asymmetric memorieBfoc. IEEE Int. Symp.
h iah . € Vo ( ) Information Theory (ISIT)2007, pp. 1166-1170.
the neighbors ob in Gy. [8] A.Jiang, R. Mateescu, M. Schwartz and J. Bruck, “Rank modulation for

CLAIM 1: “There is a maximum semi-independent set of flash memories,Proc. IEEE Int. Symp. Information Theory (1SJ 2008,

G’ whereV v € V,, either all three corresponding vertices = PP- 1731-1735.
€ Vo P g ?9] A. Jiang, R. Mateescu, E. Yaakobi, J. Bruck, P. H. Siegel, A. Vardy and

?1 €V, € VZ/_U?J €V e_lre in the Set’_or none of them is J. K. Wolf, “Storage coding for wear leveling in flash memories,” Caltech
in the set. What is more, i, v,,v3 are in the set, then no Tech. Rep., onlinehttp : //www.paradise.caltech.edu /etr.html.

vertex in {w1 Wy w3|w c N(v)} is in the set.” [10] A. Jiang, M. Schwartz and J. Bruck, “Error-correcting codes for rank
To prove C’LAII\I/I 1. let (a 4 4 ) denote a maximum modulation,”Proc. IEEE Int. Symp. Information Theory (IS]B008, pp.
) P , 1,82, .-, 0t 1736-1740.
semi-independent seMS9 of G’. (Note that the order of the [11] E. Yaakobi, A. Vardy, P. H. Siegel and J. K. Wolf, “Multidimensional

Ver“ces |n the set matters) ConS|der two cases: flash codes,’Proc. 46th Annual Allerton Conferenc2008.

1233



