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Abstract—This work studies the Stopping-Set Elimination
Problem, namely, given a stopping set, how to remove the fewest
erasures so that the remaining erasures can be decoded by
belief propagation in k iterations (including k = 1). The NP-
hardness of the problem is proven. An approximation algorithm
is presented for k = 1. And efficient exact algorithms are
presented for general k when the stopping sets form trees.

I. INTRODUCTION

The amount of data stored in the Internet is growing
exponentially fast. With this growth, how to ensure long-term
data reliability for all data also becomes more challenging.
To assist error-correcting codes (ECC), the redundancy in the
content of data itself can be utilized. This type of redundancy
– such as features in languages, images and videos, structures
in HTML files and databases, etc. – is referred to as natural
redundancy (NR), which supplements the more structured
redundancy added by error-correcting codes [12], [13]. NR
exists in both uncompressed and imperfectly compressed data,
which are abundant in storage systems. That makes NR a
promising tool to enhance data reliability.

With NR, a decoding system can be considered as consisting
of two decoders: an ECC-Decoder, and an NR-Decoder. They
work collaboratively to correct errors or erasures in the ECC
codeword. We illustrate it by an example.

Example 1. Consider texts compressed by an LZW algorithm
that uses a fixed dictionary of size 2`. The dictionary has 2` text
strings (called patterns) of variable lengths, where every pattern
is encoded as an `-bit codeword. Given a text to compress, the
LZW algorithm scans T and partitions it into patterns, and maps
them to codewords. For instance, if ` = 20 and the text is
“Flash memory is an electronic · · · ”, the partitioning and LZW-
codewords can be as illustrated in Fig. 1 (a).

Now suppose some bits in the LZW-codewords are erased.
An NR-Decoder can check all the possible solutions, map each
solution back to patterns, and use a dictionary of words to
eliminate those solutions that contain invalid words. (Such a
dictionary of words has been commonly used in spell checkers.)
If all the remaining solutions agree on the value of an erased bit,
then that erasure is decoded by the NR-Decoder. For instance,
suppose each LZW-codeword in Fig. 1 (a) suffers from two
erasures, which lead to four possible solutions/patterns (see
Fig. 1 (b)). By combining the patterns for each codeword, we
can rule out many solutions. For instance, the combination

“should becnomially ars an ele” can be eliminated due to the
invalid word “becnomially”. In fact, the only combination with-
out invalid words (without considering words on the boundary
of the string, which might be part of a longer word) is “Flash
memory is an ele”, so the NR-Decoder can recover all six
erasures in the three codewords.

Suppose that the LZW-codewords, seen as information bits,
are protected by a systematic ECC. Then the ECC-Decoder
can correct erasures by parity-check constraints, and the NR-
Decoder can correct erasures by NR. They can work collabora-
tively to maximize the number of correctable erasures. 2

(a) Patterns:

Codewords:

(emory i) (s an ele)

11011110100001000010 11101101001100100110 11001100100000100011

(Flash m) ...

...

(b) 1?011110100001000?10 11101101001?0010011? 110?1100100?00100011... ...Noisy
codewords:

Possible
solutions

10011110100001000010 11101101001000100110 11001100100000100011... ...

10011110100001000110 11101101001000100111 11001100100100100011... ...

11011110100001000010 11101101001100100110 11011100100000100011... ...

11011110100001000110 11101101001100100111 11011100100100100011... ...

1)

for

each
codeword:

2)

3)

4)

Possible
patterns

(should bec) (nominally ar) (s an ele) ...

(es of the c) (government, n) (epy,) ...

(Flash m) (emory i) (style and ) ...

( rast) (in France an) (the Palac) ...

1)

for

each
codeword:

2)

3)

4)

Fig. 1. (a) Compress a text by LZW. (b) NR-decoding for erasures.

As this paper is motivated by language-based NR, we would
like to mention that an LZW algorithm with a dictionary of 220
patterns (as in the above example) can compress the English
language to 2.94 bits per character. The UNIX Compress com-
mand uses LZW with a smaller dictionary and so achieves a
lower compression ratio. There are compression algorithms for
languages with higher compression ratios (e.g., syllable-based
Burrows-Wheeler Transform achieving 2 bits/character [15]).
However, there is still a gap toward Shannon’s estimation
of 1.34 bits/character for the entropy of English [28], which
gives motivation for NR-Decoders. And one may reasonably
conjecture that a similar scenario exists for images and videos.

In this work, we propose a relatively generic decoding



model for collaborative ECC-Decoding and NR-Decoding that
is motivated by language-based NR. The model is shown
in Fig. 2. The (compressed or uncompressed) data, seen as
information bits, are encoded into a systematic ECC codeword.
The NR-decoder uses a sliding window of L bits to check a
segment of the data each time, and uses its NR to correct
errors/erasures in it. We bound the size of the window to
L bits because due to the lack of structures in NR, NR-
decoding is often not as efficient as ECC-decoding and its
complexity grows with L, so a finite L bounds the acceptable
complexity of NR-decoding. The NR-Decoder works jointly
with the ECC-Decoder to correct errors/erasures.

information bits (data with NR) parity-check bits

systematic ECC:

a sliding window of L bits for NR-decoding sliding window at a different position

Fig. 2. A model for collaborative ECC-decoding and NR-decoding.

The above model can be applied to languages compressed
by LZW codes or Huffman codes, where some practical
decoding algorithms have been presented [12], [13], [17], [19],
[31], [32]. In this paper, we study a basic theoretical problem
for LDPC codes: when the number of erasures in a noisy
LDPC codeword exceeds the decoding capability of the LDPC
code’s ECC-Decoder, what is the minimum number of erasures
that an NR-Decoder needs to help correct so that the remaining
erasures are decodable by the ECC-Decoder?

Let us define the problem more specifically. Let the LDPC
code’s ECC-Decoder be the following widely-used iterative
belief-propagation (BP) algorithm: in each iteration, use every
parity-check equation involving exactly one erasure to decode
that erasure; and repeat until every equation involves zero or at
least two erasures. If the ECC-Decoding fails, then we are left
with a stopping set, which is a set of erasures such that every
parity-check equation involving any of them involves at least
two of them. If we represent the LDPC code by a bipartite
Tanner graph, then a stopping set is a subset of variable nodes
(representing erasures) such that a check node adjacent to any
of them is adjacent to at least two of them.

We illustrate the average sizes of Stopping Sets for dif-
ferent raw bit-erasure rates (RBERs) in Fig. 3. It is for an
(8192,7561) LDPC code of rate 0.923 and regular degrees
(d

v

= 3, d
c

= 39). (For RBERs near the code’s decoding
threshold, the uncorrectable bit-erasure rates (UBER) after
BP decoding is shown in Fig. 3 (a).) For RBERs in the full
range from 0 to 1, the average stopping-set sizes (namely,
average number of un-decodable erasures after BP-decoding)
are shown in Fig. 3 (b). It can be seen that the average
stopping-set size increases approximately linearly (from 0 to
8192) as RBER increases from 0 to 1.

We now define the capability and limitations of the NR-
Decoder. Suppose that for any sliding window of L bits, the
NR-Decoder can always correct its erasures if the number of
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Fig. 3. Statistics of an (8192,7561) LDPC code. (a) UBER for different
RBERs near the code’s decoding threshold. (b) Average stopping-set size for
different RBERs.

erasures in the window is at most ↵. Given a stopping set,
the objective is to use the NR-Decoder to correct sufficiently
many erasures so that the remaining erasures are correctable
by the ECC-Decoder. However, notice that since NR-Decoding
is typically less efficient than ECC-Decoding, there is an
associated cost. Let � denote the number of L-bit windows
(at � different locations) used by NR-Decoding. Whether
the NR-decoding is implemented in hardware or software
(where decoding circuits or software can choose the location
of each window), the overall circuit complexity and/or time
complexity is proportional to �. (For instance, if circuits are
used to decode the windows in parallel, then � circuits are
needed for � windows.) Therefore, we need to minimize the
number of windows used by NR-decoding, and choose the
locations of the windows carefully for that purpose.

In this paper, we will study a special case of the above
problem by setting L = ↵ = 1, and we assume that the sliding
windows can cover both information bits and parity-check bits.
Although it may seem too restrictive at first sight, there are
several reasons that still make it quite meaningful. First, stor-
age systems often have low raw bit-error-rates (e.g., less than
0.5%), so for a relatively short window (e.g, tens of bits), the
number of erasures in it is often at most 1, which can usually
be corrected very effectively by NR-Decoding [13]. In such
cases, having L � 1, ↵ = 1 is similar to having L = ↵ = 1.
Second, ECCs in storage systems often have high rates (e.g.,
over 0.93), which can make the sliding window’s access to all
codeword bits similar to accessing only information bits (since
information bits are the majority of bits). Third, understanding
the basic case of L = ↵ = 1 will be the basis for understanding
the more general case of L � ↵ � 1. And last but not least,
the case L = ↵ = 1 corresponds to a fundamental problem
for LDPC codes: assume there is a powerful and unrestricted
Oracle decoder that can correct any erasure, but its decoding
comes at a high cost; then, how to minimize the number of
erasures the Oracle decoder needs to correct in order to make
the remaining erasures decodable by the ECC-Decoder? We
believe the problem is theoretically important in its own right.

The problem to study can now be defined formally as
follows. Let G = (V [ C,E) be a bipartite graph, where
V (representing erasures) is a subset of the variable nodes in
an LDPC code’s Tanner graph, C is a subset of the check



nodes in the same Tanner graph such that every node in C is
adjacent to at least one node in V , and E is the set of edges in
the Tanner graph with one endpoint in V and another endpoint
in C. If every node in C has degree two or more, then G is
called a Stopping Graph and V is called a Stopping Set. If an
iterative BP algorithm (as introduced earlier) that runs on G
can decode all the variable nodes in V (where every variable
node in V is an erasure), then V is called a Decodable Set
(or simply decodable); otherwise, it is a Non-Decodable Set
(or simply non-decodable). Note that a Stopping Set must be a
Non-Decodable Set, but not vice versa. The problem we study,
called Stopping-Set Elimination (SSE) Problem, is as follows.

Definition 2. Given a Stopping Graph G = (V [ C,E), how
to remove the minimum number of variable nodes from V such
that the remaining variable nodes are decodable?

The removed variable nodes represent NR-decoded erasures.
Clearly, after the removal, the remaining nodes will no longer
contain any Stopping Set.

The rest of the paper is organized as follows. In Section II,
we introduce more applications of the SSE Problem, and also
review related works. In Section III, we prove the NR-hardness
of the SSE Problem. In Section IV, we study a variation of the
SSE Problem, where the remaining variable nodes are required
to be decodable by BP decoding within a constant number of
iterations, and prove its NP-hardness. In Section V, we present
an approximation algorithm for the latter problem. In Section
VI, we present practical algorithms for the SSE Problem. In
Section VII, we present concluding remarks.

II. RELATED APPLICATIONS AND RELATED WORKS

In this section, we first show two additional applications of
the SSE Problem. We then present a brief review of existing
works that are related to error correction by NR.

A. Applications of SSE

In addition to decoding by NR, the SSE Problem also has
two additional applications: distributed storage, and satellite-
to-ground communication with feedback.

1) Distributed Storage: Distributed file systems like HDFS
have been widely used in big data applications [29]. Typically,
they store data in blocks, and ECCs are applied over the
blocks (where each block is seen as a codeword symbol of
the ECC). Binary LDPC codes are naturally an attractive
candidate for distributed storage, as they have excellent code
rates, good locality (e.g., a missing block can be recovered by
a local disk from a few neighboring blocks), and excellent
computational simplicity (only XOR is used for decoding,
since when each block has t bits, the decoding can be seen as
t binary LDPC codes being decoded in parallel). Meanwhile,
almost all big IT companies store multiple copies of their data
at different locations. So when one site loses some blocks in
an LDPC code and cannot recover them by itself, it needs
to retrieve some lost blocks from other remote sites. Since
communication with remote sites is much more costly than

accessing local disks, it is desirable to minimize the number
of blocks retrieved from remote sites as long as the remaining
erasures become decodable. And that is the SSE Problem.

2) Satellite-to-Ground Communication with Feedback:
Consider satellite-to-ground communication, where the data
(e.g., big sensing images) are partitioned into packets (i.e.,
blocks), and LDPC codes are applied over the packets (similar
to the case for distributed storage) [20]. As the channel is
noisy, some packets received by the ground may be un-
decodable, and the ground will request the satellite to retrans-
mit some of those lost packets. Since the satellite-to-ground
communication can be quite costly, it is desirable to minimize
the number of retransmitted packets. That is also the SSE
Problem.

B. Related Works
Error-correction with NR is related to joint source-channel

coding and denoising. The idea of using the inherent redun-
dancy in a source – or the leftover redundancy at the output of
a source encoder – to enhance the performance of the ECC has
been studied within the field of joint source-channel coding.
In [10], source-controlled channel coding using a soft-output
Viterbi algorithm is considered. In [3], a trellis based decoder
is used as a source decoder in an iterative decoding scheme.
Joint decoding of Huffman and Turbo codes is proposed in [9].
In [11], joint decoding of variable length codes (VLCs) and
convolutional/Turbo codes is analyzed. Applications of turbo
codes to image/video transmission are shown in [7], [23]
and [14]. Joint decoding using LDPC codes for VLCs and im-
ages are illustrated in [24] and [25], respectively. However, not
many works have considered JSCC specifically for language-
based sources, and exploiting the redundancy in the language
structure via an efficient decoding algorithm remains as a
significant challenge. Related to joint source-channel coding,
denoising is also an interesting and well studied technique [2],
[4], [5], [6], [18], [21], [22], [26], [34]. A denoiser can use the
statistics and features of input data to reduce its noise level
for further processing. For discrete memoryless channels with
stationary input sequences, a universal algorithm that performs
asymptotically as well as optimal denoisers are given in [33].
The algorithm is also universal for a semi-stochastic setting,
where the channel input is an individual sequence and the
randomness in the channel output is solely due to the channel’s
noise.

Spell-checking softwares are a typical example of using
NR to correct errors in languages. They are widely used in
text editors. A spell-checking software usually works at the
character level (namely, it does not consider how characters
or text strings are encoded by bits), is for uncompressed texts,
and uses the validity of words and the correctness of grammar
to correct errors that appear in the typing of texts.

Using NR to correct errors at the bit level in compressed
texts has been studied in a number of works. In [17], texts
compressed by Huffman coding is considered, and a dynamic
programming algorithm is used to partition the noisy bit
sequence into subsequences that represents words, and to



select likely solutions based on the frequencies of words and
phrases. In [12], texts that are compressed by Huffman coding
and then protected by LDPC codes are studied. An efficient
greedy algorithm is used to decompress the noisy bit string,
and partition it into stable and unstable regions based on
whether each region contains recognizable words and phrases.
The stable and unstable regions have polarized RBERs, which
are provided as soft information to the LDPC code for better
decoding performance. The algorithm is enhanced in [19] by
a machine learning method for content recognition, and an
iterative decoding algorithm between the NR-Decoder and
the ECC-Decoder is used to further improve performance.
In [32], texts compressed by Huffman coding and protected
by Polar codes are studied. The validity of words is used to
prune branches in a list sequential decoding algorithm, and
a trie data structure for words is used to make the algorithm
more efficient. A concatenated-code model that views the text
with NR as the outer code and the Polar code as the inner
code is considered, and the rate improvement for the Polar
code due to NR is analyzed. That model is further studied
in [31], where an optimal algorithm that maximizes the code
rate improvement by unfreezing some frozen bits to store
information is presented. A model that views NR as the output
of a side information channel at the channel decoder is also
studied, where NR is shown to improve the random error
exponent.

III. NP-HARDNESS OF SSE PROBLEM

In this section, we prove that the SSE Problem is NP-hard.
The proof has two steps: first, using the well-known Set Cover
Problem, we prove that a related covering problem where
nearly all elements are covered – which we call the Pseudo Set
Cover Problem – is NP-complete; then, we reduce the latter
problem to the SSE Problem.

A. NP-completeness of Pseudo Set Cover Problem
Consider the well-known Set Cover Problem. Let

T = {t1, t2, · · · , tn} be a universe of n elements. Let
S1, S2, · · · , Sm

be m subsets of T such that T =

S
m

i=1 Si

.
Let k  m be a positive integer. The Set Cover Problem
asks if there exist k subsets S

i1 , Si2 , · · · , Sik such that T =S
k

j=1 Sij . (Note that a subset S
i

is said to “cover” its elements.
So the Set Cover Problem asks if there exist k subsets that
together cover all the elements of T .)

Let us now define a related problem called the Pseudo
Set Cover Problem. It has the same input as the Set Cover
Problem, and differs only in its question: it asks if there exist
k subsets S

i1 , Si2 , · · · , Sik such that |
S

k

j=1 Sij | � |T | � 1.
(Instead of covering all the |T | elements, the Pseudo Set Cover
Problem aims at covering at least |T |� 1 elements.) We now
prove that the problem is NP-complete.

Theorem 3. The Pseudo Set Cover Problem is NP-complete.

Proof: It is easy to see that the Pseudo Set Cover Problem
is in NP. We now construct a polynomial-time reduction from
the Set Cover Problem to the Pseudo Set Cover Problem.

Let an instance of the Set Cover Problem have input
parameters T = {t1, t2, · · · , tn}, S1, S2, · · · , S

m

and k  m
as introduced above. For the corresponding instance of the
Pseudo Set Cover Problem, let its universe of elements be

T 0
= {t1, t2, · · · , tn, tn+1},

where t
n+1 is a new element, and let its subsets be

S1, S2, · · · , Sm

, S
m+1,

where

S
m+1 = {t

n+1}.

It is simple to see that the mapping between the two instances
takes polynomial (in fact, linear) time.

Let us now prove the following claim: the Set Cover
Problem has k subsets covering all the n elements in T if and
only if the Pseudo Set Cover Problem has k subsets covering
at least |T 0|� 1 = n elements in T 0.

Consider one direction of the proof: suppose that the Set
Cover Problem has k subsets covering all elements of T . Then
the same k subsets cover exactly n elements of T 0. (The only
uncovered element is t

n+1.)
Now consider the other direction of the proof: suppose that

the Pseudo Set Cover Problem has k subsets

S
i1 , Si2 , · · · , Sik

covering at least n elements in T 0. Without loss of generality
(WLOG), assume that

i1 < i2 < · · · < i
k

.

There are three possible cases:

• Case 1: The k subsets cover all the n + 1 elements of
T 0. Then i

k

= m + 1, and the remaining k � 1 subsets
cover all the elements in T . By adding to the k � 1

remaining subsets any other subset in {S1, S2, · · · , Sm

},
we get k subsets covering all elements of T for the Set
Cover Problem.

• Case 2: The k subsets cover n elements of T 0, including
t
n+1. Then i

k

= m + 1, and there must be exactly one
uncovered element in T . Say that uncovered element is
t
i

, and let S
j

(where 1  j  m) be any subset that
contains t

j

. (Such a subset S
j

must exist.) By replacing
S
ik = S

m+1 by S
j

, we get k subsets that cover all the
elements of T .

• Case 3: The k subsets cover n elements of T 0, but not
covering t

n+1. Then the same k subsets cover all the
elements of T .

Therefore there is a polynomial-time reduction from the Set
Cover Problem to the Pseudo Set Cover Problem. Since the Set
Cover Problem is known to be NP-complete, the conclusion
holds.



B. NP-hardness of Stopping Set Elimination Problem

We now prove the NP-hardness of the SSE Problem by
using a reduction from the Pseudo Set Cover Problem. Let us
begin with some constructions.

Consider the bipartite graph shown in Fig. 4 (a). It consists
of four variable nodes (s

i

, t
j

, u
i,j

and w
i,j

) and three check
nodes (c1

i,j

, c2
i,j

and c3
i,j

). We denote it by D
i,j

to indicate
that it connects node s

i

and node t
j

. We prove some basic
property it has on iterative BP decoding.

u

1

(a) (b)s

t

i

j

i,j wi,j

c i,j
2c i,j

3c i,j

s i

t j

g i,j

Fig. 4. (a) A bipartite graph Di,j that connects variable nodes si and tj .
(b) A symbol for the graph Di,j .

Lemma 4. In the graph D
i,j

that contains the variable nodes s
i

,
t
j

, u
i,j

, w
i,j

as a Stopping Set, if the value of the variable node
s
i

becomes known, the BP decoding algorithm will recover the
values of all the three remaining variable nodes.

On the other hand, if the value of the variable node t
j

becomes known, the BP decoding algorithm will not recover
the value of any of the other three variable nodes.

Proof: If the value of s
i

becomes known, by using the
check nodes c1

i,j

and c2
i,j

, the BP decoding algorithm will
recover the values of u

i,j

and w
i,j

, respectively. Then via the
check node c3

i,j

, it will recover the value of t
j

.
If the value of t

j

becomes known, since c3
i,j

has degree 3,
the BP algorithm will not recover any more values.

The graph D
i,j

will be viewed as a “gadget” that connects
node s

i

with node t
j

. To simplify the presentation, in the
following, we often represent it by the symbol shown in Fig. 4
(b), where the “gate” g

i,j

represents the five nodes (c1
i,j

, c2
i,j

,
c3
i,j

, u
i,j

, w
i,j

) and their incident edges. The “direction” of the
gate g

i,j

indicates the “directed” property shown in the above
lemma: decoding s

i

leads to decoding t
j

, but not vice versa.
Consider the Pseudo Set Cover Problem with input param-

eters T = {t1, t2, · · · , tn}, S1, S2, · · · , S
m

and k  m as

introduced earlier. To reduce it to the SSE Problem, we will
map every instance of the Pseudo Set Cover Problem to some
instance of the SSE Problem.

Let us start by building a graph G
I

. We start by assigning
m+ n nodes: for every subset S

i

(for 1  i  m) or element
t
j

(for 1  j  n) in the Pseudo Set Cover Problem, there is
a corresponding variable node s

i

or t
j

in G
I

. Then, whenever
the Pseudo Set Cover Problem has

t
j

2 S
i

,

we connect nodes s
i

and t
j

by the bipartite graph D
i,j

. The
graph obtained this way is G

I

. An example is shown below.

Example 5. Let an instance of the Pseudo Set Cover Problem
be T = {t1, t2, t3, t4, t5} and S1 = {t1, t3, t4}, S2 = {t1, t3},
S3 = {t2, t4, t5}. The value of parameter k is irrelevant to the
mapping, so we do not specify it here. The instance is illustrated
in Fig. 5 (a), where there is an edge between S

i

and t
j

if and
only if t

j

2 S
i

.
The corresponding graph G

I

is shown in both Fig. 5 (b) and
(c), where the symbol for each D

i,j

is used in Fig. 5 (b), and
the full details of G

I

are shown in Fig. 5 (c). It is easy to
see the correspondence between G

I

and the Pseudo Set Cover
Problem. 2

It is clear that G
I

is a bipartite graph.
Let us now create a graph G

II

as follows. Given graph G
I

,
we add m+ 1 additional check nodes

c0, c1, c2, · · · , cm.

For 0  i  m and 1  j  n, add an edge between the
check node c

i

and the variable node t
j

. For 1  i  m, add
an edge between the check node c

i

and the variable node s
i

.
The graph obtained this way is G

II

. An example is shown
below.

Example 6. Following Example 5, the graph G
II

is shown in
Fig. 5 (d). 2

It is clear that G
II

is also a bipartite graph.
In the following, we consider only cases where n > 1. (The

case n = 1 is trivial.) It is then simple to see that in G
II

, the
degree of every check node is at least two. So it is a Stopping
Graph, namely, an instance of the SSE Problem.

Lemma 7. If for the Pseudo Set Cover Problem, there exist k
subsets that cover at least n � 1 elements of T , then for the
corresponding graph G

II

, k variable nodes can be removed so
that the remaining variable nodes form a Decodable Set.

Proof: Suppose that

S
i1 , Si2 , · · · , Sik

are k chosen subsets that cover at least n� 1 elements of T .
Let us remove the corresponding k variable nodes

s
i1 , si2 , · · · , sik
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s1 s2 s3
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c1 c2 c3c0

Fig. 5. (a) An instance of the Pseudo Set Cover Problem, where T =
{t1, t2, t3, t4, t5} and S1 = {t1, t3, t4}, S2 = {t1, t3}, S3 = {t2, t4, t5}.
(b) The corresponding graph GI . (c) The corresponding graph GI with full
details. (d) The corresponding graph GII .

from the graph G
II

. Since removing a variable node is
equivalent to turning the node from an erasure to a known
value, by the “directed” property of D

i,j

proved earlier, we
know that the BP decoding algorithm will recover the values
of at least n� 1 variable nodes among

t1, t2, · · · , tn.

That is because if an element t
j

is covered by some chosen
subset S

ir (where 1  r  k), since the value of the
variable node s

ir is now known, via the “gadget” D
ir,j , the

BP decoding algorithm can recover the value of t
j

.
We now show that the BP decoding algorithm can recover

the values of all n variable nodes t1, t2, · · · , tn. From the
above discussion, we know that at most one of them – say t

x

– is not decoded yet. So the BP algorithm can use the check
node c0 (which has degree n) to recover the value of t

x

as

t
x

= �1in,i 6=x

t
i

.

Since the values of t1, t2, · · · , tn are all known now, for
i = 1, 2, · · · ,m, the BP decoding algorithm can use the check
node c

i

to recover the value of s
i

(if its value is not already
known). So all the variable nodes can recover their values.
Therefore, the remaining variable nodes form a Decodable Set.

When a set of variable nodes S ✓ V is removed from a
Stopping Graph G = (V [ C,E), if the remaining nodes of
V become a Decodable Set, let us call S an Elimination Set
of size |S|.

Lemma 8. If G
II

has an Elimination Set of size k  m, then
G

II

has an Elimination Set of size k that is also a subset of

{s1, s2, · · · , sm}.

.

Proof: Let

X = {x1, x2, · · · , xk

}

be an Elimination Set of G
II

, where each x
i

is a variable
node. Let us create a set

Y = {y1, y2, · · · , yk} ✓ {s1, · · · , sm}

as follows. For i = 1, 2, · · · , k, do:
• If x

i

2 {s1, s2, · · · , sm}, let y
i

= x
i

.
• If x

i

is either u
i

0
,j

0 or w
i

0
,j

0 – namely, it is a variable
node in the “gadget” D

i

0
,j

0 (more specifically, g
i

0
,j

0 ) that
connects s

i

0 and t
j

0 – let y
i

= s
i

0 if s
i

0 is not in Y yet,
and let y

i

be any node in {s1, s2, · · · , sm} that is not yet
in Y otherwise.

• If x
i

= t
j

for some 1  j  n, let s
i

0 be a node such
that there is a “gadget” D

i

0
,j

connecting s
i

0 and t
j

. (Such
a node s

i

0 must exist because in the Pseudo Set Cover
Problem, t

j

is covered by at least one subset.) If s
i

0 is
not in Y yet, let y

i

= s
i

0 ; otherwise, let y
i

be any node
in {s1, s2, · · · , sm} that is not yet in Y .

With the above construction, for any node x
i

in X , there
exists a node s

i

0 in Y such that either s
i

0
= x

i

, or s
i

0 and x
i

exist in the same “gadget” D
i

0
,j

for some j. By the “directed”
property of gadgets D

i

0
,j

, we see that when the values of
variable nodes in Y are known, the BP algorithm can decode
all the variable nodes in X; and since X is an Elimination
Set, the BP algorithm can consequently decode all the variable
nodes in G

II

. So Y is an Elimination Set of size k that is a
subset of {s1, s2, · · · , sm}.

Lemma 9. If G
II

has an Elimination Set of size k
{s

i1 , si2 , · · · , sik} ✓ {s1, s2, · · · , sm}, then for the corre-
sponding Pseudo Set Cover Problem, the k subsets

S
i1 , Si2 , · · · , Sik



cover at least n� 1 elements of T .

Proof: The proof is by contradiction. Suppose that
S
i1 , Si2 , · · · , Sik cover at most n � 2 elements of T . Then

in G
II

, when the values of {s
i1 , si2 , · · · , sik} are known, the

BP algorithm can use the “gadgets” D
i,j

to decode at most
n� 2 variable nodes among

t1, t2, · · · , tn.

Then the BP algorithm gets stuck because it cannot use any
check node to decode any more variable node:

• For any check node c
i

(where 0  i  m), at least two
adjacent nodes in {t1, t2, · · · , tn} are not decoded yet. So
the BP algorithm cannot use c

i

to decode more variable
nodes.

• For any “gadget” D
i,j

that connects s
i

and t
j

, if s
i

/2
{s

i1 , si2 , · · · , sik}, by the “directed” property of the
gadget, the BP algorithm cannot use it to decode s

i

whether the node t
j

has been decoded or not.
That means {s

i1 , si2 , · · · , sik} is not an Elimination Set,
which is a contradiction. That leads to the conclusion.

By combining the above two lemmas, we get:

Lemma 10. If G
II

has an Elimination Set of size k  m, then
for the corresponding Pseudo Set Cover Problem, there exist k
subsets that cover at least n� 1 elements of T .

We now prove our main result here.

Theorem 11. The SSE Problem is NP-hard.

Proof: The SSE Problem is an optimization problem. Let
us consider its decision problem: given a Stopping Graph G =

(V [C,E) and a positive integer k, does it have an Elimination
Set of size k? Let us call this decision problem P

sse

. It is clear
that P

sse

2 NP .
We have shown a mapping that maps every instance of

the Pseudo Set Cover Problem to an instance of P
sse

. The
mapping takes polynomial time. By combining Lemma 7 and
Lemma 10, we see that the answer to the Pseudo Set Cover
Problem is “yes” (namely, there exist k subsets that cover at
least n � 1 elements of T ) if and only if the answer to P

sse

is “yes” (namely, G
II

has an Elimination Set of size k). So
the mapping is a polynomial-time reduction. By Theorem 3,
the Pseudo Set Cover Problem is NP-complete. So P

sse

is
NP-complete, which leads to the conclusion.

IV. SSE WITH CONSTRAINT ON BELIEF-PROPAGATION
ITERATIONS AND ITS NP-HARDNESS

In this section, we extend the SSE Problem by considering
the time for BP decoding. After the nodes in an Elimination
Set are removed (namely, after NR-decoding corrects those
erasures), the remaining erasures are guaranteed to form a
Decodable Set, and therefore the BP decoder can correct them.
However, there is no guarantee on how many iterations are
needed by the BP decoder to correct the remaining erasures.
Here we assume a standard parallel-implementation of BP

decoding: in each iteration, first, all variable nodes transmit
their values to neighboring check nodes in parallel; then, all
check nodes use incoming messages to correct erasures and
send the decoding results back to variable nodes, also in
parallel. So the time for BP decoding can be measured by
the number of BP iterations.

It can be seen that for a Stopping Set of n variable nodes
(namely, n erasures), after an Elimination Set is removed, the
BP decoder may still use as many as ⇥(n) iterations to correct
the remaining erasures. The example below is an illustration.

Example 12. A stopping set of n variable nodes and n check
nodes are shown in Fig. 6 (a), where all nodes have degree two
and they together form a cycle. By eliminating one variable
node v1, the remaining variable nodes become decodable, as
shown in Fig. 6 (b). Then the BP decoder corrects two variable
nodes in each iteration: in the 1st iteration, it corrects v2 and v

n

because they both have a neighboring check node of degree one
(as shown in Fig. 6 (c)); in the 2nd iteration, it corrects v3 and
v
n�1 for the same reason (as shown in Fig. 6 (d)); and so on.

So the BP decoder will use dn�1
2 e = ⇥(n) iterations to correct

the remaining erasures. 2

For BP decoding, its decoding time is an important measure
of performance. So it is useful to limit the number of iterations
needed by BP decoding, which offers a performance guarantee.
That motivates us to study this extended SSE Problem.

Definition 13. Given a Stopping Graph G = (V [ C,E) and
an integer k, how to remove the minimum number of variable
nodes from V such that the remaining variable nodes can be
corrected by the BP decoder in no more than k iterations?

We call the above problem the SSE
k

Problem. In compar-
ison, the SSE Problem studied earlier has no constraint on k,
so it can be seen as the SSE1 Problem.

We have already proved that SSE1 is NP-hard. The
question now is: if k is a constant – namely, we want the
BP decoding to finish within a fixed number of iterations –
does the SSE

k

problem become polynomial-time solvable? A
positive answer seems possible at first sight, because having a
small k puts more constraints on solutions and limits its search
space. For example, if k = 1, to correct all remaining erasures
in just one iteration, in the subgraph induced by the remaining
variable nodes and their adjacent check nodes, every variable
node needs to be adjacent to at least one check node of degree
one. That is a very local property for the bipartite graph and
can possibly make the problem simpler. However, our study
below will give a negative answer. We will prove that even
the

SSE1

Problem is NP-hard.
There have been a number of works on the node-deletion

problem (also called the maximum subgraph problem) [1], [8],
[16], [30], which can be generally stated as follows: find the
minimum number of vertices to delete from a given graph



(a)

v1 v2 v3 v4 v5 vn-2 vn-1 vn

c1 c2 c3 c4 c5 cn-2 cn-1 cn

(b)

v2 v3 v4 v5 vn-2 vn-1 vn

c1 c2 c3 c4 c5 cn-2 cn-1 cn

(c)

v3 v4 v5 vn-2 vn-1

c2 c3 c4 c5 cn-2 cn-1

(d)

v4 v5 vn-2

c3 c4 c5 cn-2

Fig. 6. (a) A Stopping Set of n variable nodes and n check nodes. (b)
After removing a variable node v1, the remaining nodes become decodable.
(c) After the 1st iteration of BP decoding, v2 and vn are corrected. (d) After
the 2nd iteration of BP decoding, v3 and vn�1 are corrected.

so that the remaining subgraph satisfies a property ⇡. The
node-deletion problem includes many well-known problems
as special cases. Some examples are:

• Max Clique Problem: the property ⇡ is that the remaining
subgraph is a complete graph.

• Feedback Vertex Set Problem: the property ⇡ is that the
remaining subgraph has no cycles.

• Vertex Cover Problem: the property ⇡ is that the remain-
ing subgraph contains only isolated nodes, without edges.

Some node-deletion problems are NP-complete on both
general graphs and bipartite graphs, such as the feedback ver-
tex set problem. However, some are NP-complete on general
graphs but polynomial-time solvable on bipartite graphs, such
as the vertex cover problem.

The SSE
k

Problem is different from the previously studied
problems in several ways. First, its property ⇡ is for the
remaining subgraph to be decodable within k iterations, which
is different from the property ⇡ in other problems. Second,

the previous works focus on properties ⇡ that are hereditary
on induced subgraphs, namely, whenever a graph G satisfies
⇡, by deleting nodes from G, the remaining subgraphs also
satisfies ⇡ [1], [8], [16], [30]. (For example, the property ⇡
for the max clique problem is hereditary because when nodes
are removed from a complete graph, the remaining subgraph is
also a complete graph. The same holds for the feedback vertex
set problem and the vertex cover problem.) However, for the
SSE

k

Problem, the property ⇡ is not hereditary, because when
a check node is removed, it may turn a Decodable Set into a
Non-decodable Set. An example is shown below.

Example 14. A Decodable Set is shown in Fig. 7 (a), which
satisfies the property ⇡ of the SSE

k

problem. As shown in
Fig. 7 (b), after the check nodes c1 and c3 are removed, the
remaining subgraph becomes non-decodable, which violates
the property ⇡. So for the SSE

k

Problem, the property ⇡ is
not hereditary. 2

(a)

v1 v2

c1 c2 c3 (b)

v1 v2

c2

Fig. 7. (a) A graph with a Decodable Set. (b) After check nodes c1 and c3
are removed, the remaining variable nodes form a Non-decodable Set.

We now prove the NP-hardness of the SSE1 Problem.
We use a reduction from the NP-complete Not-all-equal SAT
Problem [27], similar to a proof technique used in [30]. How-
ever, due to the differences between the SSE

k

problem and
the previously studied node-deletion problems (as mentioned
above), the two proofs also have significant differences: they
use different mappings from the Not-all-equal SAT Problem
to the target problem, which also lead to some substantially
different properties in the mapped structures.

We first define the Not-all-equal SAT Problem [27]: Let
x1, x2, · · · , xn

be n Boolean variables. A literal is either x
i

or x̄
i

(namely, the NOT of x
i

) for some i 2 {1, 2, · · · , n}.
Let a clause be a set of three literals. Let

S = {C1, C2, · · · , Ck

}

be a set of k clauses. The question is: Is there a truth
assignment to the n Boolean variables such that for every
clause in S, the three literals in the clause are neither all true
nor all false (namely, every clause has at least one true literal
and also at least one false literal)? (If the answer is “yes”,
the problem is called “satisfiable”.)



By convention, “true” is also represented by 1, and “false”
is also represented by 0. We give an example of the Not-all-
equal SAT Problem.

Example 15. Consider the following instance of the Not-all-
equal SAT Problem. Let n = 4 and k = 5. Let the
Boolean variables be x1, x2, x3, x4, and let the set of clauses
be C1 = (x1, x̄2, x3), C2 = (x̄1, x̄2, x4), C3 = (x2, x3, x4),
C4 = (x1, x̄3, x̄4), C5 = (x̄1, x2, x3).

The above instance is satisfiable because we can let the truth
assignment be

x1 = 1, x2 = 1, x3 = 0, x4 = 1, x5 = 1.

Correspondingly, the clauses become C1 = (1, 0, 0), C2 =

(0, 0, 1), C3 = (1, 0, 1), C4 = (1, 1, 0), C5 = (0, 1, 0). None
of the clauses is (1, 1, 1) (namely, all true) or (0, 0, 0) (namely,
all false). 2

We now construct a mapping from the Not-all-equal SAT
Problem to the SSE1 Problem. And afterwards, we will
analyze its properties.

A. Reducing Not-all-equal SAT Problem to SSE1 Problem
In this subsection, we construct a reduction that maps every

instance of the Not-all-equal SAT Problem to an instance of
the SSE1 Problem.

For every Boolean variable x
i

of the Not-all-equal SAT
Problem (for 1  i  n), we create a graph as shown in Fig. 8
(a), which will be called the “gadget V

i

”. It is a bipartite graph
of three variable nodes and three check nodes. (Here nodes X1

i

and X0
i

represent the true and false values of x
i

, respectively.)
For every clause C

j

of the Not-all-equal Problem (for 1 
j  k), we create two graphs as shown in Fig. 8 (b), which
will be called gadgets U1

j

and U2
j

, respectively. (Here for t =
1, 2, 3, nodes At

j

and Bt

j

represent the true and false values
of the t-th literal in clause C

j

, respectively.) We then connect
them into one larger gadget W

j

as shown in Fig. 8 (c), where
for t = 1, 2, 3, two paths are used to connect the nodes At

j

and Bt

j

. (For example, the two paths between A1
j

and B1
j

have
nodes d1

j

, d2
j

and the four check nodes by them.)
In the final graph corresponding to the instance, the gadget

V
i

will be connected to the rest of the graph only through
nodes X1

i

and X2
i

. So to simplify the presentation, we
sometimes represent V

i

by the symbol in Fig. 8 (d), where the
two “interface nodes” X1

i

, X2
i

are shown and the remaining
details are hidden. Also in the final graph, the gadget W

j

will
be connected to the rest of the graph only through nodes A1

j

,
A2

j

, A3
j

, B1
j

, B2
j

, B3
j

; so we sometimes represent it by the
symbol in Fig. 8 (e).

We now connect the gadgets for clauses to the gadgets
for Boolean variables. Consider a clause C

j

, and assume its
literals are

C
j

= (l1, l2, l3).

For t = 1, 2, 3, if l
t

= x
i

for some 1  i  n, we connect
At

j

to X1
i

and connect Bt

j

to X0
i

(through some intermediate
nodes) as shown in Fig. 8 (f). Otherwise l

t

= x̄
i

for some
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0

V 3

X 4
1

X 4
0

V 4

(i)

A j
1 A j

2 A j
3 B j

3 B j
2 B j

1
W j

X 1
1

X 1
0

V 1

X 3
1

X 3
0

V 3

X 4
1

X 4
0

V 4

H

an
"H"
bar

H H H H H

Fig. 8. (a) The gadget corresponding to a Boolean variable xi, for
i = 1, 2, · · · , n. (b) Two gadgets corresponding to a clause Cj , for
j = 1, 2, · · · , k. (c) The connected gadget corresponding to a clause Cj , for
j = 1, 2, · · · , k. (d) Symbol for Vi. (e) Symbol for Wj . (f) Connect clause
gadget to Boolean variable gadget: case one. (g) Connect clause gadget to
Boolean variable gadget: case two. (h) An example of connecting a clause
gadget to variable gadgets. (i) Simplified representation of the graph in (h).



1  i  n, and we connect At

j

to X0
i

and connect Bt

j

to X1
i

as shown in Fig. 8 (g).

Example 16. Assume that a clause is C
j

= (l1, l2, l3) =

(x1, x3, x̄4). Its gadget W
j

is connected to the gadgets V1, V3,
V4 as in Fig. 8 (h).

To simplify the presentation of the graph, we represent the
connection between a node At

j

(or Bt

j

) and a node x1
i

(or x0
i

) by
a rectangle that is generally denoted by the “H bar”. Then the
graph in Fig. 8 (h) is simplified as the presentation in Fig. 8 (i),
which shows the connections more clearly. However, it should
be noted that each At

j

, Bt

j

, x1
i

or x0
i

is connected to an H bar
via two edges, not one. 2

By now, we have constructed the whole graph that corre-
sponds to an instance of the Not-all-equal Problem. The graph
will be denoted by

G
sse

.

Let us see an example.

Example 17. For the Not-all-equal Problem, let n = 4 and k =

2. Let the two clauses be

C1 = (x1, x3, x̄4),

C2 = (x1, x̄2, x̄3).

Then the corresponding graph G
sse

is shown in Fig. 9 (a),
where its gadgets are represented by symbols for clarity, and
also in Fig. 9 (b), where its full details are presented. 2

It is easy to see that G
sse

is a bipartite graph, where every
check node has degree more than one. (Specifically, every
check node has degree two.) So G

sse

is a Stopping Graph.
The subsequent analysis will prove that the Not-all-equal

SAT Problem is satisfiable if and only if G
sse

has an Elimi-
nation Set of size

n+ 3k

such that after its nodes are removed, the BP algorithm can
decode the remaining variable nodes in just one iteration.

B. Properties of Reduction
In the previous subsection, the mapping from any instance

of the Not-all-equal SAT Problem to a graph G
sse

is shown.
We now analyze its properties.

We first show a general property for the SSE1 Problem.

Lemma 18. Given a bipartite graph G (including the graph
G

sse

), where variable nodes represent erasures, the BP algo-
rithm can decode all erasures in just one iteration if and only
if for every variable node in G, it has at least one neighboring
check node whose degree is 1.

Proof: In each iteration of BP decoding, a check node c
can recover the value of a neighboring variable node v if and
only if v is its only neighboring erasure.

Note that it is unnecessary for all neighboring check nodes
to have degree 1. For example, the graph in Fig. 7 can be

decoded in one iteration, although both v1 and v2 have a
neighboring check node c2 that has degree two. In one iteration
of BP decoding, the check node c1 (which has degree 1) is
sufficient for decoding v1, and the check node c3 (which also
has degree 1) is sufficient for decoding v2.

Let the bipartite graph G
sse

be

G
sse

= (V
sse

[ C
sse

, E
sse

),

where V
sse

is the set of variable nodes, C
sse

is the set of
check nodes, and E

sse

is the set of edges. We now define the
concepts of Interface Nodes, One-Iteration Elimination Set and
Canonical Elimination Set.

Definition 19. Let

I
sse

, {Xj

i

| 1  i  n, 0  j  1}[
{Aj

i

| 1  i  k, 1  j  3}[
{Bj

i

| 1  i  k, 1  j  3}

be a subset of variable nodes in G
sse

. Every node in I
sse

is
called an “Interface Node.”

As an example, the interface nodes are shown as circles in
Fig. 9 (a).

Definition 20. Let T ✓ V
sse

be a set of variable nodes in G
sse

.
If after removing T from G

sse

, the BP algorithm can decode
the remaining variable nodes in one iteration, then T is called a
“One-Iteration Elimination Set.”

If T is a one-iteration elimination set and

T ✓ I
sse

,

then T is called a “Canonical Elimination Set.”

Lemma 21. If G
sse

has a One-Iteration Elimination Set of ↵
nodes, then G

sse

also has a Canonical Elimination Set of at
most ↵ nodes.

Proof: Let F ✓ V
sse

be a One-Iteration Elimination
Set of ↵ nodes. We will prove the existence of a Canonical
Elimination Set ˆF ✓ I

sse

with | ˆF |  ↵ nodes. Note that the
nodes in G

sse

are in three kinds of gadgets: gadget V
i

, gadget
W

j

, or H bar. (See Fig. 9 (a) for an illustration.) The main
idea of the proof is to transform F into ˆF by switching nodes
of F to interface nodes.

First, consider a gadget V
i

(for 1  i  n). (See Fig. 8
(a) for an illustration.) Note that X1

i

and X0
i

are its only two
nodes connecting to nodes outside V

i

in G
sse

. (That is why
X1

i

and X0
i

are called Interface Nodes.) If y
i

2 F (note that
y
i

is the other variable node in the gadget V
i

), then consider
three cases:

1) X1
i

2 F and X0
i

2 F . In this case, we can delete y
i

from
F and still get a one-iteration elimination set, because
y
i

’s two neighboring check nodes already have degree
1 after X1

i

and X0
i

are removed from G
sse

.
2) X1

i

2 F or X0
i

2 F . Without loss of generality
(WLOG), say X1

i

2 F and X0
i

/2 F . In this case,
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Fig. 9. (a) The graph Gsse corresponding to the Not-all-equal Problem where n = 4, k = 2, C1 = (x1, x3, x̄4), C2 = (x1, x̄2, x̄3), where gadgets are
represented by symbols. (b) The same graph Gsse in full detail.

we can replace y
i

by X0
i

in F and still get a one-
iteration elimination set, because the replacement will
only remove more edges from the part of the graph G

sse

that is outside V
i

, and y
i

’s two neighboring check nodes
will have degree 1 after X1

i

and X0
i

are removed from
G

sse

.
3) X1

i

/2 F and X0
i

/2 F . In this case, we can replace
y
i

by X1
i

and still get a one-iteration elimination set,
because after X1

i

is removed from G
sse

, both X0
i

and
y
i

will have a neighboring check of degree 1, and more
edges will be removed the part of the graph G

sse

that
is outside V

i

.
So we can obtain a new one-iteration elimination set F1 of

at most ↵ nodes, where

F1 \ {y
i

| 1  i  n} = ;.

Next, consider an H bar. WLOG, suppose the H bar is
between the two nodes At

j

and X1
i

. (Such an H bar is
illustrated in Fig. 8 (f).) Note that when the H bar is combined
with the nodes At

j

and X1
i

(and the edges between them),
we get a cycle that has the same structure as the gadget V

i

(which is discussed above). So by the same argument that has
been used for V

i

, from F1, we can obtain a new one-iteration

elimination set F2 of at most ↵ nodes, where

F2 \ {y
i

| 1  i  n} = ;,

F2 \ {pt
j

| 1  j  k, 1  t  3} = ;,

and
F2 \ {qt

j

| 1  j  k, 1  t  3} = ;.

Now consider a gadget W
j

(for 1  j  k), which is shown
in Fig. 8 (c). First, consider the two nodes d1

j

and d2
j

, which
are on two paths connecting A1

j

and B1
j

. Those two paths
together form a cycle of 4 variable nodes and 4 check nodes,
with A1

j

and B1
j

as “interface nodes” connecting to the rest of
the graph. (This cycle is quite similar to the cycle in gadget
V
i

.) With a similar analysis as the one for V
i

, we can always
turn F2 into a new one-iteration elimination set by replacing
d1
j

and/or d2
j

by A1
j

and/or B1
j

. (The only slightly different
case to note is when A1

j

/2 F2 and B1
j

/2 F2. In this case, we
have d1

j

2 F2 and d2
j

2 F2, and we can replace them by A1
j

and B1
j

in F2.) The same analysis applies to d3
j

, d4
j

, d5
j

and
d6
j

. So from F2, we can obtain a new one-iteration elimination
set F3 of at most ↵ nodes, where

F3 \ {y
i

| 1  i  n} = ;,



F3 \ {pt
j

| 1  j  k, 1  t  3} = ;,

F3 \ {qt
j

| 1  j  k, 1  t  3} = ;

and
F3 \ {dt

j

| 1  j  k, 1  t  6} = ;.

Now consider the two component gadgets in W
j

: U1
j

and
U2
j

, which are shown in Fig. 8 (b). WLOG, we just need to
consider U1

j

. Suppose a
j

2 F3, and consider two cases:
1) A1

j

2 F3, A2
j

2 F3, or A3
j

2 F3. WLOG, suppose
A1

j

2 F3. In this case, we can delete a
j

from F3 and
still get a one-iteration elimination set, because after
A1

j

is removed from G
sse

, A2
j

, A3
j

and a
j

already have
neighboring check nodes of degree 1.

2) A1
j

/2 F3, A2
j

/2 F3, and A3
j

/2 F3. In this case, we
can replace a

j

by A1
j

in F3, and still get a one-iteration
elimination set, for the same reason as the above case
(and the fact that more edges outside U1

j

will be removed
by this replacement because A1

j

is an “interface node”
and a

j

is not).
So from F3, we can obtain a new one-iteration elimination

set F4 of at most ↵ nodes, where

F4 \ {y
i

| 1  i  n} = ;,

F4 \ {pt
j

| 1  j  k, 1  t  3} = ;,

F4 \ {qt
j

| 1  j  k, 1  t  3} = ;

F4 \ {dt
j

| 1  j  k, 1  t  6} = ;,

F4 \ {a
j

| 1  j  k} = ;,

and
F4 \ {b

j

| 1  j  k} = ;.

Let ˆF = F4. Clearly, ˆF ✓ I
sse

. That concludes the proof.

Some properties of Canonical Elimination Sets are shown
in the next lemma. We first define “endpoints of an H bar.”

Definition 22. Let u be any node in

{At

j

| 1  j  k, 1  t  3} [ {Bt

j

| 1  j  k, 1  t  3},

and let v be any node in

{X1
i

| 1  i  n} [ {X0
i

| 1  i  n}.

If u and v are connected by an H bar, then they are called the
two endpoints of that H bar.

Example 23. In Fig. 8 (f), the endpoints of H bars are (At

j

, X1
i

)

and (Bt

j

, X0
i

). In In Fig. 8 (g), such endpoint pairs are (At

j

, X0
i

)

and (Bt

j

, X1
i

). 2

Lemma 24. For the graph G
sse

, a Canonical Elimination Set F
has the following properties:

• Property 1: For i = 1, 2, · · · , n, either

X1
i

2 F

or
X0

i

2 F.

• Property 2: For j = 1, 2, · · · , k and t = 1, 2, 3, either

At

j

2 F

or
Bt

j

2 F.

• Property 3: For j = 1, 2, · · · , k,

|F \ {A1
j

, A2
j

, A3
j

}| � 1

and
|F \ {B1

j

, B2
j

, B3
j

}| � 1.

• Property 4: If u and v are the two endpoints of an H bar,
then either

u 2 F

or
v 2 F.

Proof: For the gadget V
i

(see Fig. 8 (a)), if neither X1
i

nor X0
i

is in F , then the BP algorithm cannot decode y
i

in
one iteration since both of y

i

’s neighboring check nodes will
have degree 2. So Property 1 is true.

For the gadget W
j

(see Fig. 8 (c)), for the pair (A1
j

, B1
j

),
if neither A1

j

nor B1
j

is in F , then the BP algorithm cannot
decode d1

j

in one iteration since both of d1
j

’s neighboring check
nodes will have degree 2. The similar analysis holds for the
pairs (A2

j

, B2
j

) and (A3
j

, B3
j

). So Property 2 is true.
For the gadget U1

j

(see Fig. 8 (b)), if none of A1
j

, A2
j

, A3
j

is
in F , then the BP algorithm cannot decode a

j

in one iteration
since all of d1

j

’s three neighboring check nodes will have
degree 2. The same analysis holds for U2

j

. So Property 3 is
true.

For the H bar (see Fig. 8 (f) and (g)) between u and v, if
neither u nor v is in F , then the variable node in the H bar –
which is labelled as pt

j

or qt
j

in Fig. 8 (f) and (g) – cannot be
decoded by the BP algorithm in one iteration because both of
its neighboring check node will have degree 2. So Property 4
is true.

Corollary 25. If F is a One-Iteration Elimination Set of G
sse

,
then

|F | � n+ 3k.

Proof: If F is a Canonical Elimination Set, by Property
1 and Property 2 in Lemma 24, we get |F | � n+3k. Then by
Lemma 21, the same conclusion holds for any One-Iteration
Elimination Set.

Definition 26. Let F be a Canonical Elimination Set of G
sse

.
If

|F | = n+ 3k,

then F is called an “Ideal Elimination Set” of G
sse

.



Here “Ideal” means “of minimum possible size.” Note that
an Ideal Eliminate Set may or may not exist for G

sse

.

Lemma 27. An Ideal Elimination Set F of G
sse

has these
properties:

• Property 1: For i = 1, 2, · · · , n, either X1
i

or X0
i

is in F ,
but not both.

• Property 2: For j = 1, 2, · · · , k and t = 1, 2, 3, either At

j

or Bt

j

is in F , but not both.
• Property 3: For j = 1, 2, · · · , k, in the set {A1

j

, A2
j

, A3
j

},
at least one node is in F , and at least one node is not in F .
The same is true for the set {B1

j

, B2
j

, B3
j

}.
• Property 4: If u and v are the two endpoints of an H bar,

then either u or v is in F , but not both.

Proof: Given that |F | = n + 3k, Properties 1, 2 and 3
here follow directly from Properties 1, 2 and 3 in Lemma 24.

Now consider Property 4 here. WLOG, suppose that u = At

j

and v = X1
i

for some i, j, t. (The other cases can be analyzed
similarly because of symmetry.) Consider two cases:

1) u 2 F . In this case, by Property 2, Bt

j

/2 F . By the
construction of G

sse

, Bt

j

and X0
i

are the two endpoints
of another H bar. So by Property 4 in Lemma 24, since
Bt

j

/2 F , we get X0
i

2 F . Then by Property 1, we have
v = X1

i

/2 F .
2) u /2 F . In this case, by Property 4 in Lemma 24, we

have v = X1
i

2 F .
Therefore u 2 F if and only if v /2 F . So Property 4 is

true.
Given an Ideal Elimination Set of G

sse

, we can construct a
solution to the Not-all-equal SAT Problem as follows.

Definition 28. Let F be an Ideal Elimination Set of G
sse

.
A corresponding solution Sol(F ) for the Not-all-equal SAT
Problem is constructed as follows: 81  i  n, the Boolean
variable x

i

= 1 (namely, x
i

is true) if and only if X1
i

2 F .

Clearly, in the above solution Sol(F ), a Boolean variable
x
i

= 0 (namely, x
i

is false) if and only if X0
i

2 F .

Lemma 29. Let F be an Ideal Elimination Set of G
sse

, and let
Sol(F ) be its corresponding solution to the Not-all-equal SAT
Problem. Then for 1  j  k and 1  t  3, the t-th literal in
the clause C

j

is
true

if and only if
At

j

/2 F.

Proof: Let lt
j

denote the t-th literal in the clause C
j

.
Consider two cases:

• Case 1: lt
j

is x
i

for some 1  i  n. In this case, by the
construction of G

sse

, At

j

is connected to X1
i

by an H bar.
lt
j

is true if and only if X1
i

2 F , which – by Property 4
of Lemma 27 – happens if and only if At

j

/2 F .
• Case 2: lt

j

is x̄
i

for some 1  i  n. In this case, by the
construction of G

sse

, At

j

is connected to X0
i

by an H

bar. lt
j

is true if and only if x
i

is false, which happens if
and only if X0

i

2 F , which – by Property 4 of Lemma 27
– happens if and only if At

j

/2 F .
So in both cases, the conclusion holds.

Lemma 30. If F is an Ideal Elimination Set of G
sse

, then
Sol(F ) is a satisfying solution to the Not-all-equal SAT Prob-
lem.

Proof: For 1  j  k, let At1
j

2 F and At2
j

/2 F . By
Property 3 of Lemma 27, such two integers t1, t2 2 {1, 2, 3}
exist. Consider the clause C

j

. By Lemma 29, the t1-th literal
of C

j

is false, and t2-th literal of C
j

is true. So for the Not-all-
equal SAT Problem, every clause has at least one true literal
and at least one false literal. So Sol(F ) is a satisfying solution
to the Not-all-equal SAT Problem.

The above lemma is useful for the scenario where G
sse

has a One-Iteration Elimination Set of n + 3k nodes. We
now consider another possible scenario: the Not-all-equal SAT
Problem is satisfiable.

Given a satisfying solution to the Not-all-equal SAT Prob-
lem, we can construct an Ideal Elimination Set of G

sse

. We
first define the corresponding set.

Definition 31. Let ⇡ be a satisfying solution to the Not-all-
equal SAT Problem; that is, with the solution ⇡, every clause
has at least one true literal and at least one false literal. A
corresponding set of nodes, F(⇡), in G

sse

is constructed as
follows:

• For i = 1, 2, · · · , n, if x
i

= 1 in the solution ⇡, then
X1

i

2 F(⇡) and X0
i

/2 F(⇡); otherwise, X1
i

/2 F(⇡) and
X0

i

2 F(⇡).
• For j = 1, 2, · · · , k and t = 1, 2, 3, if the t-th literal of

clause C
j

is true given the solution ⇡, then At

j

/2 F(⇡)
and Bt

j

2 F(⇡); otherwise, At

j

2 F(⇡) and Bt

j

/2 F(⇡).

Lemma 32. Let ⇡ be a satisfying solution to the Not-all-equal
SAT Problem. Then F(⇡) is an Ideal Elimination Set of G

sse

.

Proof: Let us first show that F(⇡) is an One-Iteration
Elimination Set of G

sse

. Consider nodes in the following
gadgets of G

sse

:
• Consider the gadget V

i

, for 1  i  n. (See Fig. 8 (a).)
By the construction of F(⇡), either X1

i

or X0
i

is in F(⇡).
Either way, after the node in F(⇡) is removed, the other
two variable nodes in V

i

will have neighboring check
nodes of degree 1.

• Consider the gadget W
j

, for 1  j  k. (See Fig. 8
(c).) Since the clause C

j

has at least one true literal and
at least one false literal, WLOG, let us suppose that its
1st and 2nd literals are true, and its 3rd literal is false.
(There are totally 6 cases. And the other 5 cases can be
proved similarly by symmetry.) By the construction of
F(⇡), we have A1

j

/2 F(⇡), B1
j

2 F(⇡), A2
j

/2 F(⇡),
B2

j

2 F(⇡), A3
j

2 F(⇡), B3
j

/2 F(⇡). It is not hard to
see that after B1

j

, B2
j

and B3
j

are removed, the remaining



variable nodes in W
j

will all have neighboring check
nodes of degree 1: removing A3

j

will cause that effect
for nodes in U1

j

, removing B1
j

(and B2
j

) will cause that
effect for nodes in U2

j

, and removing all those three nodes
will cause that effect for d1

j

, d2
j

, · · · , d6
j

.
• Consider an H bar. (See Fig. 8 (f) and (g).) Let u and v

be the two endpoints of the H bar, where u is At

j

or Bt

j

,
and v is X1

i

or X0
i

(for some parameters i, j, t). There
are four possible cases:

– Case 1: u is At

j

and v is X1
i

. In this case, by the
construction of G

sse

, the t-the literal of clause C
j

is x
i

. By the construction of F(⇡), if x
i

= 1, then
X1

i

2 F(⇡) and At

j

/2 F(⇡); otherwise, X1
i

/2 F(⇡)
and At

j

2 F(⇡).
– Case 2: u is At

j

and v is X0
i

. In this case, by the
construction of G

sse

, the t-the literal of clause C
j

is x̄
i

. By the construction of F(⇡), if x
i

= 1, then
X0

i

/2 F(⇡) and At

j

2 F(⇡); otherwise, X0
i

2 F(⇡)
and At

j

/2 F(⇡).
– Case 3: u is Bt

j

and v is X1
i

. In this case, by the
construction of G

sse

, the t-the literal of clause C
j

is x̄
i

. By the construction of F(⇡), if x
i

= 1, then
X1

i

2 F(⇡) and Bt

j

/2 F(⇡); otherwise, X1
i

/2 F(⇡)
and Bt

j

2 F(⇡).
– Case 4: u is Bt

j

and v is X0
i

. In this case, by the
construction of G

sse

, the t-the literal of clause C
j

is x
i

. By the construction of F(⇡), if x
i

= 1, then
X0

i

/2 F(⇡) and Bt

j

2 F(⇡); otherwise, X0
i

2 F(⇡)
and Bt

j

/2 F(⇡).
So in all four cases, either u or v is in F(⇡). If u 2 F(⇡),
then after u is removed from G

sse

, both v and the variable
node in the H bar (pt

j

or qt
j

) will have a neighboring
check node of degree 1; and the same holds if v 2 F(⇡).

So after nodes in F(⇡) are removed, the remaining variable
nodes in G

sse

will all have neighboring check nodes of degree
1. So F(⇡) is an One-Iteration Elimination Set of G

sse

. Then
it can be seen that all the nodes in F(⇡) are Interface Nodes
(namely, F(⇡) ⇢ I

sse

) and |F(⇡)| = n + 3k. So F(⇡) is an
Ideal Elimination Set of G

sse

.
We now prove the NP-hardness of the SSE1 Problem.

Theorem 33. The SSE1 Problem is NP-hard.

Proof: The SSE1 Problem is an optimization Problem.
Consider its decision problem: “Given a Stopping Graph G
and an integer t, is it possible to remove t variable nodes
from G so that the BP algorithm can decode the remain-
ing variable nodes in one iteration?” Let it be called the
“SSEdecision

1 Problem.” Clearly, the problem is in NP. We will
show now that there is a polynomial-time reduction from the
NP-complete Not-all-equal SAT Problem to the SSEdecision

1

Problem.
Corresponding to the Not-all-equal SAT Problem, it has

been introduced how to construct a bipartite graph G
sse

. Let
G be G

sse

, and let t be n+3k. Then we have a mapping from
the Not-all-equal SAT Problem to the SSEdecision

1 Problem. It

is not difficult to see that the mapping tokes polynomial time.
We now need to prove that the Not-all-equal SAT Problem is
satisfied if and only if the corresponding SSEdecision

1 Problem
has a positive answer:

1) If the Not-all-equal SAT Problem is satisfiable, let ⇡ be
such a satisfying solution. By Lemma 32, F(⇡) is an
Ideal Elimination Set of G

sse

, which has size n + 3k.
So the SSEdecision

1 Problem has a positive answer.
2) If the SSEdecision

1 Problem has a positive answer,
then G

sse

has an One-Iteration Elimination Set of size
n + 3k. By Lemma 21 and Corollary 25, G

sse

has a
Canonical Elimination Set F of size n+ 3k, which, by
Definition 26, is also an Ideal Elimination Set. Then by
Lemma 30, the Not-all-equal SAT Problem is satisfiable.

So there is a polynomial-time reduction from the Not-
all-equal SAT Problem to the SSEdecision

1 Problem. So the
SSEdecision

1 Problem is NP-complete, and the SSE1 Problem
is NP-hard.

V. APPROXIMATION ALGORITHM FOR SSE1 PROBLEM

In this section, we present an approximation algorithm for
the SSE1 problem, for Stopping Graphs whose degrees of
variable nodes and check nodes are upper bounded by d

v

and
d
c

, respectively. Its approximation ratio is

d
v

(d
c

� 1).

(Clearly, the same result also applies to regular (d
v

, d
c

)

LDPC codes and irregular codes with the same constraint on
maximum degrees.) Note that the optimization objective is to
minimize the size of the elimination set (namely, the number
of removed variable nodes). So the approximation ratio means
the maximum ratio of the size of an elimination set produced
by the approximation algorithm to the size of an optimal (i.e.,
minimum) elimination set.

Definition 34. In the Stopping Graph G = (V [C,E), 8 v 2 V ,
define its “variable-node neighborhood” as ⇤(v) ,

{u 2 V � {v} | 9 c 2 C such that (u, c) 2 E and (v, c) 2 E}.

That is, every variable node in ⇤(v) shares a common neigh-
boring check node with v.

Example 35. For the Stopping Graph in Fig. 10, we have
⇤(v1) = {v4, v6}, ⇤(v2) = {v3, v8}, ⇤(v3) = {v2, v5, v8},
and so on. 2

We now introduce an approximation algorithm. The algo-
rithm will assign three colors to variable nodes:

• Initially, every variable node is of the color white. It
means that this variable node cannot be decoded by one
iteration of BP-decoding yet.

• As the algorithm proceeds, if a variable node’ color
turns black, it means the algorithm has included it in the
Elimination Set (namely, the algorithm has removed it).



v1 v2 v3 v4 v5 v6 v7 v8

c1 c2 c3 c4 c5 c6 c7

Fig. 10. A Stopping Graph G = (V [ C, E).

• As the algorithm proceeds, if a variable node’s color turns
gray, it means the variable node is not yet removed, but
it will be decodable after one iteration of BP decoding.

When the algorithm ends, every variable node’s color will
be either black or gray.

The algorithm works as follows. It takes a greedy approach,
and updates the colors of variable nodes iteratively. In each
iteration, it identifies an arbitrary white variable node (say it
is node v), and does the following:

1) Step One: Let U
v

denote the set of variable nodes in
⇤(v) that are currently white or gray. Turn the colors
of the nodes in U

v

to black, and turn the color of v to
gray.

2) Step Two: For every check node c that is connected to
at least one variable node in U

v

, check if exactly one of
c’s neighboring variable node is white and all c’s other
neighboring variable nodes are black. If so, turn that
neighboring variable node’s color from white to gray.

The algorithm keeps iterating as above until all variable
nodes are either black or gray. Then it returns the set of black
variable nodes as the Elimination Set. It is not difficult to see
that the remaining variable nodes are decodable by BP in one
iteration: by the algorithm, every time a variable node is turned
from white to gray, it has at least one neighboring check node
c such that c’ other neighboring variable nodes are all black
(namely, removed), and an BP iteration using the check node
c will help decode that gray variable node.

The algorithm is formally presented below. Note that it uses
two sets, S

white

and S
black

, to keep track of the white and
black nodes, respectively.

Algorithm 36 Approximation Algorithm for SSE1

Input: Stopping Graph G = (V [ C,E).
Output: A one-iteration elimination set.
Algorithm:
1) S

white

 V , S
black

 ;.
2) for v 2 V
3) color(v) white.
4) while S

white

6= ;
5) {

6) Pick an arbitrary node v from S
white

.
7) U

v

 ;.
8) for u 2 ⇤(v)
9) {

10) if color(u) = white
11) {
12) U

v

 U
v

[ {u}.
13) color(u) black.
14) S

black

 S
black

[ {u}.
15) S

white

 S
white

� {u}.
16) }
17) else if color(u) = gray
18) {
19) U

v

 U
v

[ {u}.
20) color(u) black.
21) S

black

 S
black

[ {u}.
22) }
23) }
24) S

white

 S
white

� {v}, color(v) gray.
25) for u 2 U

v

26) for every check node c adjacent to u
27) if exactly one of c’s neighboring nodes is white

and all c’s other neighboring nodes are black
28) {
29) Let w be that white neighboring node.
30) S

white

 S
white

� {w}, color(w) gray.
31) }
32) }
33) return S

black

.

We show an example of the above algorithm.

Example 37. Let the graph G be as shown in Fig. 11 (a). The
algorithm first identifies a white node v1, turns nodes in U

v1 =

{v2, v3} black, then turns v1 and v4 gray (see Fig. 11 (b)). Next,
it identifies a white node v5, turns nodes in U

v5 = {v6, v7}
black, then turns v5 gray (see Fig. 11 (c)). Next, it identifies
a white node v8, turns the nodes in U

v8 = {v9} black, then
turns v8 gray (see Fig. 11 (d)). So the Elimination Set is S =

{v2, v3, v6, v7, v9}. If we delete nodes in S from G, we get the
subgraph in Fig. 11 (e), where we can see that all the remaining
nodes are gray and can be decoded by one BP iteration.

It is not hard to verify that every one-iteration elimination set
for G has size no less than 5. Since |S| = 5, the output of the
algorithm is actually optimal in this example. 2

We analyze the time complexity of the above algorithm.
Let d

v

and d
c

denote the maximum degrees of variable
nodes and check nodes in the Stopping Graph G, respectively.
The algorithm has time complexity O(d2

v

d2
c

|V |) because it
identifies up to O(|V |) white variable nodes and for each such
node v, it checks its neighboring check nodes and nodes in
⇤(v), check nodes adjacent to nodes in ⇤(v), and variable
nodes that share common neighboring check nodes with any
node in ⇤(v); and there are O(d2

v

d2
c

) such nodes for each v.
We now analyze the approximation ratio of the algorithm.

We first introduce a few lemmas.



v1 v2 v3 v4 v5 v6 v7 v8

c1 c2 c3 c4 c5

v9

(a)

v1 v2 v3 v4 v5 v6 v7 v8

c1 c2 c3 c4 c5

v9

(b)

v1 v2 v3 v4 v5 v6 v7 v8

c1 c2 c3 c4 c5

v9

(c)

v1 v2 v3 v4 v5 v6 v7 v8

c1 c2 c3 c4 c5

v9

(d)

v1 v4 v5 v8

c1 c2 c3 c4 c5(e)

Fig. 11. An example of the approximation algorithm for SSE1.

Lemma 38. Let G1 = (V1[C1, E1) and G2 = (V2[C2, E2)

be two Stopping Graphs. Let s1 and s2 denote the size of
the minimum one-iteration elimination set in G1 and G2, re-
spectively. If G2 can be obtained from G1 by removing some
variable nodes and their incident edges, then

s2  s1.

Proof: Removing variable nodes is the same as knowing
the values of those erased codeword bits, which only helps BP

decoding.
Say that the algorithm identifies a sequence of white vari-

able nodes
v̂1, v̂2, · · · , v̂t

in the Stopping Graph G = (V [C,E), and turns the variable
nodes in

U
v̂1 , Uv̂2 , · · · , Uv̂t

black. Let us define a sequence of subgraphs

G0, G1, · · · , Gt

accordingly.

Definition 39. Let G0 = G. For i = 1, 2, · · · , t, let G
i

be
obtained from G

i�1 by removing the nodes in

U
v̂i [ {v̂

i

} [ {check nodes adjacent to v̂
i

}

and their incident edges.

Note that for i = 1, 2, · · · , t, in the i-th iteration, the
algorithm removes only the variable nodes in U

v̂i (namely,
turning them black) from the subgraph G

i�1, not v̂
i

or its
adjacent check nodes. (It turns v̂

i

to gray.) However, once U
v̂i

is removed, all the nodes in ⇤(v̂
i

) are removed, so v̂
i

and its
adjacent check nodes become disconnected from the rest of
the graph (which is G

i

). Therefore it becomes sufficient to
consider the SSE1 Problem for G

i

in the next iteration, and
it can be seen that

v̂
i+1, Uv̂i+1 , {check nodes adjacent to v̂

i+1},

v̂
i+2, Uv̂i+2 , {check nodes adjacent to v̂

i+2},

· · · ,

v̂
t

, U
v̂t , {check nodes adjacent to v̂

t

}

are all nodes (or sets of nodes) in G
i

.

Lemma 40. For i = 0, 1, · · · , t � 1, every one-iteration elimi-
nation set for G

i

contains at least one variable node in

U
v̂i+1 [ {v̂

i+1}.

Proof: Consider the graph G
i

and its variable node
v̂
i+1. To make the remaining variable nodes decodable by

one iteration of BP decoding after some variable nodes are
removed, it is necessary (although not sufficient) that v̂

i+1 is
either removed, or decodable after one such iteration of BP
decoding; and that requires one of these two conditions to be
true:

1) v̂
i+1 is removed.

2) v̂
i+1 is not removed, but it has a neighboring check node
c such that all c’s other neighboring variable nodes in G

i

are removed. (The check node c will help decode v̂
i+1

in one iteration of BP decoding. And note that those
“other neighboring variable nodes” of c are all nodes in
U
v̂i+1 . Also note that since v

i+1 is turned from white to
gray in the (i + 1)-th iteration of the algorithm, at the



beginning of the (i + 1)-th iteration, every check node
adjacent to v

i+1 must have degree at least two in G
i

.
So the set of those “other neighboring variable nodes”
of c cannot be empty.)

So it is necessary that at least one variable node in U
v̂i+1 [

{v̂
i+1} is removed.

Lemma 41. For i = 0, 1, · · · , t, let ↵
i

denote the minimum size
of a one-iteration elimination set for G

i

. Then

↵
i

� t� i.

Proof: The proof is by induction, but in the reverse order
for i (i.e, from i = t, t�1 · · · down to 0). When i = t, clearly
↵
i

� t�i = 0, so the conclusion holds for the base case. Now
assume that the conclusion holds for ↵

t

,↵
t�1, · · · ,↵i+1, and

consider the case for ↵
i

.
Consider an optimal (i.e., minimum-sized) one-iteration

elimination set S for G
i

. Define Y , S \ (U
v̂i+1 [ {v̂

i+1}).
By Lemma 40, S removes at least one variable node in
U
v̂i+1 [ {v̂

i+1}, so |Y | � 1. Let ˜G be the bipartite graph
obtained by removing the variable nodes in Y from G

i

(and
their incident edges), and let ↵̃ denote the minimum size of a
one-iteration elimination set for ˜G. Then ↵

i

= |S| = |Y |+↵̃ �
↵̃+ 1.
G

i+1 is obtained from G
i

by removing the variable nodes
in U

v̂i+1 [ {v̂
i+1}, which is a superset of Y . So G

i+1 can
also be obtained from ˜G by removing the variable nodes in
(U

v̂i+1 [ {v̂
i+1}) � Y . So by Lemma 38, ↵

i+1  ↵̃. By the
induction assumption, we get ↵

i+1 � t�(i+1). By combining
the above results, we get ↵

i

� ↵̃ + 1 � ↵
i+1 + 1 � t� (i+

1) + 1 = t� i.

Theorem 42. Let d
v

and d
c

denote the maximum degrees of
variable nodes and check nodes, respectively, in the Stopping
Graph G = (V [ C,E). Then the above algorithm has an
approximation ratio of

d
v

(d
c

� 1).

Proof: By setting i = 0 in Lemma 41, we get ↵0 � t,
namely, any one-iteration elimination set for G removes at
least t variable nodes. The algorithm removes the nodes in

U
v̂1 [ U

v̂2 [ · · · [ U
v̂t ,

whose size is

|
t[

i=1

U
v̂i | =

tX

i=1

|U
v̂i | 

tX

i=1

|⇤(v̂
i

)|  t · d
v

(d
c

� 1).

So the approximation ratio is at most d
v

(d
c

� 1).

VI. ANALYSIS AND ALGORITHMS FOR SSE
k

PROBLEMS

In this section, we present more analysis and algorithms
for SSE

k

Problems, including k =1. We first analyze how
an important factor, RBER (raw bit-erasure rate), affects the
performance of approximation algorithms, and show that for
high-rate codes with high actual erasure rates, all algorithms

have good approximation ratios. We then present exact algo-
rithms for SSE1 and SSE

k

Problems when the Stopping
Graph is a tree (or a forest). The algorithms output optimal
solutions and have linear time complexity.

A. Effect of RBER for Approximation Algorithms
We first analyze the effect of RBER for approximation

algorithms. Consider an (N,K) LDPC code with N codeword
bits and K information bits (where K < N ), whose code rate
is R , K/N . Let G = (V [ C,E) be its Stopping Graph,
where V is the Stopping Set. As shown in Fig. 3 (b), the higher
RBER is, the greater |V | becomes on average. Let ✏ , |V |/N
be called the actual erasure rate relative to stopping set V .

Lemma 43. Let S ✓ V be any solution (i.e., an Elimination
Set) to the SSE

k

Problem. If |V | � N �K, then

|S| � |V |�N +K.

Proof: The proof is by contradiction. If |S| < |V |�N +

K, then after the erased bits in the Elimination Set are decoded
by the NR-Decoder, the total number of codeword bits with
known values is (N�|V |)+|S| < (N�|V |)+(|V |�N+K) =

K. Then the ECC-Decoder will not be able to recover the K
bits of information in the codeword.

Theorem 44. For the SSE
k

Problem, if ✏ > 1 � R, then the
approximation ratio of any algorithm is at most

✏

✏� (1�R)

.

Proof: Let S⇤ and S be an optimal solution and the
solution of an arbitrary algorithm, respectively, to the SSE

k

Problem. If ✏ > 1 � R, then |V | = ✏N > (1 � K/N)N =

N �K. By Lemma 43, |S⇤| � |V |�N +K. Since S ✓ V ,
we get |S|

|S⇤| 
|V |

|V |�N+K

=

✏

✏�1+R

.
So for high rate codes (where R approaches 1), if the RBER

is high (which approaches 1), then with high probability, ✏
also approaches 1. In this case, ✏

✏�(1�R) approaches 1, so all
algorithms have good approximation ratios.

B. Exact Algorithm for SSE1 Problem with Stopping Tree
The Stopping Graph G = (V [ C,E) can be a tree,

especially when the RBER is low. In this case, we call G
a Stopping Tree. Note that if G is a forest, the SSE

k

Problem
can be solved for each of its tree components independently.

In this subsection, we present an efficient and exact algo-
rithm for the SSE1 Problem. The algorithm will be extended
to the SSE

k

Problem for general k subsequently.
Given a Stopping Tree G = (V [ C,E), we can pick an

arbitrary variable node v 2 V as the root, run Breadth-First
Search (BFS) on G starting with v, and label the nodes of
G by v1, v2, · · · , v|V |+|C| based on their order of discovery
in the BFS. (Note that the root node v is labelled by v1, and
siblings nodes in the BFS tree always have consecutive labels.)
We denote the resulting BFS tree by G

BFS

.
The algorithm for SSE1 is as follows.



Algorithm 45 Exact Algorithm for SSE1
Input: Stopping Tree G = (V [ C,E).
Output: An Elimination Set of minimum size in G.
Algorithm:
1) Generate G

BFS

by running BFS on G.
2) Let S be an empty set.
3) i |V |+ |C|.
4) while i � 1

5) {
6) if i > 1 and v

i

2 V
7) {
8) Let j be the minimum index such that v

j

is a sibling
9) of v

i

in the BFS tree G
BFS

rooted at v1.
10) if j < i
11) Add v

j

, v
j+1, · · · , vi�1 to set S.

12) i j � 1.
13) }
14) else if i = 1

15) {
16) Add v1 to set S.
17) i = 0.
18) }
19) else
20) i i� 1.
21) }
22) Return S.

The algorithm first runs BFS to generate G
BFS

. It then
processes the nodes in the reverse order of their labels (from
v|V |+|C| to v1). Every time it comes to a node v

i

, if v
i

is a variable node and has siblings (of smaller labels), its
siblings are included in the Elimination Set. The root v1 is also
included in the Elimination Set. The following is an example
of the algorithm.

Example 46. A Stopping Tree and its BFS tree are shown in
Fig. 12 (a) and (b), respectively. (Note that the node labels v1,
v2, · · · , v17 in Fig. 12 (a) are not known a priori; instead, they
are obtained after we run BFS on the graph with v1 as its root.)
Then algorithm then processes the nodes in the reverse order
of their labels. (Note that when it comes to a check node, no
action is taken.) It first comes to v17, and includes its sibling
v16 in the Elimination Set. (See Fig. 12 (c).) It then comes to
v15, and includes its siblings v14 and v13 in the Elimination
Set. (See Fig. 12 (d).) It then comes to v12, and takes no action
since v12 has no sibling. (See Fig. 12 (e).) It then comes to
v11, v10 and v9 sequentially and takes no action since they
are check nodes. It then comes to v8, and includes its sibling
v7 in the Elimination Set. (See Fig. 12 (f).) It then comes
to v6, v5, · · · , v2 sequentially and takes no action since they
either have no sibling or are check nodes. Finally, it comes
to the root v1 and includes it in the Elimination Set. (See
Fig. 12 (i).) The Elimination Set returned by the algorithm is
{v1, v7, v13, v14, v16}. 2

We now show that the algorithm returns an optimal (i.e.,

v1

v2 v3 v4

v5 v6 v7 v8

v9 v10 v11

v12 v13 v14 v15 v16 v17

v1

v2 v3 v4

v5 v6 v7 v8

v9 v10 v11

v12 v13v14v15 v16 v17

(a)

(b) v1

v2 v3 v4

v5 v6 v7 v8

v9 v10 v11

v12 v13 v14 v15 v16 v17

(c)

v1

v2 v3 v4

v5 v6 v7 v8

v9 v10 v11

v12 v13 v14 v15 v16 v17

(d) v1

v2 v3 v4

v5 v6 v7 v8

v9 v10 v11

v12 v13 v14 v15 v16 v17

(e)

v1

v2 v3 v4

v5 v6 v7 v8

v9 v10 v11

v12 v13 v14 v15 v16 v17

(f) v1

v2 v3 v4

v5 v6 v7 v8

v9 v10 v11

v12 v13 v14 v15 v16 v17

(g)

v1

v2 v3 v4

v5 v6 v7 v8

v9 v10 v11

v12 v13 v14 v15 v16 v17

(h) v1

v2 v3 v4

v5 v6 v7 v8

v9 v10 v11

v12 v13 v14 v15 v16 v17

(i)

Fig. 12. Algorithm for SSE1 on a Stopping Tree. (a) A Stopping Tree
G = (V [C, E). (b) Its BFS (Breadth-First Search) tree GBFS . (c) Process
v17. (d) Process v15. (e) Process v12. (f) Process v8. (g) Process v6. (h)
Process v5. (i) Process v1.



minimum-sized) Elimination Set. We suppose |V | � 2. (The
case of |V | = 1 is trivial.)

Lemma 47. In G
BFS

, let B denote the set of sibling nodes of
v|V |+|C|. (B could be empty.) Then any Elimination Set for
G

BFS

contains at least |B| nodes in B [ {v|V |+|C|}.

Proof: If B is an empty set, the conclusion is clearly true.
So now assume B is not empty. Let c be the parent of v|V |+|C|
(and also all the nodes in B) in G

BFS

, which is a check node.
Let w be the parent of c, which is a variable node. We can
see that c is adjacent to |B|+ 2 variable nodes in total.

Since v|V |+|C| has the greatest label among all nodes, by the
property of BFS, it has the greatest distance to the root among
all nodes; and so do its siblings. So all nodes in B[{v|V |+|C|}
are leaves in G

BFS

.
We now prove the lemma by contradiction. If fewer than

|B| nodes in B [ {v|V |+|C|} are included in an Elimination
Set, then at least two leaves in B [ {v|V |+|C|} – say v

i

and
v
j

– are not in the Elimination Set. Since c is the only check
node adjacent to them, even if other nodes of the tree are
all in the Elimination Set, v

i

and v
j

still cannot be decoded.
And that contradicts the definition of Elimination Set. So the
conclusion is true.

For any non-root node v in G
BFS

, let ⇡(v) denote its parent.
Let

G
sub

denote the subtree of G
BFS

obtained this way: if we remove
the subtree rooted at ⇡(v|V |+|C|) from G

BFS

, the remain-
ing subgraph is G

sub

. (For instance, in Fig. 12, we have
v|V |+|C| = v17, ⇡(v17) = v11, and G

sub

is the subtree in
the dashed circle in Fig. 12 (c).)

Lemma 48. Let S⇤ be a minimum-sized Elimination Set of
G

sub

, and let B denote the set of sibling nodes of v|V |+|C|.
Then S⇤ [B is a minimum-sized Elimination Set of G

BFS

.

Proof: Let us call an Elimination Set normalized if it
includes all the nodes in B but does not include v|V |+|C|. By
Lemma 47, an Elimination Set of G

BFS

contains either |B|
or |B|+1 nodes of B [ {v|V |+|C|}. If it is the latter case, by
replacing {v|V |+|C|} by ⇡(⇡(v|V |+|C|)) in the Elimination Set
(which makes all the variable nodes adjacent to ⇡(v|V |+|C|)
except v|V |+|C| included in the Elimination Set), we can get
another Elimination Set of no greater size. Therefore, there
exists a minimum-sized Elimination Set that is normalized.

Consider a normalized Elimination Set ˜S ✓ V . Since
B ✓ ˜S and v|V |+|C| /2 ˜S, ˜S � B must be an Elimination
Set of G

sub

. On the other hand, given an Elimination Set
ˆS of G

sub

, ˆS [ B must be a normalized Elimination Set of
G

BFS

. (The BP decoding algorithm will first decode all the
variable nodes in G

sub

, then use the check node ⇡(v|V |+|C|) to
decode v|V |+|C|.) Since S⇤ is a minimum-sized Elimination
Set of G

sub

, S⇤ [ B, as a normalized Elimination Set for
G

BFS

, is minimum-sized. Since there exists a minimum-sized
Elimination Set that is normalized, S⇤ [B, as an Elimination

Set for G
BFS

(without the restriction of being normalized), is
also minimum-sized.

Theorem 49. Algorithm 45 returns an optimal (i.e., minimum-
sized) Elimination Set of G = (V [ C,E).

Proof: By Lemma 48, the problem of finding an optimal
Elimination Set for G

BFS

(which is the same as G) can be
reduced to the problem of finding an optimal Elimination
Set for its subtree G

sub

. Algorithm 45 uses that technique
repeatedly to reduce the problem to smaller and smaller
subtrees, until it comes to the final case where the subtree
contains only the root node v1 (whose optimal Elimination
Set is simply {v1}). (In Fig. 12, such a sequence of shrinking
subtrees are shown in dashed circles from (c) to (h).) That
leads to the conclusion.

Therefore Algorithm 45 is an exact algorithm for the SSE1
Problem. Its time complexity is O(|V |+ |C|).
C. Exact Algorithm for SSE

k

Problem with Stopping Tree
We now extend the previous analysis, and design an exact

algorithm for the SSE
k

Problem of linear time complexity.
The algorithm first runs BFS on G to get the tree G

BFS

that labels nodes by v1, v2, · · · , v|V |+|C|, where v1 is the root.
Then (similar to the algorithm for SSE1), it processes the
nodes in the reverse order of their labels, and keeps reducing
the SSE

k

Problem – actually, a more general form of the
SSE

k

Problem, which shall be called the gSSE
k

Problem –
to smaller and smaller subtrees. Let us now define this gSSE

k

Problem.

Definition 50. [gSSE
k

Problem] Let G = (V [ C,E) be a
Stopping Graph. and let k be a non-negative integer. Every
variable node v 2 V is associated with two parameters

�(v) 2 {1, 2, · · · , k,1}

and
!(v) 2 {0, 1, · · · , k,1}

satisfying the condition that either �(v) = 1 or !(v) = 1,
but not both; and when the BP decoder runs on G, v’s value
can be recovered (namely, v can become a non-erasure) by the
end of the �(v)-th iteration automatically (namely, without any
help from neighboring check nodes). Then, how to remove the
minimum number of variable nodes from V such that for every
remaining variable node v with !(v)  k, it can be corrected by
the BP decoder in no more than !(v) iterations? (By default, if
!(v) = 0, v has to be removed from V because the BP decoder
starts with the 1st iteration.)

A solution to the gSSE
k

Problem (namely, the set of
removed nodes) is called a g-Elimination Set. We see that
if �(v) =1 and !(v) = k for every v 2 V , then the gSSE

k

Problem is identical to the SSE
k

Problem.
In G

BFS

, let ⌧ 2 {1, 2, · · · , |V |+|C|} denote the minimum
integer such that v

⌧

either is a sibling of v|V |+|C| or is v|V |+|C|
itself. (So v

⌧

, v
⌧+1, · · · , v|V |+|C| are siblings.) Define

P , {i | ⌧  i  |V |+ |C|,!(v
i

)  k}



and
Q , {i | ⌧  i  |V |+ |C|, �(v

i

)  k}.

Since 8 v 2 V , either �(v) or !(v) is 1 but not both, P and
Q form a partition of the set {⌧, ⌧ + 1, · · · , |V |+ |C|}.

By convention, for the empty set ;, we say max

i2; �(vi) =
max

i2; !(vi) = 0. We first make some observations.

Lemma 51. Suppose max

i2P !(v
i

) > max

i2Q �(v
i

). Let i⇤
be an integer in P such that !(v

i

⇤
) = max

i2P !(v
i

). Then
there exists a minimum-sized g-Elimination Set for G

BFS

that
includes the nodes in {v

i

|i 2 P, i 6= i⇤} but not v
i

⇤ .

Proof: Any g-Elimination Set for G
BFS

has to include
at least |P| � 1 nodes in {v

i

|i 2 P} because otherwise the
un-included nodes in {v

i

|i 2 P} will never be corrected.
It is an optimal strategy to include the |P| � 1 nodes in
{v

i

|i 2 P, i 6= i⇤} in the g-Elimination Set because their !(v
i

)

values impose more restrictive requirements than !(v
i

⇤
) does.

Now let T be a g-Elimination Set for G
BFS

that includes all
the nodes in {v

i

|i 2 P, i 6= i⇤}. If v
i

⇤ 2 T , we can replace
it by ⇡(⇡(v|V |+|C|)) in T and get another g-Elimination Set
T 0 for G

BFS

, with |T 0|  |T | (since ⇡(⇡(v|V |+|C|)) may
already be in T ). (Note that with T 0, since max

i2P !(v
i

) >
max

i2Q �(v
i

), the check node ⇡(v|V |+|C|) can help correct
v
i

⇤ by iteration max

i2Q �(v
i

) + 1  max

i2P !(v
i

) = !(v
i

⇤
);

and since ⇡(⇡(v|V |+|C|)) 2 T 0, the BP decoding in G
sub

becomes independent of the subtree rooted at ⇡(v|V |+|C|).)
So there exists a minimum-sized g-Elimination Set for G

BFS

that includes the nodes in {v
i

|i 2 P, i 6= i⇤} but not v
i

⇤ .

Lemma 52. Suppose max

i2P !(v
i

)  max

i2Q �(v
i

). Then
there exists a minimum-sized g-Elimination Set for G

BFS

that
contains all the nodes in {v

i

|i 2 P}.

Proof: If P = ;, the conclusion automatically holds. If
P 6= ; and max

i2P !(v
i

) = 0, any g-Elimination Set for
G

BFS

has to include {v
i

|i 2 P}, so the conclusion also holds.
Now consider the case where max

i2P !(v
i

) > 0. Let T be a
minimum-sized g-Elimination Set for G

BFS

. T has to include
at least |P| � 1 nodes in {v

i

|i 2 P} because otherwise the
un-included nodes in {v

i

|i 2 P} cannot be corrected (using
the check node ⇡(v|V |+|C|)). If |T | = |P| � 1, the let j 2 P
be an integer such that v

j

/2 T . If T \ {v
i

|i 2 Q} = ;, then
v
j

cannot be corrected by iteration !(v
j

)  max

i2P !(v
i

) 
max

i2Q �(v
i

) because not all nodes in {v
i

|i 2 Q} will be
corrected by iteration !(v

j

)�1, so this is an impossible case.
So T \ {v

i

|i 2 Q} 6= ;. Let m 2 Q be an integer such that
v
m

2 T ; then we can replace v
m

by v
j

in T and get another g-
Elimination Set T 0 for G

BFS

because v
m

helps decoding more
than v

j

: v
m

can be corrected automatically. Since |T 0| = |T |
and {v

i

|i 2 P} ✓ T 0, the conclusion holds.
The next two lemmas show how to reduce the gSSE

Problem from G
BFS

to its subtree G
sub

. In some cases,
in the derived gSSE Problem for G

sub

, the values of
�(⇡(⇡(v|V |+|C|))) and !(⇡(⇡(v|V |+|C|))) in G

sub

may be
different from their original values in G

BFS

; and in such

cases, to avoid confusion, we will denote the tree G
sub

by
ˆG
sub

.

Lemma 53. Suppose max

i2P !(v
i

)  max

i2Q �(v
i

). Con-
sider five cases:

1) Case 1: If |Q| > 0 and max

i2Q �(v
i

) = k, let S be a
minimum-sized g-Elimination Set for G

sub

.
2) Case 2: If |Q| > 0, max

i2Q �(v
i

) < k and
�(⇡(⇡(v|V |+|C|)))  k, let S be a minimum-sized g-
Elimination Set for ˆG

sub

where �(⇡(⇡(v|V |+|C|))) is
changed to

min{�(⇡(⇡(v|V |+|C|))),max

i2Q
�(v

i

) + 1}.

3) Case 3: If |Q| > 0 and !(⇡(⇡(v|V |+|C|))) 
max

i2Q �(v
i

) < k, let S be a minimum-sized g-
Elimination Set for G

sub

.
4) Case 4: If |Q| > 0 and max

i2Q �(v
i

) <
!(⇡(⇡(v|V |+|C|)))  k, let S be a minimum-sized g-
Elimination Set for ˆG

sub

where �(⇡(⇡(v|V |+|C|))) is
changed to

max

i2Q
�(v

i

) + 1

and !(⇡(⇡(v|V |+|C|))) is changed to

1.

5) Case 5: If |Q| = 0, there are two sub-cases: (1)
if !(⇡(⇡(v|V |+|C|))) = 0, let S be a minimum-
sized g-Elimination Set for G

sub

; (2) otherwise,
let S be a minimum-sized g-Elimination Set for
ˆG
sub

where �(⇡(⇡(v|V |+|C|))) is changed to 1 and
!(⇡(⇡(v|V |+|C|))) is changed to1.

Then S [ {v
i

|i 2 P} is a minimum-sized g-Elimination Set for
G

BFS

.

Proof: By Lemma 52, there exists a minimum-sized g-
Elimination Set for G

BFS

that contains all the nodes in {v
i

|i 2
P}. Now consider only minimum-sized g-Elimination Sets for
G

BFS

that contain all the nodes in {v
i

|i 2 P}. See the nodes
in {v

i

|i 2 P} as removed (because nodes in an Elimination
Set are removed before decoding begins); then to prove the
conclusion, we just need to prove this assertion: when P = ;,
S is a minimum-sized g-Elimination Set for G

BFS

.
For Case 1, since max

i2Q �(v
i

) = k, the subtree rooted at
⇡(v|V |+|C|) cannot help correct the node ⇡(⇡(v|V |+|C|)) in
the first k iterations. Every node v with !(v) 6=1 is in G

sub

and has !(v)  k. So finding a minimum-sized g-Elimination
Set for G

BFS

is equivalent to finding such as set for G
sub

.
So the assertion holds.

For Case 2, if we compare G
sub

and ˆG
sub

, we see that
they differ only in their values of �(⇡(⇡(v|V |+|C|))). (For
ˆG
sub

, that value is min{�(⇡(⇡(v|V |+|C|))),max

i2Q �(v
i

) +

1}.) Now observe the check node ⇡(v|V |+|C|) and its
neighboring variable nodes: when BP decoder runs on
G

BFS

, all the nodes in {v
i

|i 2 Q} can be corrected



automatically by iteration max

i2Q �(v
i

) < k; so by us-
ing the check node ⇡(v|V |+|C|), the node ⇡(⇡(v|V |+|C|))
can be corrected by iteration max

i2Q �(v
i

) + 1 
k. That is equivalent to turning �(⇡(⇡(v|V |+|C|))) into
min{�(⇡(⇡(v|V |+|C|))),max

i2Q �(v
i

) + 1} and turning G
sub

into ˆG
sub

when it comes to BP decoding. That leads to the
assertion.

For Case 3, the node ⇡(⇡(v|V |+|C|)) needs to be cor-
rected by iteration !(⇡(⇡(v|V |+|C|))). But since the nodes
in {v

i

|i 2 Q} will not all be corrected automatically until
iteration max

i2Q �(v
i

), and it takes one more iteration for
the check node ⇡(v|V |+|C|) to propagate information to node
⇡(⇡(v|V |+|C|)), they cannot help decode ⇡(⇡(v|V |+|C|)). So
for G

sub

, it makes no difference whether the subtree rooted
at ⇡(v|V |+|C|) is there or not when it comes to BP decoding.
That leads to the assertion.

For Case 4, if we compare G
sub

and ˆG
sub

, we see that
they differ only in their values of �(⇡(⇡(v|V |+|C|))) and
!(⇡(⇡(v|V |+|C|))). Now observe the check node ⇡(v|V |+|C|)
and its neighboring variable nodes: when BP decoder runs
on G

BFS

, all the nodes in {v
i

|i 2 Q} can be corrected
automatically by iteration max

i2Q �(v
i

); so the check node
⇡(v|V |+|C|) can help correct the node ⇡(⇡(v|V |+|C|)) by
iteration max

i2Q �(v
i

) + 1  !(⇡(⇡(v|V |+|C|))). That is
equivalent to turning �(⇡(⇡(v|V |+|C|))) into max

i2Q �(v
i

)+1,
turning !(⇡(⇡(v|V |+|C|))) to 1 and turning G

sub

into ˆG
sub

when it comes to BP decoding. That leads to the conclusion.
For Case 5, since Q = ;, the check node ⇡(v|V |+|C|) can

help correct the node ⇡(⇡(v|V |+|C|)) in the 1st iteration. With
an analysis similar to the above ones, we see that the assertion
holds for both sub-cases.

Lemma 54. Suppose max

i2P !(v
i

) > max

i2Q �(v
i

). Let i⇤
be an integer in P such that !(v

i

⇤
) = max

i2P !(v
i

). Consider
two cases:

1) Case 1: If max

i2P !(v
i

) > �(⇡(⇡(v|V |+|C|))), let S be
any minimum-sized g-Elimination Set for G

sub

.
2) Case 2: If max

i2P !(v
i

)  �(⇡(⇡(v|V |+|C|))), let S be
any minimum-sized g-Elimination Set for ˆG

sub

where
�(⇡(⇡(v|V |+|C|))) is changed to

1

and !(⇡(⇡(v|V |+|C|))) is changed to

min{!(⇡(⇡(v|V |+|C|))),max

i2P
!(v

i

)� 1}.

Then S [ {v
i

|i 2 P, i 6= i⇤} is a minimum-sized g-Elimination
Set for G

BFS

.

Proof: By Lemma 51, there exists a minimum-sized g-
Elimination Set for G

BFS

that includes the nodes in {v
i

|i 2
P, i 6= i⇤} but not v

i

⇤ . Let T ⇤ be such a minimum-sized g-
Elimination Set for G

BFS

.
For Case 1, when the g-Elimination Set for G

BFS

is T ⇤,
the subtree rooted at the check node ⇡(v|V |+|C|) cannot help
correct the node ⇡(⇡(v|V |+|C|)). Instead, those nodes of T ⇤

that are in G
sub

will be a g-Elimination Set for G
sub

, and
the BP decoder will correct the un-removed nodes in G

sub

(within each of their required number of iterations !(v)). If
⇡(⇡(v|V |+|C|)) 2 T ⇤, the check node ⇡(v|V |+|C|) will correct
v
i

⇤ in the 1st iteration; otherwise, the BP decoder will correct
⇡(⇡(v|V |+|C|)) in at most �(⇡(⇡(v|V |+|C|))) iterations, so
⇡(v|V |+|C|) will correct v

i

⇤ in at most �(⇡(⇡(v|V |+|C|)))+1 
!(v

i

⇤
) iterations. Since T ⇤’s size is minimized, the number of

nodes of T ⇤ that are in G
sub

is also minimized. That leads to
the conclusion.

For Case 2, when the g-Elimination Set for G
BFS

is T ⇤,
the BP decoder needs to correct the node ⇡(⇡(v|V |+|C|))
by iteration max

i2P !(v
i

) � 1 < �(⇡(⇡(v|V |+|C|))) be-
cause only then will the check node ⇡(v|V |+|C|) help
correct the node v

i

⇤ by iteration max

i2P !(v
i

) =

!(v
i

⇤
). That is equivalent to turning !(⇡(⇡(v|V |+|C|)))

into min{!(⇡(⇡(v|V |+|C|))),max

i2P !(v
i

) � 1}, turning
�(⇡(⇡(v|V |+|C|))) into 1 and turning G

sub

into ˆG
sub

when
it comes to BP decoding. That leads to the conclusion.

By using the above two lemmas repeatedly, we can reduce
the gSSE Problem from G

BFS

to smaller and smaller sub-
trees, until the subtree contains only the root node v1 (and
v1 will be included in the g-Elimination Set if and only if
!(v1)  k at that moment). An algorithm based on the above
idea is presented below.

Algorithm 55 Exact Algorithm for SSE
k

Input: Stopping Tree G = (V [ C,E), integer k > 0.
Output: A k-iteration Elimination Set of minimum size in G.
Algorithm:
1) Generate G

BFS

by running BFS on G.
2) for i = 1 to |V |+ |C|
3) {
4) if v

i

2 V
5) �(v

i

) 1, !(v
i

) k.
6) }
7) Let S be an empty set.
8) i |V |+ |C|.
9) while i � 1

10) {
11) if i > 1 and v

i

2 V
12) {
13) Let ⌧ be the minimum integer such that v

⌧

either is a
sibling of v

i

or is v
i

itself.
14) P  {y|⌧  y  i,!(v

y

)  k}.
15) Q {y|⌧  y  i, �(v

y

)  k}.
16) if max

j2P !(v
j

)  max

j2Q �(v
j

)

17) {
18) if |Q| > 0, max

j2Q �(v
j

) < k and
�(⇡(⇡(v|V |+|C|)))  k

19) {
20) �(⇡(⇡(v|V |+|C|))) 

min{�(⇡(⇡(v|V |+|C|))),max

j2Q �(v
j

) + 1}.
21) }
22) else if |Q| > 0 and max

j2Q �(v
j

) <
!(⇡(⇡(v|V |+|C|)))  k



23) {
24) �(⇡(⇡(v|V |+|C|))) max

j2Q �(v
j

) + 1.
25) !(⇡(⇡(v|V |+|C|))) 1.
26) }
27) else if |Q| = 0 and !(⇡(⇡(v|V |+|C|))) > 0

28) {
29) �(⇡(⇡(v|V |+|C|))) 1.
30) !(⇡(⇡(v|V |+|C|))) 1.
31) }
32) S  S [ {v

j

|j 2 P}
33) }
34) else
35) {
36) Let i⇤ be an integer in P such that !(v

i

⇤
) =

max

j2P !(v
j

).
37) if max

j2P !(v
j

)  �(⇡(⇡(v|V |+|C|)))
38) {
39) �(⇡(⇡(v|V |+|C|))) 1.
40) !(⇡(⇡(v|V |+|C|))) 

min{!(⇡(⇡(v|V |+|C|))),max

j2P !(v
j

)� 1}.
41) }
42) S  S [ {v

j

|j 2 P, j 6= i⇤}.
43) }
44) i ⌧ � 1.
45) }
46) else if i = 1

47) {
48) if !(v1)  k
49) S  S [ {v1}.
50) i = 0.
51) }
52) else
53) i i� 1.
54) }
55) Return S.

Based on the previous analysis, we get the correctness of
the algorithm.

Theorem 56. Algorithm 55 returns an optimal (i.e., minimum-
sized) k-iteration Elimination Set of G = (V [ C,E).

The algorithm has time complexity O(|V |+ |C|).

VII. CONCLUSIONS

This paper studies the Stopping-Set Elimination Problem
motivated by several applications, including the application of
error correction based on natural redundancy and LDPC codes.
The NP-hardness of both the SSE1 Problem and the SSE1

Problem is proven. An approximation algorithm is presented
for the SSE1 Problem. And linear-time algorithms that return
optimal solutions are presented for the SSE1 and SSE

k

Problems when the Stopping Sets have tree structures.
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