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I. INTRODUCTION

Flash memories are attractive due to their superior per-
formances over prior mass storage technologies. However,
one challenge is the data reliability as several types of
noise [1] exist. One technology to combat errors is a strong
error correcting code, e.g., LDPC code. Another mechanism
is memory scrubbing [2], i.e., while errors accumulate in
a codeword, with the next block erasure, the codeword is
corrected and a new error-free codeword is written back to
the memory. However, in flash memory rewrites are made in
an out-of-place fashion, i.e., an updated codeword is stored
at a new physical address and the original codeword remains
in the memory. Those mechanisms lead to multiple copies of
codewords, i.e., the content-replicated codewords problem.

In this work, we enhance the flash memory reliability by
utilizing the existence of two content-replicated codewords for
decoding, including an old codeword and a new codeword
storing the same information. We aim at designing a joint
decoder having access to both content-replicated codewords,
and explore its decoding performance. This leads to reliability
improvement in flash memories. We further study a new
paradigm where the two content-replicated codewords have
different forms for better performance.

II. PROBLEM STATEMENT

Let D = {0, 1, · · · ,M−1} be the message set for M ∈ N,
and let X and Y be two alphabets of the symbols stored in a
cell. Let two encoders be f1 : D → XN and f2 : D → XN ,
and the desired joint decoder be h : YN × YN → D, where
N is the length of codewords. Let P = (X ,Y,PY |X) and
Q = (X ,Y,QY |X) be two independent channels.

We illustrate the model in Fig 1. Here, m is a common mes-
sage to both encoders, the N -dimensional vectors xN−10 (1),
xN−10 (2) ∈ XN are two codewords obtained through two
encoders (those encoders are not necessarily identical), and
yN−10 (1), yN−10 (2) are two noisy codewords through P and
Q. The task is to design a joint decoder to reliably estimate
the message m, m̂, giving yN−10 (1) and yN−10 (2).

The problem statement is presented below:

Definition 1. Given a (N, 2NR) code, P and Q, D =
{0, 1, · · · , 2NR − 1}, f1 : D → XN and f2 : D → XN , the
task is to design a joint decoding function h : YN × YN →
D such that Pr(h(yN−10 (1), yN−10 (2)) 6= i|xN−10 (1) =
f1(i), x

N−1
0 (2) = f2(i)))→ 0 for i ∈ D as N →∞.

III. SOLUTIONS

For simplicity, assume P and Q are Binary Erasure Chan-
nels with the same parameter ε, and both encoders are LDPC
encoders. We use the following notations for our LDPC
codes: let the rate of two LDPC codes be K

N , let G1, G2

be the encoding matrices, and H1, H2 denotes their parity

Fig. 1. Illustration of joint decoding content-replicated codewords.

check matrices. Let yN−10 (1), yN−10 (2) ∈ {0, 1, ?}N be two
codewords received.

All proposed solutions follow the same outline, i.e., con-
struct a LDPC code for the joint decoder based on the two
LDPC codes used, determine its parity check matrix, and
apply the conventional belief propagation decoder.

1) Joint decoder of identical content-replicated codes: The
given encoding functions are identical in this case, i.e., G1 =
G2 and H1 = H2.

Given yN−10 (1) and yN−10 (2), a codeword yN−10 for the
joint decoder is obtained by comparing yN−10 (1) and yN−10 (2)
to further eliminate erasures, i.e., for i = 0, 1, · · · , N−1, yi ={

? if yi(1) = yi(2) =?,

yi(1) = yi(2) otherwise.
The parity check matrix for yN−10 is H1. The decoding result
is obtained by applying belief propagation to yN−10 with H1

and initial erasure probability ε2.
Let λ(x) and ρ(x) be degree distributions for the LDPC

codes used, let εBP (λ, ρ) be its conventional threshold, and
let εBP

iden(λ, ρ) denote the threshold for our joint decoder.
The comparison of εBP

iden(λ, ρ) and εBP (λ, ρ) is presented in
Table I, and we have εBP

iden > εBP .
2) Joint decoder of content-replicated codes with identi-

cal information bits: The encoding functions are different
in this case, i.e., G1 6= G2 and H1 6= H2, but the
codewords carry identical information bits when regarding
them as systematic codes, that is, two encoding functions are
xN−10 (1) = uK−10 G1 and xN−10 (2) = uK−10 G2.

Let I1, I2 ⊆ {0, 1, · · · , N−1} be the information bit index
sets for yN−10 (1) and yN−10 (2), and let P1 and P2 be their
parity check bit index sets. Let yN−10 (1)I1 = (yi(1) : i ∈ I1),
i.e., information bits of yN−10 (1), and similar notations apply
to yN−10 (1)P1

and yN−10 (2)P2
. Let g(·) : I1 → I2 be a

one-to-one mapping. Similarly, further erasure elimination is
possible for yN−10 (1)I1 when comparing it with yN−10 (2)I2 ,
that is we define (yN−10 )I1 , where yi ={

? if yi(1) = yg(i)(2) =?,

yi(1) otherwise.
Then, a constructed codeword is y2N−K−10 =
[(yN−10 )I1 , y

N−1
0 (1)P1 , y

N−1
0 (2)P2 ]. That is, y2N−K−10

is constructed by extracting information bits from yN−10 (1)
and yN−10 (2), and appending parity check bits from yN−10 (1)
and yN−10 (2). An example is illustrated in Fig. 2.



Fig. 2. Illustration of constructed y2N−K−1
0 and H. (a) The Tanner graph

and H1 for yN−1
0 (1), where information bits are black and parity check bits

are red; (b) The Tanner graph and H2 for yN−1
0 (2), where information bits

are black and parity check bits are green; (c) The constructed Tanner graph
and H based on (a) and (b), where information bits are black, parity check
bits from yN−1

0 (1) are red, and parity check bits from yN−1
0 (2) are green.

Let H1 = [H1,0,H1,1, · · · ,H1,N−1], let H1,I1 = [H1,i :
i ∈ I1], and let H1,P1 = [H1,i : i ∈ P1]. Similarly, we divide
H2 into H2,I2 and H2,P2

. Then, the parity check matrix H
for y2N−K−10 is of the form in Fig 3. An example is illustrated
in Fig. 2.

The decoding result is obtained by applying belief propa-
gation to y2N−K−10 with H, the initial erasure probability ε2

for (yN−10 )I1 , and ε for yN−10 (1)P1 and yN−10 (2)P2 .

Fig. 3. Illustration of the parity check matrix H

Let εBP
dif (λ, ρ) be the joint decoder threshold when the

two LDPC codes have the same distribution functions
(λ, ρ). We can prove that εBP

dif (λ, ρ) = sup{ε ∈ [0, 1] :
x∞(x) = 0}, where xl+1(x) = fi(ε, xl(x), yl(x)), yl+1 =
fp(ε, xl(x), yl(x)), x0(x) = x2 and y0(x) = x for defined
functions fi and fp. (Due to space limitation, we omit its
proof here.) We present several εBP , εBP

iden, ε
BP
dif in Table I,

from which we see that εBP
iden > εBP

dif > εBP .

TABLE I
COMPARISON OF εBP , εBP

iden AND εBP
dif

(dv, dc) εBP εBP
iden εBP

dif

(3,4) 0.6474 0.8046 0.7549
(3,5) 0.5176 0.7194 0.6807
(3,6) 0.4294 0.6553 0.6270
(4,6) 0.5061 0.7114 0.6285
(4,8) 0.3834 0.6192 0.5581

3) Joint decoder of content-replicated codes with trans-
formed information bits: The two encoding functions are
related in this case. More specially, let G3 be an intermediate
LDPC generator matrix with the rate 1

2 . Similarly, let Ii and
Pi denote the information bit index set and parity check bit
index set for codes with Gi, i = 1, 2, 3.

The encoding algorithm is below, where (xN−10 )P3 denotes
the subvector (xi : i ∈ P3).

1) f1: xN−10 (1) = uK−10 G1.
2) vK−10 = (uK−10 G3)P3 .

Fig. 4. Illustration of constructed y2N−1
0 and H. (a) The Tanner graph and

H1 for yN−1
0 (1), where information bits are black and parity check bits

are red; (b) The Tanner graph and H2 for yN−1
0 (2), where information bits

are green and parity check bis are blue; (c) The Tanner graph and H3 for
vK−1
0 , where information bits are black and parity check bits are blue; (d)

The constructed Tanner graph and H for y2N−1
0 .

3) f2: xN−10 (2) = vK−10 G2.
That is, (xN−10 (1))I1 and (xN−10 (2))I2 are related through
G3. Refer to Fig. 4 for an example.

A decoding codeword for the joint decoder is obtained
by assembling yN−10 (1) and yN−10 (2) in the following way,
y2N−10 = (yN−10 (1)P1

, yN−10 (1)I1 , y
N−1
0 (2)P2

, yN−10 (2)I2).
Let H3 be parity check matrices corresponding to G3.

Then, the parity check matrix H for y2N−10 is of the form
in Fig. 5. An example is presented in Fig. 4.

The decoding result is obtained by applying belief prop-
agation to y2N−10 with H and initial erasure probability ε.

Fig. 5. Illustration of parity check matrix H

Let εBP
cou be the threshold of joint decoder in this case. We

calculate several εBP
cou in Table II, where the first row indicates

the regular LDPC for G3, and the first column indicates
the regular LDPC code for G1 and G2. From this table,
we see that εBP

cou > εBP
iden > εBP

dif > εBP is possible with
appropriate G3.

TABLE II
CALCULATION OF εBP

cou

(dv , dc) (1,2) (2,4) (3,6) (4,8)

(3,4) 0.7549 0.7975 0.7823 0.7697
(3,5) 0.6807 0.7555 0.7367 0.7163
(3,6) 0.6270 0.7295 0.711 0.6854
(4,6) 0.6285 0.7108 0.7001 0.6762
(4,8) 0.5581 0.6855 0.6875 0.6479
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