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I am deeply honored to serve as your Society 
president for 2011. I’d like to begin with ac-
knowledging my recent predecessors, Frank 
Kschischang (Junior Past President) and Andrea 
Goldsmith (Senior Past President), as well as 
Dave Forney, who has offi cially ended his ser-
vice as an offi cer of the IT Society on December 
31st, 2010, after a long and perhaps unmatched 
history of leadership and guidance, that stands 
as a reference for all of us. Under their lead, the 
IT Society has sailed through some signifi cant 
storms, such as an unprecedented economic re-
cession, causing turmoil for IEEE fi nances, and a 
number of sad events, including the premature 
passing of Shannon Lecturer Rudolf Ahlswede 
and other notables. Thanks to their commitment and vision, 
our Society is very much alive and kicking, we have healthy 
reserves and strong income, the membership downtrend has 
been reversed, we have an outstanding Society website that 
has become a very valuable tool for membership activities 
and visibility to the outside world, and we have put in place 
a number of highly innovative initiatives. These include the 
Student Committee, the Outreach Committee, WITHITS, the 
Distinguished Lecturers Program, the Annual School of In-
formation Theory, the ever-growing posting of preprints on 
ArXiv, and the ISIT Student Paper Award. Such initiatives 
have successfully passed the beta-testing phase and have be-
come pillars of our Society activity. 

Also, I would like to acknowledge my outstanding team 
of volunteer offi cers, Muriel Médard (First VP), Gerhard 
Kramer (Second VP), Nihar Jindal (Treasurer) and Natasha 
Devroye (Secretary), who will share with me the burden of 
running the Society in 2011; all standing Committee Chairs 
and members (it would be too long to mention them explic-
itly, but please have a look at http://www.itsoc.org/people); 
the Information Theory Society Distinguished Lecturers 
(http://www.itsoc.org/people/committees/dlp); and all IT 
Society Chapter volunteers (http://www.itsoc.org/people/
chapters). 

Given the excellent state of the Information Theory Society, my 
main goal for 2011 will be “do no harm”, a golden rule sadly 

too often forgotten by many politicians and peo-
ple with responsibilities around the world. On 
the other hand, we have a lot of work to do and 
we must be proactive in facing the challenges 
that the future is putting in front of us. 

While our Information Theory Transactions 
continues to rank at the top of the ISI Journal 
Citation Report among all journals in Electri-
cal and Electronic Engineering and Computer 
Science in total citations, and fi rst among all 
journals in Electrical Engineering, Computer 
Science and Applied Mathematics according 
to the Eigenfactor tm  score, the “sub-to-pub” 
time (i.e., the length of the time between fi rst 

submission and publication of a paper) remains a concern. 
Some important steps have been taken in order to correct this 
problem without sacrifi cing the quality of our Transactions, 
which is ultimately our most cherished value. I have im-
mense trust in our recently appointed EiC, Helmut Bölcskei, 
and in the newly created Executive Editorial Board, consist-
ing of Dave Forney, Shlomo Shamai, Alexander Vardy and 
Sergio Verdú. Under their leadership, I am confi dent that the 
sub-to-pub time will be reduced to more acceptable num-
bers, in line with other comparable IEEE journals. While the 
transition to Scholar One, effective as of September 2010, is a 
fi rst step in this direction, we can achieve this ambitious goal 
only if our collective sense of shared responsibility is further 
strengthened and we all feel committed to provide timely 
and high-quality reviews. 

Looking at a broader picture, it is useful to consider what 
Information Theory has achieved and where it is heading. 
In the past few years, we have witnessed a period of vibrant 
new discoveries. Decades-long open problems have been 
solved, either exactly or via good engineering approxima-
tions. The mathematical techniques that form the founda-
tion of our  discipline, such as random coding, superposition 
coding, successive interference cancellation, lattice coding 
and quantization, binning (or hashing), linear and non-linear 
 precoding,  opportunistic scheduling and many more, are now 

continued on page 3
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From the Editor
Tracey Ho

Dear IT Society members,

In this fi rst issue of 2011, we welcome our 
new IT Society President Giuseppe Caire, 
who shares his thoughts on our society’s 
strengths and successes, and remaining 
challenges to be tackled. We also, with sad-
ness, pay tribute to four distinguished col-
leagues in information theory who passed 
away recently: Rudolf Ahlswede, Freder-
ick Jelinek, Joseph Ovseyevich and Ray-
mond J. Solomonoff. On a happier note, 
we congratulate the winners of prestigious 
IEEE medals and awards, and the newly 
elevated IEEE Fellows from our society. 
And we recap the plenary talks by Ram 
Zamir at ISIT 2010 in Austin and Ian Blake 
at ITW 2010 in Dublin. 

We also have an exciting new column 
on “Teaching IT”. This was inspired by 
Sergio Verdu’s “Teaching IT” Shannon 
lecture, so it is fi tting that he has written 
the inaugural article, on teaching lossless 
data compression. As envisioned by Ezio 
Biglieri, who fi rst raised the idea, and the 
newsletter editorial committee, the col-
umn focuses on the challenge of teaching 

seemingly complicated technical concepts in the simplest 
possible way, reducing each to its essence while not sacrifi c-
ing scope and rigor. 

As a reminder, announcements, news and events intend-
ed for both the printed newsletter and the website, such 
as award announcements, calls for nominations and up-
coming conferences, can be submitted jointly at the IT 
Society website http://www.itsoc.org/, using the quick 
links “Share News” and “Announce an Event”. Articles 
and columns that do not fall into the above categories 
should be e-mailed to me at tho@caltech.edu, with a sub-
ject line that includes the words “IT newsletter”. The deadlines for the next few 
issues are: 

Issue   Deadline
June 2011  April 10, 2011
September 2011  July 10, 2011
December 2011  October 10, 2011

Please submit plain text, LaTeX or Word source fi les; do not worry about fonts or layout 
as this will be taken care of by IEEE layout specialists. Electronic photos and graphics 
should be in high resolution and sent as separate fi les.

I look forward to your contributions and suggestions for future issues of the newsletter.

Tracey Ho
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at the heart of core technology developments, and are migrating 
into new systems and communication standards. Central to this 
recent development is the concept of networks. It is by now clear 
that the single-source single-link problem has arrived at a point 
where the marginal improvement, in most settings of engineering 
signifi cance, is relatively small. In contrast, as soon as the prob-
lems are enriched with network aspects, such as distributed and 
correlated sources, interference and intermediate nodes that are 
neither sources nor destinations, the distance between theory and 
practice is still large, and the margins for dramatic improvements 
are potentially huge. Furthermore, even the theory offers plenty 
of long-standing or new open problems that will keep generations 
of information theorists busy for a long time. Once I heard that 
Gödel’s Theorem is the “life insurance” of mathematicians. With-
out any claim of mathematical rigor, I’d like to borrow this state-
ment and say that communication networks are the life insurance 
of information theorists: there is still a lot of work to do! 

Despite recent successes and wide demonstration of the impact 
of Information Theory on technology and, ultimately, on society, 
wealth and jobs, sometimes I have the impression that the same 
excitement is not shared by funding agencies, college students en-
rolling in engineering programs, and university administrators. It 
is rare, today, to hear our broad area mentioned as a “strategic 
priority” in any of these environments. Admittedly, there are areas 
with a higher presence in the popular media and and with the 
public, which have drained much attention and much of the avail-
able research funding. Perhaps this is a backlash from the over-
emphasis on the broad Information Technology sector during the 
“dot-com bubble”. However, in my humble view, this fact merits 
some serious refl ections: how can we reach out to different areas, 
and bring the approach and the methods of Information Theory 
to the solution of a broader set of problems, while preserving the 
core aspects that made our fi eld well-defi ned, rigorous and sci-
entifi cally satisfactory? Does it make sense to broaden the class 
of problems beyond the classical scenarios? Some partial answers 
are already being provided in these days, with the enlarging of 
our fi eld to computation, security, coordination of actions and con-
trols through communication networks, with applications that go 
beyond the simple reliable communication of information from 
point A to point B, but touch aspects such as Smart Infrastructure, 
Information Dissemination in Social Networks and much more. I 
believe that this evolution is vital for the future of our area, pro-
vided that the new problems are stated and attacked with the 

same brilliant simplicity, broad applicability, and mathematical 
rigor that characterized the early days of Information Theory. 

Now, as the IT Society president for 2011, a legitimate question 
that I ask myself is what the IT Society can do in order to foster 
the growth of our fi eld. I believe that our strongest priority is to 
invest in the future generations of researchers, i.e., in our Ph.D. 
students, and at the same time to offer visibility to such outstand-
ing students in order to compete for academic and leading in-
dustrial research positions around the world. In this respect, the 
Annual School of Information Theory is a strategic asset to create 
a vibrant scientifi c community, and to offer an occasion to doc-
toral students to get in touch with each other and with leading 
researchers in our fi eld, in a convivial and more relaxed environ-
ment than a conventional conference. The success of this initia-
tive is striking, and I’d like to thank Roberto Padovani for his 
generous gift that allows the IT Society to support a Padovani 
Lecturer at the school. Also, it is very comforting to notice that 
several sister initiatives have been taking place in IEEE regions 
other than North America. Similarly, the Distinguished Lecturers 
Program can become a great showcase of our discipline beyond 
the conventional venues of ISIT and ITW. Finally, I would like 
to endorse the commitment of IT Society members in serving as 
liaisons with respect to various initiatives and committees cutting 
across IEEE and beyond, around themes of great potential inter-
est. There are several other initiatives that we may undertake, as 
for example contributing to the debate inside IEEE to defi ne a 
suitable “open publication” model, without hurting our source of 
revenue due to IEEEXplore. 

I would like to close by encouraging all of you to get more in-
volved in the Society. The IT Society’s most valuable resource is 
its outstanding and highly committed members, and we are al-
ways in need of dedicated and energetic volunteers to generate 
new ideas and bring them to life. Board of Governors meetings 
are open to all, so feel free to attend any or all if you wish, to pro-
pose a new initiative, to see how the Society is governed, or just to 
participate to the discussion. As usual, 2011 BoG meeting agendas 
are posted on the IT Society website in advance of each meeting. 
You can also join Society mailing lists to be informed about recent 
events or to participate in ongoing discussions. Alternatively, you 
can contact me (at caire@usc.edu) or the other offi cers with your 
ideas, thoughts, or concerns. Thanks again for entrusting me with 
the Presidency of this great Society.

President’s Column continued from page 1
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2011 IEEE Medals
IEEE Richard W. Hamming Medal
Toby Berger
Cornell University and University of Virginia

“For contributions to Information Theory, including source cod-
ing and its applications.”

IEEE Jack S. Kilby Signal Processing Medal
Ingrid Daubechies
Princeton University

“For pioneering contributions to the theory and applications of 
wavelets and fi lter banks.”

IEEE Alexander Graham Bell Medal
Arogyaswami J. Paulraj 
Stanford University

“For pioneering contributions to the application of multiantenna 
technology to wireless communication systems.”

2011 IEEE Technical Field Awards
IEEE Koji Kobayashi Computers and 
Communications Award
For outstanding contributions to the integration of computers 
and communications.

Thomas J. Richardson 
Qualcomm Flarion Technologies

Rüdiger Urbanke 
Ecole Polytechnique Fédérale de Lausanne (EPFL)

“For developing the theory and practice of transmitting data 
 reliably at rates approaching channel capacity.”

IEEE Eric E. Sumner Award
For outstanding contributions to communication theory

H. Vincent Poor 
Princeton University

“For pioneering contributions to multiple-access communications.”

IEEE Kiyo Tomiyasu Award
For outstanding early to mid-career contributions to technologies 
holding the promise of innovative applications. 

Moe Z. Win
Massachusetts Institute of Technology

“For fundamental contributions to highspeed reliable 
 communications using optical and wireless channels”

2011 IEEE Donald G. Fink Prize Paper Award
Andreas F. Molisch
 University of Southern California

Larry J. Greenstein
Rutgers University-WINLAB

Mansoor Shafi 
Telecom New Zealand

For their paper entitled “Propagation Issues for Cognitive Ra-
dio,” Proceedings of the IEEE, Vol. 97, No. 5, May 2009

Society Awards
2009 Best Paper Award in “Signal 
Processing and Coding for Data Storage” 
of the IEEE Communications Society
“Rank Modulation for Flash Memories,” by Anxiao (Andrew) Jiang, 
Robert Mateescu, Moshe Schwartz and Jehoshua Bruck, in IEEE 
Transactions on Information Theory, vol. 55, no. 6, pp. 2659–2673, 
June 2009

2010 IEEE Communications Society Young 
Researcher Award for the Europe, Middle 
East and Africa region
Joäo Barros
University of Porto

IT Society Members Win IEEE Medals and Awards
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2010 Newly Elevated IEEE Fellows

Mark Bell
Purdue University

for contributions to signal design and processing in radar and 
communication systems

Holger Boche
Technical University of Munich 

for contributions to signal processing and multi-user wireless 
communications

Marco Chiani
University of Bologna

for contributions to wireless communication systems

Keith Chugg
University of Southern California

for contributions to adaptive and iterative data detection 
and  decoding

Tolga Duman
Arizona State University

for contributions to coding and modulation for wireless, 
 recording and underwater acoustic channels

Elza Erkip
Polytechnic Institute of NYU

for contributions to multi-user and cooperative communications

Dennis Goeckel
University of Massachusetts Amherst

for contributions to wireless communication systems and networks

Piyush Gupta
Bell Labs, Alcatel-Lucent

for contributions to wireless networks

Yunghsiang Han
National Taipei University

for contributions to decoding techniques

Robert Heath
The University of Texas at Austin

for contributions to multiple antenna wireless communications

Thomas Kolze
Broadcom Corporation

for contributions to physical layer architecture in communication 
systems

Ioannis Kontoyiannis
Athens University of Economics and Business

for contributions to data compression

Kwang Bok Lee
Seoul National University

for contributions to high-speed wireless communication 
 systems

Rainer Martin
Ruhr University

for contributions to speech enhancement for mobile communica-
tions and hearing aids

Dharmendra Modha
IBM Almaden Research Center

for contributions to cognitive computing and caching  algorithms

Hermann Ney Aachen
RWTH University

for contributions to statistical language modeling, statistical 
 machine translation, and large vocabulary speech recognition

Erik Ordentlich
Hewlett-Packard Laboratories

for contributions to universal algorithms and data compression

Shivendra Panwar
Polytechnic Institute of NYU

for contributions to design and analysis of communication 
 networks

Balaji Prabhakar
Stanford University

for contributions to network theory and algorithms

James Ritcey
University of Washington

for contributions to bit-interleaved coded modulation with 
 iterative decoding

William Ryan
University of Arizona

for contributions to channel coding for reliable data transmission 
and storage

Jawad Salehi
Sharif University of Technology
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for contributions to fundamental principles of optical code 
 division multiple access

Anna Scaglione
University of California

for contributions to fi lterbank precoding for wireless transmis-
sion and signal processing for cooperative sensor networks

Yossef Steinberg 
Technion Israel Institute of Technology

for contributions to information theory

Mitchell Trott
Hewlett Packard Laboratories

for contributions to wireless communication

Vinay Vaishampayan 
AT&T Labs

for contributions to error-resilient compression systems

Emanuele Viterbo 
DEIS-Università della Calabria

for contributions to coding and decoding for wireless digital 
communications

Li-Chun Wang
National Chiao Tung University

for contributions to cellular architectures and radio resource 
management in wireless networks

Xiaolin Wu
McMaster University

for contributions to image coding, communication and 
processing

Hirosuke Yamamoto 
The University of Tokyo

for contributions to source coding and information-theoretic 
 secure c oding

Roy Yates
Rutgers University-WINLAB

for contributions to wireless network resource allocation



7

March 2011 IEEE Information Theory Society Newsletter

In Memoriam
Rudolf Ahlswede 1938–2010

I. Csiszár, N. Cai, K. Kobayashi, and U.Tamm 

Rudolf Ahlswede, a mathematician, one of the truly great person-
alities of Information Theory, passed away on December 18, 2010 
in his house in Polle, Germany, due to a heart attack. He is sur-
vived by his son Alexander. His untimely death, when he was still 
very actively engaged in research and was full with new ideas, is 
an irrecoverable loss for the IT community. 

Ahlswede was born on September 15, 1938 in 
Dielmissen,  Germany. He studied Mathematics, 
Philosophy and Physics in Göttingen, Germany, 
taking courses, among others, of the great math-
ematicians Carl Ludwig Siegel and Kurt Reide-
meister. His interest in Information Theory was 
aroused by his advisor Konrad Jacobs, of whom 
many students became leading scientists in 
Probability Theory and related fi elds. 

In 1967 Ahlswede moved to the US and became 
Assistant Professor, later Full Professor at Ohio 
State University, Columbus. His cooperation 
during 1967–1971 with J. Wolfowitz, the re-
nowned statistician and information theorist, 
contributed to his scientifi c development. Their 
joint works included two papers on arbitrarily varying channels 
(AVCs), a subject to which Ahlswede repeatedly returned later. 

His fi rst seminal result was, however, the coding theorem for the 
(discrete memoryless) multiple-access channel (MAC). Following 
the lead of Shannon’s Two-Way Channel paper, this was one of the 
key results originating Multiuser Information Theory (others were 
those of T. Cover on broadcast channels and of D. Slepian and 
J. Wolf on separate coding of correlated sources), and it was soon 
followed by an extension to two-output MAC’s, requiring new 
ideas. Also afterwards, Ahlswede continued to be a major con-
tributor to this research direction, in collaboration with J. Körner 
(visiting in Columbus in 1974) and later also with other members 
of the Information Theory group in Budapest, Hungary. In addi-
tion to producing joint papers enriching the fi eld with new results 
and techniques, this collaboration also contributed to the Csiszár-
Körner book where several ideas are acknowledged to be due to 
Ahlswede or have emerged in discussions with him. 

In 1975 Ahlswede returned to Germany, accepting an offer from 
Universität Bielefeld, a newly established “research university” 
with low teaching obligations. He was Professor of Mathematics 
there until 2003, and Professor Emeritus from 2003 to 2010. For 
several years he devoted much effort to building up the Applied 
Mathematics Division, which at his initiative included Theoreti-
cal Computer Science, Combinatorics, Information Theory, and 
Statistical Physics. These administrative duties did not affect his 
research activity. He was able to develop a strong research group 
working with him, including visitors he attracted as a leading sci-
entist, and good students he attracted as an excellent teacher. In 
the subsequent years Ahlswede was heading many highly fruitful 

research projects, several of them regularly extended even after his 
retirement which is quite exceptional in Germany. The large-scale 
interdisciplinary project ”General Theory of Information Trans-
fer” (Center of Interdisciplinary Research, 2001–2004) deserves 
special mentioning. It enabled him to pursue very productive 

joint research with many guests and to organize 
several conferences. An impressive collection of 
new scientifi c results obtained within this project 
was published in the book “General Theory of In-
formation Transfer and Combinatorics” (Lecture 
Notes in Computer Science, Springer, 2006). 

During his research career Ahlswede received 
numerous awards and honours. He was recipi-
ent of the Shannon Award of the IEEE IT Society 
in 2006, and previously twice of the Paper Award 
of the IT Society (see below). He was member of 
the European Academy of Sciences, recipient of 
the 1998/99 Humboldt-Japan Society Senior Sci-
entist Award, and he received honorary doctor-
ate of the Russian Academy of Sciences in 2001. 
He was also honored by a volume of 50 articles 
on the occasion of his 60’th birthday (Numbers, 

Information and Complexity, Kluwer, 2000.) 

Ahlswede’s research interests included also other fi elds of Ap-
plied and Pure Mathematics, such as Complexity Theory, Search 
Theory (his book ”Search Problems” with I. Wegener is a classic), 
Combinatorics, and Number Theory. Many problems in these dis-
ciplines that aroused Ahlswede’s interest had connections with In-
formation Theory, and shedding light on the interplay of IT with 
other fi elds was an important goal for him. He was likely the fi rst 
to deeply understand the combinatorial nature of many IT prob-
lems, and to use tools of Combinatorics to solve them. 

In the tradition of giants as Shannon and Kolmogorov, Ahlswede 
was fascinated with Information Theory for its mathematical 
beauty rather than its practical value (of course, not underesti-
mating the latter). In the same spirit, he was not less interested in 
problems of other fi elds which he found mathematically fascinat-
ing. This is not the right place to discuss his (substantial) results 
not related to IT. We just mention the celebrated Ahlswede-Daykin 
”Four Functions Theorem” having many applications in Statistical 
Physics and in Graph Theory, and the famous Ahlswede-Khacha-
trian ”Complete Intersection Theorem”. The latter provided the 
fi nal solution of a problem of Paul Erdös, which had been very 
long-standing even though Erdös offered $500 – for the solution 
(Ahlswede and Khachatrian collected). For more on this, and also 
on combinatorial results of information theoretic interest, see his 
book ”Lectures on Advances in Combinatorics” with V. Blinovsky 
(Springer, 2008). 

Even within strict sense Information Theory, Ahlswede’s contribu-
tions are too wide-ranging for individual mentioning, they extend 

Rudolf Ahlswede
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as far as the formerly exotic but now highly popular fi eld of Quan-
tum Information Theory. Still, many of his main results are one of 
the following two kinds. 

On the one hand, Ahlswede found great satisfaction in solving 
hard mathematical problems. Apparently, this is why he returned 
again and again to AVCs, proving hard results on a variety of mod-
els. By his most famous AVC theorem, the (average error) capacity 
of an AVC either equals its random code capacity or zero. Remark-
ably, this needed no hard math at all, ”only” a bright idea, the 
so-called elimination technique (a kind of derandomization). He 
was particularly proud of his solution of the AVC version of the 
Gelfand-Pinsker problem about channels with non-causal channel 
state information at the sender. To this, the elimination technique 
had to be combined with really hard math. Another famous hard 
problem he solved was the ”zero excess rate” case of the Multiple 
Descriptions Problem (the general case is still unsolved). 

On the other hand, Ahlswede was eager to look for brand new 
or at least little studied models, and was also pleased to join 
forces with coauthors suggesting work on such models. His 

most frequently cited result (with Cai, Li and Yeung), the Min-
Cut-Max-Flow Theorem for communication networks with one 
source and any number of sinks, belongs to this category. So do 
also his joint results with Csiszár on hypothesis testing with 
communication constraints, and with Dueck on identifi cation 
capacity, receiving the Best Paper Award of the IT Society in 
1988 and 1990. Later on, Ahlswede has signifi cantly broadened 
the scope of the theory of identifi cation, for example to quan-
tum channels (with Winter). Further, a two-part joint paper 
with Csiszár provides the fi rst systematic study of the concept 
of common randomness, both secret and non-secret, relevant, 
among others, for secrecy problems and for identifi cation ca-
pacity. The new kind of problems studied in these papers sup-
port Ahlswede’s philosophical view that the real subject of 
information theory should be the broad fi eld of “information 
transfer”, which is currently unchartered and only some of its 
distinct areas (such as Shannon’s theory of information trans-
mission and the Ahlswede-Dueck theory of identifi cation) are 
in view. Alas, Rudi is no longer with us, and extending informa-
tion theory to cover such a wide scope of yet unknown dimen-
sions will be the task of the new generation.

Frederick Jelinek, a post-WW2 teenage Czechoslovakian émigré 
to the United States, abandoned his childhood dream of  becoming 
a lawyer because he felt a native Czech speaker 
would be unable to develop the command of Eng-
lish requisite for that profession. Ironically, Jelinek 
later became the long term manager of the Contin-
uous Speech Recognition Group at IBM  Yorktown, 
where he made profound contributions to both 
the theory and the practice of automatic English 
speech recognition systems. Moreover, he held 
professorial positions at Cornell University before 
his IBM years and at Johns Hopkins University in 
his post-IBM career. At the Cornell School of Elec-
trical Engineering in the 1960’s, Fred built a strong 
group of students and faculty members, together 
with whom he placed Cornell squarely on the map 
of major centers of research on information theo-
ry and error control coding; also, he authored his 
fi rst book, Probabilistic Information Theory. In 1993 
Professor Jelinek joined the Hopkins faculty as the 
Director of the newly formed Center for Language 
and Speech Processing. He elevated that Center 
to arguably the premiere institution concerned with the science 
and engineering of the language-technology interface. Also, he 
wrote his second book, Statistical Methods for Speech Recognition. 
Designed as a graduate-level monograph for students working in 
automated language processing research, it was pervasively in-
formed by the landmark work conducted by his Group at IBM.

Born in Kladno, Czechoslovakia, on November 18, 1932, he was 
named Bedr̈ich Jelinek. His sister and he briefl y enjoyed a pleasant 
childhood. However, the rise of Nazi Germany led to his father’s 
death in a concentration camp. The oppressive postwar Soviet 

 occupation of Czechoslovakia prompted his mother to emigrate to 
New York with her children, at which point his given name was 

changed to Frederick. Fred studied engineer-
ing at City College of New York and received a 
scholarship that permitted him to complete his 
undergraduate studies at MIT. In the mid 1950’s 
he made his fi rst return to Czechoslovakia, 
where a childhood friend who had become a 
fi lmmaker introduced him to Milena Tobolova, 
an aspiring screenwriter who in time became 
Fred’s wife. Jerome Wiesner, a Science Advisor 
to Presidents Eisenhower, Kennedy and John-
son who later became President of MIT, is said 
to have acted on behalf of Fred and Milena by 
requesting Soviet Premier Nikita Kruschchev 
expedite permission for Milena to emigrate to 
the U.S.A. Whether or not this was the catalyst 
will never be known, but Milena was granted 
the permission, and Fred and Milena soon after 
married. They raised two children, Hannah and 
William. Milena continues to teach fi lm mak-
ing at Columbia University and to be an active 

member of the Czechoslovakian fi lm making community.

Fred’s inclination toward linguistic research dates back at least to 
his MIT days. Indeed, he claimed that one of his principal reasons 
for joining the Cornell faculty was that he would have a chance to 
work with the eminent linguist, Charles Hockett. He was pleas-
antly impressed by the EE Chair, Henry Booker, who offered him 
an assistant professorship immediately following the presentation 
of his colloquium. Before Fred’s recruitment, the faculty at Cor-
nell interested in information theory and communications were 
the eminent Jacob Wolfowitz in Math and Henry McGaughan 

Frederick Jelinek 1932–2010
Toby Berger, Terrence L. Fine, and Sanjeev Khudanpur

Frederick Jelinek
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and Nicholas DeClaris in EE. Fred was Cornell EE’s fi rst full-time 
information theorist. He wanted to know “how the information 
universe worked.” He had notions of how different areas of tech-
nology were connected to  information theory, particularly compu-
tational complexity and the role of early computers in communi-
cation processing. 

Fred propelled the growth of a group at Cornell with interests 
related to information theory. Tom Gaarder, a student of Norm 
Abramson, was hired in 1965, but left to join Abramson in Ha-
waii in 1967. Fred recruited Terry Fine who started in Fall 1966. 
Neil J.A. Sloane had been a graduate student in EE working on 
a dissertation in neural networks that was motivated by Frank 
Rosenblatt’s pioneering work at Cornell. Fred was Neil’s advisor 
of record in EE. When Neil fi nished in 1967 he was hired as an 
assistant professor in EE by Fred and Terry. Neil created the fi rst 
course in coding theory at Cornell and began his monumental 
handbook of  integer sequences Toby Berger was recruited in 1968 
from Raytheon, where he had already begun work on his classic 
“Rate Distortion Theory.’’ There was a weekly meeting dubbed the 
Information, Communications and Decision Theory “Syndicate”. 
It consisted of Fred, Terry, Neil, Toby and their students engag-
ing in an evening of research presentations and socializing. Elwyn 
Berlekamp enticed Neil to Bell Labs in mid-1969. Upon Fred’s de-
parture for IBM in 1972, Toby became Cornell’s lead information 
theorist. The last information-theoretic hire made while Fred was 
at Cornell was that of Tom Cover’s student, Patrick Bergmans. 
Patrick served from 1972–74, when he returned to his native Bel-
gium and pursued a multifaceted career in academia, as a printing 
industry entrepreneur, and eventually as a Xerox executive. In ad-
dition to Neil, Fred advised several Cornell EE PhD students in-
cluding Frank Huband (Exec. Dir. ASEE), Ken Schneider (Telebyte 
founder and CEO), John Anderson (Professor at McMaster and 
Lund), and Hen-Suh Park (Korea Telecom Industry Association). 

Most of Fred’s early publications were in the IEEE Transactions 
on Information Theory. Particularly notable among them was 
Tree Encoding of Memoryless Time-Discrete Sources with a Fidelity 
Criterion, IEEE Trans. IT-15:5, 584–590, 1969, which won the IT 
Group’s Outstanding Paper Award. Fred was elected to the Ad-
ministrative Committee of the IT Group and rose to its presi-
dency in 1977; his Cornell hires Berger and Fine each also served 
as IT Group presidents. Jelinek played a key role in the organi-
zation of ISIT77 held at Cornell, an event that attracted media 
attention because, over NSA objections, papers on cryptography 
were for the fi rst time scheduled and presented publicly.

Fred spent a sabbatical at the T.J. Watson Research Labs of IBM. 
This experience predisposed him to join and then lead the new 
group on Speech Recognition that was forming there in 1972 un-
der Joe Raviv’s leadership. When Raviv left to create the IBM labo-
ratory in Haifa, Fred became leader of this group. Cornell gave 
Fred the maximum leave of two years before requiring that he re-
turn. Electing to remain at IBM, Fred led a group that paved a new 
path in speech recognition that is still state-of-the-art. It was a rare 
and happy confl uence between the circle of information-theoretic 
ideas that appealed to Fred and a path-setting highly successful 
approach to this problem. 

Early in his IBM days Fred published the now-classic paper, Con-
tinuous speech recognition by statistical methods, in the 1976 Proceed-
ings of the IEEE. The ideas set forth therein, although considered 

heretical by certain linguistics experts of that era, have become the 
foundation of virtually every practical system that addresses the 
 continuous speech recognition problem. Fred and his co-authors 
Lalit Bahl, John Cocke and Joe Raviv are widely known for their 
short but highly infl uential paper, Optimal decoding of linear codes 
for minimizing symbol error rate, IEEE Trans IT, 284-287, 2003, which 
treated “the general problem of estimating the a posteriori prob-
abilities of the states and transitions of a Markov source observed 
through a discrete memoryless channel.” Known ever since as the 
BCJR algorithm for hidden Markov chains, it has enjoyed wide-
spread application not only to automatic speech recognition but 
also in such diverse fi elds as stock market analysis and error correct-
ing codes. Indeed, some members of Fred’s IBM lab subsequently 
founded hugely successful hedge funds, perhaps by applying the 
BCJR algorithm. Steve Wicker tells us that “the BCJR algorithm (the 
J is for Jelinek) is a critical element in Turbo decoding. There is thus 
a little bit of Fred in every 3G cell phone on the planet.”

At Hopkins Fred not only spearheaded the development of 
CSLP’s technical staff but also was instrumental in developing a 
strong graduate student and postdoc presence. Through a steadily 
increasing program of internships and the venerated Johns Hop-
kins Workshops on Language and Speech, he expanded CSLP into 
a vehicle for synergistic research with budding researchers and 
their mentors from institutions around the country and around 
the world. Steve Young, in his commentary Frederick Jelinek 1932–
2010: The Pioneer of Speech Recognition Technology, SLTC Newsletter, 
November 2010, sums up the breadth and depth of Fred Jelinek’s 
contributions as follows: 

He was not a pioneer of speech recognition; he was the pioneer 
of speech recognition. His contribution has been recognized 
by many awards. He received the IEEE Signal Processing So-
ciety award in 1998 and the IEEE Flanagan Award in 2005. He 
received the ISCA Medal for Scientifi c Achievement in 1999 
and he was made an inaugural ISCA Fellow in 2008. He was 
awarded an Honorary Doctorate at Charles University of 
Prague in 2001 and he was elected to the National Academy of 
Engineering in 2006….Fred Jelinek was an inspiration to our 
community. He will be sorely missed by all who knew him. 

At the event Remembering and Celebrating the Life of Frederick Jelinek 
held at Johns Hopkins on November 6, 2010, many people from all 

From L to R, Patrick Bergmans, Toby Berger, Fred Jelinek, 
and Terry Fine at the IEEE International Symposium on 
Information Theory in Ashkelon, Israel, Summer 1973.
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the stages of Fred’s personal and professional lives gathered to share 
their memories of Fred and his works. We end this tribute to Fred 
with remarks made there by Noah Smith, an assistant professor of 
computer science at Carnegie Mellon. We feel Noah’s  remarks, print-
ed here with his permission, succinctly and effectively capture much 
of the essence of Fred Jelinek’s personality and spirit:

When my career started, a little more than a decade ago, 
at a summer workshop here, Fred was there. He offered 
subtle guidance. More, he paid attention. Fred made time 
for people who wanted to learn, no matter how green they 
were. He never held back disagreement or skepticism, but 
he was open to persuasion, especially if you could back up 
your argument with data. He took pleasure in seeing us 
stand up earnestly to his earnest challenges. In questioning, 
he sought understanding, and he did so with reckless aban-
don and not a hint of self-consciousness. He took the work 

seriously and never compromised on the science, but he 
didn’t take himself too seriously. He understood the social 
side of science and the value of sitting around a table with 
 colleagues and taking pleasure in their company. Fred was 
living proof that senior scholars can stay engaged till the 
end. After I graduated, and he found me a job, he still called 
me from time to time to check on how things were going.

I still have his unmistakable voice on my offi ce answering 
machine. “Noah: It’s Fred. Call me back.” There is no one like 
him. Even on the answering machine, his voice fi lls the room.

Good role models are hard to come by, and rarer still is a role 
model you seek to imitate without realizing that it’s hap-
pening. Our fi eld, our academic family, will not be the same 
without him, but his legacy as a complete scholar will be 
passed down for many generations to come.

Joseph Ovseyevich 1916–2010
Vadim Stefanuk and Martin Hellman

It is with sadness that we report the death of our friend and col-
league, Joseph Ovseyevich, on December 13, 2010, at the age of 94. 
Prof. Ovseyevich served as the Scientifi c Director of the Institute 
for Problems of Information Transmission of the Russian Acad-
emy of Sciences from the Institute’s inception in 1961. From its 
Russian name, Institut Problemy Peredachi Informatsii, the Institute 
is known as IPPI. Ovseyevich played an impor-
tant role in establishing IPPI as one of the world’s 
leading information theory research organiza-
tions. Well known contributors to our fi eld who 
worked at IPPI or were infl uenced by it include 
Roland Dobrushin, Rafail Khasminskii, Gregori 
Margulis, Mark Pinsker, Vadim Stefanuk, Albert 
Shiryaev, Yuri Shtarkov, Boris Tsybakov, Rom 
Varshamov, Akiva Yaglom, Viktor Ziablov, and 
Kamil Zigangirov.

Due to Ovseyevich’s efforts IPPI became a lead-
ing scientifi c organization in Russia, known for 
its achievements in areas ranging from biology to 
linguistics to telecommunications, and of course, 
information theory. Professor Ovseyevich was 
known in the Academy of Sciences not only for 
his talent in leading IPPI at a scientifi c level, but 
also for his deep interest in the people residing 
there. His door was always open, and many at 
IPPI valued his thoughtful advice and support on personal as well 
as scientifi c matters. Those who knew him, both in Russia and 
abroad, valued him as a reliable and trustworthy friend.

Professor Ovseyevich played a key role in organizing a number 
of International Symposia on Information Theory, sponsored by 
the Soviet (and later Russian) Academy of Sciences. These were 
often held back-to-back with similarly named IEEE Information 
Theory Symposia, a practice that facilitated attendance by West-
ern researchers as well as spotlighting the research results of some 

prominent Soviet researchers who were unable to travel abroad. 
This was part of his larger effort to build bridges between IPPI and 
the IEEE Information Theory Society. 

Yosif Abramovich “Joseph” Ovseyevich was born in Yaroslavl city 
in 1916, and in 1923 moved to Moscow. He graduated from Mos-

cow Institute of Communication Engineering in 
1940. His scientifi c career was interrupted by the 
Second World War, during which he served in 
the infantry. After the Nazis were defeated, he 
left the Red Army as a highly decorated offi cer 
with the rank of Major. In 1946 he returned to 
scientifi c activity within the Soviet Academy of 
Sciences. He received his Ph.D. in 1954, and his 
Doctor of Science (Dr.Sc.) in 1973, after defend-
ing his thesis titled “The Methods of Informa-
tion Transmission in Analog Networks.”

His further scientifi c interests were devoted to 
information theory, mainly to the theoretical 
problems of the throughput of real radio chan-
nels, linear distortions and their correction. Pro-
fessor Ovseyevich published over 70 papers.

His outside interests included poetry and play-
ing piano. In spite of poor health in recent years, 

he continued visiting IPPI, even taking part in a number of scien-
tifi c meetings there.

On December 16, 2010, a last tribute was paid to Professor 
Ovseyevich at the Presidium of the Russian Academy of Sciences. 
Everyone present stressed that he will be remembered as an out-
standing person of courage, leadership, intelligence and warmth. 
Our colleagues at IPPI have committed themselves to maintain the 
high standards of scientifi c and personal life embodied in Profes-
sor Joseph Ovseyevich. He will be missed.

Joseph Ovseyevich
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Raymond J. Solomonoff 1926–2009
Peter Gács and Paul M. B. Vitányi 

Ray Solomonoff, the fi rst inventor of some of the fundamental 
ideas of Algorithmic Information Theory, died in December, 2009. 
His original ideas helped start the thriving research areas of algo-
rithmic information theory and algorithmic inductive inference. 
His scientifi c legacy is enduring and important. 
He was also a highly original, colorful personal-
ity, warmly remembered by everybody whose life 
he touched. We outline his contributions, placing 
it into its historical context, and the context of 
other research in algorithmic information theory. 

1. Introduction
Raymond J. Solomonoff died on December 7, 
2009, in Cambridge, Massachusetts. He was the 
fi rst inventor of some of the fundamental ideas 
of Algorithmic Information Theory, which deals 
with the shortest effective description length of 
objects and is commonly designated by the term 
“Kolmogorov complexity.“ 

In the 1950s Solomonoff was one of the fi rst re-
searchers to introduce probabilistic grammars 
and the associated languages. He championed probabilistic meth-
ods in Artifi cial Intelligence (AI) when these were  unfashionable 
there, and treated questions of machine learning early on. But his 
greatest contribution is the creation of Algorithmic Information 
Theory. 

In November 1960, Solomonoff published the report [14] present-
ing the basic ideas of Algorithmic Information Theory as a means 
to overcome serious problems associated with the application of 
Bayes’s rule in statistics. His fi ndings (in particular, the invariance 
theorem) were mentioned prominently in April 1961 in Minsky’s 
symposium report [8]. (Andrei N. Kolmogorov, the great Russian 
mathematician, started lecturing on description complexity in 
Moscow seminars about the same time.) 

Solomonoff’s objective was to formulate a completely general 
theory of inductive reasoning that would overcome shortcomings 
in Carnap’s [1]. Following some more technical reports, in a long 
journal paper in two parts he introduced “Kolmogorov” complex-
ity as an auxiliary concept to obtain a universal a priori probability 
and proved the invariance theorem that, in various versions, is 
one of the characteristic elements of Algorithmic Information The-
ory [16,17]. The mathematical setting of these ideas is described in 
some detail below. 

Solomonoff’s work has led to a novel approach in statistics 
leading to applicable inference procedures such as the minimal 
description length principle. Jorma J. Rissanen, credited with 
the latter, relates that his invention is based on  Solomonoff’s 
work with the idea of applying it to classical statistical infer-
ence [10,11]. 

Since Solomonoff is the fi rst inventor of Algorithmic Informa-
tion Theory, one can raise the question whether we ought to 

talk about “Solomonoff complexity”. However, the name “Kol-
mogorov complexity” for shortest effective description length 
has become well entrenched and is commonly understood. Solo-
monoff’s publications apparently received little attention until 

Kolmogorov started to refer to them from 1968 
onward. Says Kolmogorov, “I came to similar 
conclusions [as Solomonoff], before becoming 
aware of Solomonoff’s work, in 1963–1964” 
and “The basic discovery, which I have accom-
plished independently from and simultaneous-
ly with R. Solomonoff, lies in the fact that the 
theory of algorithms enables us to eliminate this 
arbitrariness by the determination of a ‘com-
plexity’ which is almost invariant (the replace-
ment of one method by another leads only to the 
 addition of a bounded term)” 

Solomonoff’s early papers contain in veiled 
form suggestions about randomness of fi nite 
strings, incomputability of Kolmogorov com-
plexity, computability of approximations to the 
Kolmogorov complexity, and resource-bounded 
Kolmogorov complexity. 

Kolmogorov’s later introduction of complexity was motivated by 
information theory and problems of randomness. Solomonoff in-
troduced algorithmic complexity independently and earlier and 
for a different reason: inductive reasoning. Universal a priori 
probability, in the sense of a single prior probability that can be 
substituted for each actual prior probability in Bayes’s rule was 
invented by Solomonoff with Kolmogorov complexity as a side 
product, several years before anybody else did. 

A third inventor is Gregory J. Chaitin, who formulated a proper 
defi nition of Kolmogorov complexity at the end of his paper [2]. 

For a more formal and more extensive study of most topics treated 
in this paper, we recommend [7]. 

2. The Inventor
Ray Solomonoff published a scientifi c autobiography up to 1997 
as [23]. He was born on July 25, 1926, in Cleveland, Ohio, in the 
United States. He studied physics during 1946-1950 at the Univer-
sity of Chicago (he recalls the lectures of E. Fermi). He obtained 
a Ph.B. (bachelor of philosophy) and a M.Sc. in physics. He was 
already interested in problems of inductive inference and ex-
changed viewpoints with the resident philosopher of science at 
the University of Chicago, Rudolf Carnap, who taught an infl uen-
tial course in probability theory. 

From 1951-1958 he held half-time jobs in the electronics industry 
doing math and physics and designing analog computers. 

In 1956, Solomonoff was one of the 10 or so attendees of the Dart-
mouth Summer Research Conference on Artifi cial Intelligence, at 
Dartmouth College in Hanover, New Hampshire, organized by 
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M. Minsky, J. McCarthy and C.E. Shannon, and in fact stayed on to 
spend the whole summer there. (This meeting gave AI its name.) 
There Solomonoff wrote a memo on inductive inference. 

McCarthy had the idea that given every mathematical problem, 
it could be brought into the form of “given a machine and a de-
sired output, fi nd an input from which the machine computes that 
output.” Solomonoff suggested that there was a class of problems 
that was not of that form: “given an initial segment of a sequence, 
predict its continuation.” McCarthy then thought that if one saw a 
machine producing the initial segment, and then continuing past 
that point, would one not think that the continuation was a rea-
sonable extrapolation? With that the idea got stuck, and the par-
ticipants left it at that. 

Also in 1956, Ray circulated a manuscript of “An Inductive Infer-
ence Machine” at the Dartmouth Summer Research Conference on 
Artifi cial Intelligence, and in 1957 he presented a paper with the 
same name at the IRE Convention, Section on Information Theo-
ry, a forerunner of the IEEE Symposium on Information Theory. 
This partially used Chomsky’s paper [3] read at a Symposium on 
Information Theory held at MIT in September 1956. “An Induc-
tive Inference Machine” already stressed training sequences and 
using previous solutions in solving more complex problems. In 
about 1958 he left his half-time position in industry and joined 
Zator Company full time, a small research outfi t located in some 
rooms at 140 1/2 Mount Auburn Street, Cambridge, Massachu-
setts, which had been founded by Calvin Mooers around 1954 for 
the purpose of developing information retrieval technology. Float-
ing mainly on military funding, Zator Co. was a research front 
organization, employing Mooers, Solomonoff, Mooers’s wife, and 
a secretary, as well as at various times visitors such as Marvin 
Minsky. It changed its name to the more martial sounding Rock-
ford Research (Rockford, Illinois, was a place where Mooers had 
lived) around 1962. In 1968, the US Government reacted to pub-
lic pressure (related to the Vietnam War) by abolishing defense 
funding of civil research, and Rockford foundered. Being out of 
a job,  Solomonoff left and founded his own (one-man) company, 
Oxbridge Research, in Cambridge in 1970, and has been there ever 
since, apart from spending nine months as research associate at 
MIT’s Artifi cial Intelligence Laboratory, the academic year 1990-
1991 at the University of Saarland, Saarbruecken, Germany, and a 
more recent sabbatical at IDSIA, Lugano, Switzerland. 

It is unusual to fi nd a productive major scientist that is not regu-
larly employed at all. But from all the elder people (not only sci-
entists) we know, Ray Solomonoff was the happiest, the most in-
quisitive, and the most satisfi ed. He continued publishing papers 
right up to his death at 83. 

In 1960 Solomonoff published [14], in which he gave an outline 
of a notion of universal a priori probability and how to use it in 
inductive reasoning (rather, prediction) according to Bayes’s rule. 
This was sent out to all contractors of the Air Force who were even 
vaguely interested in this subject. In [16,17], Solomonoff developed 
these ideas further and defi ned the notion of enumeration, a precur-
sor of monotone machines, and a notion of universal a priori prob-
ability based on his variant of the universal monotone machine. 
In this way, it came about that the original incentive to develop a 
theory of algorithmic information content of individual objects was 
Solomonoff’s invention of a universal a priori probability that can 
be used as a priori probability in applying Bayes’s rule. 

Solomonoff’s fi rst approach was based on Turing machines with 
markers that delimit the input. This led to awkward convergence 
problems with which he tried to deal in an ad-hoc manner. The 
young Leonid A. Levin (who in [27] developed his own mathemat-
ical framework, which became the source of a beautiful theory of 
randomness), was told by Kolmogorov about Solmonoff’s work. 
He added a reference to it, but had in fact a hard time digesting 
the informalities; later though, he came to appreciate the wealth of 
ideas in [16]. Solomonoff welcomed Levin’s new formalism with 
one exception: it bothered him that the universal a priori probabil-
ity for prediction is a semimeasure but not a measure (see below). 
He continued to advocate a normalization operation keeping up a 
long technical argument with Levin and Solovay. 

In 2003 he was the fi rst recipient of the Kolmogorov Award by 
The Computer Learning Research Center at the Royal Holloway, 
University of London, where he gave the inaugural Kolmogorov 
Lecture. Solomonoff was a visiting Professor at the CLRC. A list of 
his publications (published and unpublished) is at http://world.
std.com/~rjs/pubs.html. 

3. The Formula
Solomonoff’s main contribution is best explained if we start with 
his inference formula not as he fi rst conceived it, but in the cleaner 
form as it is known today, based on Levin’s defi nition of apriori 
probability [27]. Let T be a computing device, say a Turing ma-
chine. We assume that it has some, infi nitely expandable, internal 
memory (say, some tapes of the Turing machine). At each step, it 
may or may not ask for some additional input symbol from the al-
phabet 50, 16, and may or may not output some symbol from some 
fi nite alphabet S. For a fi nite or infi nite binary string p, let T 1p 2
be the (fi nite or infi nite) output sequence emitted while not read-
ing beyond the end of p. Consider the experiment in which the 
input is an infi nite sequence of tosses of an independent unbiased 
coin. For a fi nite sequence x5 x1 cxn written in the alphabet S, 
let MT 1x 2  be the probability that the sequence outputted in this 
experiment begins with x. More formally, let T21 1x 2  be the set of 
all those binary sequences p that the output string T 1p 2  contains 
x as a prefi x, while if p r is a proper prefi x of p then T 1p r 2  does not 
output x yet. Then 

 MT 1x 2 5 a
p[T211x22

2|p|,  (1)

where |p| is the length of the binary string p. The quantity MT 1x 2  
can be considered the algorithmic probability of the fi nite sequence 
x. It depends, of course, on the choice of machine T, but if T is a 
universal machine of the type called optimal then this dependence 
is only minor. Indeed, for an optimal machine U, for all machines 
T there is a fi nite binary rT with the property T 1p 2 5U 1rTp 2  for all 
p. This implies MU 1x 2 $ 22|rT|MT 1x 2  for all x. Let us fi x therefore 
such an optimal machine U and write M 1x 2 5MU 1x 2 . This is (the 
best-known version of) Solomonoff’s apriori probability. 

Now, Solomonoff’s prediction formula can be stated very simply. 
Given a sequence x of experimental results, the formula 

 
M 1xy 2
M 1x 2  (2)

assigns a probability to the event that x will be continued by a 
sequence (or even just a symbol) y. In what follows we will have 
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opportunity to appreciate the theoretical attractiveness of the 
 formula: its prediction power, and its combination of a number 
of deep principles. But let us level with the reader: it is incomput-
able, so it can serve only as an ideal embodiment of some prin-
ciples guiding practical prediction. (Even the apriori probability 
M 1x 2  by itself is incomputable, but it is at least approximable by a 
monotonic sequence from below.) 

4. First, Informal Ideas
Scientifi c ideas of great originality, when they occur the fi rst time, 
rarely have the clean, simple form that they acquire later. Nowa-
days one introduces description complexity (“Kolmogorov” com-
plexity) by a simple defi nition referring to Turing machines. Then 
one proceeds to a short proof of the existence of an optimal ma-
chine, further to some simple upper and lower bounds relating it 
to probability and information. This a highly effective, formally 
impeccable way to introduce an obviously interesting concept. 

Inductive inference is a harder, more controversial issue than infor-
mation and randomness, but this is the problem that Solomonoff 
started with! In the fi rst papers, it is easy to miss the formal defi ni-
tion of complexity since he uses it only as an auxiliary quantity; 
but he did prove the machine independence of the length of mini-
mal codes. 

The fi rst written report seems to be [14]. It cites only the book [1] 
of Carnap, whose courses Solomonoff attended. And Carnap may 
indeed have provided the inspiration for a probability based on 
pure logical considerations. The technical report form allowed the 
gradual, informal development of ideas. 

The work starts with confi ning the considerations to one particular 
formal representation of the general inference problem: predicting 
the continuations of a fi nite sequence of characters. Without mak-
ing any explicit references, it sets out to combine two well-studied 
principles of inductive inference: Bayesian statistics and the prin-
ciple that came to be known (with whatever historic justifi cation) 
as “Occam’s Razor”. A radical version of this principle says that 
we should look for a shortest explanation of the experimental 
results and use this explanation for prediction of future experi-
ments. In the context of prediction, it will be therefore often justi-
fi ed to call descriptions explanations. 

Here is the second paragraph of the introduction: 

Consider a very long sequence of symbols – e.g., a passage 
of English text, or a long mathematical derivation. We shall 
consider such a sequence of symbols to be “simple” and 
have high a priori probability, if there exists a very brief 
description of this sequence – using, of course, some sort 
of stipulated description method. More exactly, if we use 
only the symbols 0 and 1 to express our description, we will 
assign the probability 22n to a sequence of symbols, if its 
shortest possible binary description contains n digits.

The next paragraph already makes clear that what he will mean by 
a short “description” of a string x: a program of a general-purpose 
computer that outputs x. 

The combination of these three ingredients: simplicity, apriori proba-
bility, universal computer turned out to have explosive power, form-

ing the start of a theory that is far from having exhausted its poten-
tial now, 50 years later. This was greatly helped by Kolmogorov’s 
independent discovery that related them explicitly to two addi-
tional classical concepts of science: randomness and information. 

There is another classical principle of assigning apriori prob-
abilities that has been given a new interpretation by Solomonoff’s 
approach: Laplace’s principle of indifference. This says that in the 
absence of any information allowing to prefer one alternative to 
another, all alternatives should be assigned the same probability. 
This principle has often been criticized, and it is indeed not easy 
to delineate its reasonable range of applicability, beyond the cases 
of obvious symmetry. Now in Solomonoff’s theory, Laplace’s prin-
ciple can be seen revived in the following sense: if an outcome has 
several possible formal descriptions (interpreted by the universal 
monotonic machine), then all descriptions of the same length are as-
signed the same probability. 

The rest of the report [14] has a groping, gradual nature as it is try-
ing to fi nd the appropriate formula for apriori probability based 
on simplicity of descriptions. 

The problems it deals with are quite technical in nature, that is it 
is (even) less easy to justify the choices made for their solution on 
a philosophical basis. As a matter of fact, Solomonoff later uses 
(normalized versions of) (2) instead of the formulas of these early 
papers. Here are the problems: 

1) Machine dependence. This is the objection most successfully 
handled in the paper. 

2) If we assign weight 22n to binary strings of length n then the 
sum of the weights of all binary strings is infi nite. The problem 
is dealt with in an ad-hoc manner in the report, by assigning a 
factor 112 P 2 k to strings of length k. Later papers, in particular 
Solomonoff’s fi rst published paper [16] on the subject, solve it 
more satisfactorily by using some version of defi nition (1): on 
monotone machines, the convergence problem disappears. 

3) We should be able to get arbitrary conditional probabilities in our 
Bayesian inference, but probability based on shortest descrip-
tion leads to probabilities that are powers of two. Formula (2) 
solves this problem as simply as it solved the previous one, but 
the fi rst publication [16] did not abandon the ad-hoc approach 
of the technical report yet either, summing up probabilities for 
all continuations of a certain length (and taking the limit). 

4) There are principles of induction suggesting that not only mini-
mal descriptions (explanations) should be considered. Formula 
(2) incorporates all descriptions in a natural manner. Again, 
the ad-hoc approach, extending the sum over all descriptions 
(weighted as above), still is also offered in [16]. 

It remained for later researchers (Kolmogorov, Levin) to discov-
er that – in certain models (though not on monotonic comput-
ers) even to within an additive constant – asymptotically, the 
 logarithm of the apriori probability obtained this way is the same 
as the length of the shortest description. Thus, a rule that bases 
prediction on shortest explanations is not too different from a rule 
using the prediction fi tting “most” explanations. In terms of the 
monotone machines, this relation can be stated as follows. For 
a string x, let Km 1x 2  be the length of the shortest binary string 



14

IEEE Information Theory Society Newsletter March 2011

that causes the fi xed optimal monotonic machine to output some 
 continuation o f x. Then 

 Km 1x 2 2 2logKm 1x 2 # 2 logM 1x 2 # Km 1x 2 . (3)

The paper [16] offers yet another defi nition of apriori prob-
ability, based on a combination of all possible computable con-
ditional probabilities. The suggestion is tentative and overly 
complex, but its idea has been vindicated by Levin’s theorem, 
in [27], showing that the distribution M 1x 2  dominates all other 
“lower semicomputable semimeasures” on the set of infi nite se-
quences. (Levin did not invent the universal semimeasure M 1x 2  
as response to Solomoff’s work, but rather as a natural techni-
cal framework for treating the properties of complexity and 
randomness.) Here, the semimeasure property requires, for all 
x, the inequalities M 1x 2 $ g b[S M 1xb 2 , while M 1L 2 # 1 for the 
empty string L. Lower semicomputability requires that M 1x 2  is 
the limit of an increasing sequence of functions that is comput-
able in a uniform way. A computable measure is certainly also 
a lower semicomputable semimeasure. The dominance property 
distinguishes Solomonoff’s apriori probability among all lower 
semicomputable semimeasures. Levin’s observation is crucial for 
all later theorems proved about apriori probability; Solomonoff 
made important use of it later. 

The paper [17] considers some simple applications of the predic-
tion formulas, for the case when the sequence to be predicted 
is coming from tossing a (possibly biased) coin, and when it is 
 coming from a stochastic context-free grammar. There are some 
computations, but no rigorous results. 

5. The Prediction Theorem
Solomonoff wrote an important paper [18] that is completely tra-
ditional in the sense of having a non-trivial theorem with a proof. 
The result serves as a justifi cation of the prediction formula (2). 
What kind of justifi cations are possible here? Clearly, not all se-
quences can be predicted successfully, no matter what method is 
suggested. The two possibilities are: 

1) Restrict the kind of sources from which the sequences may 
be coming, to a still sufficiently wide class. 

2) Show that in an appropriate sense, your method is (nearly) as 
good as any other method, in some wide class of methods.

There is a wealth of research on inference methods considering a 
combination of both kinds of restriction simultaneously, showing 
typically that for example if a sequence is generated by methods 
restricted to a certain complexity class then a successful prediction 
method cannot be restricted to the same class. 

Solomonoff’s theorem restricts consideration to sources x1x2 c

with some computable probability distribution P. Over a fi nite 
alphabet S, let P 1x 2  denote the probability of the set of all in-
fi nite sequences starting with x, further for a letter b of the al-
phabet denote P 1b|x 2 5 P 1xb 2 /P 1x 2 . The theorem says that the 
formula M 1b|x1 cxn 2 , gets closer and closer to the conditional 
probability P 1b|x1 cxn 2  as n grows – closer for example in a 
mean square sense (and then also with P-probability 1). This is 

better than any classical predictive strategy can do. More explic-
itly, the value 

 Sn5 a
x:|x|5n21

a
b[S

P 1x 2 1M 1b|x 2 2 P 1b|x 2 2 2
is the expected error of the squared probability of the nth prediction 
if we use the universal M instead of the unknown P.  Solomonoff 
showed g`

n51Sn , `. (The bound is essentially the complexity 
K 1P 2 , of P, so it is relatively small for simple distributions P. There 
is no bound when P is not even computable.) Hence the expected 
squared error can be said to degrade faster then 1/n (provided the 
expectation is “smooth”). 

The set of all computable distributions is very wide. Consider for 
example a sequence x1x2 c whose even-numbered binary digits 
are those of p, while its odd-numbered digits are random. Solo-
monoff’s formula will converge to 1/2 on the odd-numbered dig-
its. On the even-numbered digits, it will get closer and closer to 1 
if b equals the corresponding digit of p, and to 0 if it does not. By 
now, several alternative theorems, and amplifi cations on this con-
vergence property have appeared: see for example [7,5]. 

The proof relies just on the fact that M 1x 2  dominates all comput-
able measures (even all lower semicomputable semimeasures). It 
generalizes therefore to any family of measures that has a dominat-
ing measure – in particular, to any countable family of measures. 

Despite the attractiveness of the formula, its incorporation of such 
a number of classical principles, and the nice form of the theorem, 
it is still susceptible to a justifi ed criticism: the formula is in a dif-
ferent category from the sources that it predicts: those sources are 
computable, while the formula is not (M 1xy 2 /M 1x 2  is the ratio of 
two lower semicomputable functions). But as mentioned above, 
the restrictions on the source and on the predictor cannot be ex-
pected to be the same, and at least Solomonoff’s formula is brim-
ming with philosophical signifi cance. 

The topic has spawned an elaborate theory of prediction in both 
static and reactive unknown environments, based on universal 
distributions with arbitrary loss bounds (rather than just the loga-
rithmic loss) using extensions and variations of the proof method, 
inspiring information theorists such as Thomas M. Cover [4]. An 
example is the book by Marcus Hutter [5]. A related direction 
on prediction and Kolmogorov complexity, using various loss 
bounds, going by the name of “predictive complexity”, in a time-
limited setting, was introduced by Vladimir G. Vovk (see [26] and 
later works). 

We noted that Solomonoff normalized his universal apriori dis-
tributions, in order to turn them into regular probability dis-
tributions. These normalizations make the theory less elegant 
since they take away the lower semicomputability property: 
however, Solomonoff never gave them up. And there is indeed 
no strong argument for the semicomputability of M 1x 2  in the 
context of prediction. In about 1992, Robert M. Solovay proved 
that every normalization of the universal a priori semimeasure 
to a measure would change the relative probabilities of exten-
sions by more than a constant (even incomputably large) factor. 
In a recent paper with a clever and appealing proof, Solomonoff 
[25] proved that if we predict a computable measure with a the 
universal a priori semimeasure normalized according to his 
prescription, then the bad changes a la Solovay happen only 
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with expectation going fast to 0 with growing length of the pre-
dicted sequence. 

6. Universal Search
It was not until 1978, that Ray Solomonoff started to pay attention 
to the emerging fi eld of computational complexity theory. In that 
year, Leonid Levin arrived in Boston, and they became friends. 
Levin had discovered NP problems around 1970, independently 
from Stephen Cook, and had shown the completeness of a small 
number of NP problems (independently of Richard Karp). For our 
present purpose, an NP problem is best viewed as a search problem. It 
is defi ned with the help of a verifi cation predicate V 1x, w 2 , where x is 
the instance, w is a potential witness, and V 1x, w 2  is true if and only if 
the witness is accepted. We can assume that V 1x, w 2  is computable 
in time linear in the size |x| of the instance x (in an appropriate 
computation model, see later). The problem is to decide for a given 
instance x whether there is any witness w, and if yes, to fi nd one. As 
an example, consider the problem of fi nding a description of length 
l that computes a given string x within time t on some fi xed ma-
chine U. Let x5Ut 1p 2  mean that machine U computes x in time 
t from program p. The instance of the problem could be the string 
0l10t1x, and the verifi er V 10l10t1x, p 2  would just check whether 
|p| # l and Ut 1p 2 5 x. 

Levin’s paper [6] announces also a theorem that has no counter-
part in the works of Cook and Karp: the existence of an algorithm 
that fi nds a witness to an NP-complete problem in time optimal to 
within a multiplicative constant. Theoretically, this result is quite 
interesting: from then on, one could say that the question has not 
been how to solve any NP problem effi ciently, only what is the com-
plexity of Levin’s algorithm. If there is a theorem that it works in 
time g 1|x|2 , then of course also the problem of whether there is 
any witness at all becomes decidable in time g 1|x|2 . 
Levin’s paper gave no proof for this theorem (a proof can be found 
now, for example, in [7]). There is a natural, approximate idea of 
the proof, though. What is special about an NP problem is that 
once a potential witness is guessed, it is always possible to check 
it effi ciently. Therefore it does not harm much (theoretically, that 
is as long as we are willing to tolerate multiplicative constants) a 
good solution algorithm A 1x 2  if we mix it with some other ones 
that just make wild guesses. Let r1, r2, c be any computable 
 sequence of positive numbers with g iri # 1. We could list all pos-
sible algorithms A1, A2, c, in some order, and run them simulta-
neously, making a step of algorithm Ai in a fraction ri of the time. 
At any time, if some algorithm Ai proposes a witness we check it. 
In this way, if any algorithm Ai fi nds witnesses in time g 1|x|2  then 
the universal algorithm fi nds it in time ri

21g 1|x|2 : this is what is 
meant by optimality within a multiplicative constant. 

In order to actually achieve the multiplicative constant in his 
theorem, Levin indicated that the machine model U has to be of 
a “random access” type: more precisely, of a type introduced by 
Kolmogorov and Uspensky and related to the “pointer machine” 
of Schönhage. He also introduced a variant of description com-
plexity Kt 1w 2 5mint, z:Ut1z25w|z|1 logt in which a penalty of size 
log t is built in for the running time t of the program z output-
ting the sequence w on the universal machine U. A more careful 
implementation of Levin’s algorithm (like the one given later by 
Solomonoff) tries the candidate witnesses w essentially as ordered 
by their complexity Kt 1w 2 . 

Up to now, Levin’s optimal algorithm has not received much at-
tention in the computational complexity literature. In its present 
form, it does not seem practical, since the multiplicative constant 
rz
21 is exponential in the length of the program z. (For time bounds 

provable in a reasonable sense, Hutter reduced the multiplicative 
constant to 5, but with a tremendous additive constant [7]. His 
optimal algorithm depends on the formal system in which the 
upper bounds are proved.) But Solomonoff appreciated it greatly, 
since in computing approximations to his apriori probability, this 
seems still the best that is available. He gave detailed implementa-
tions of the optimal search (giving probably the fi rst written proof 
of Levin’s theorem), in its application to computing algorithmic 
probability [19,21]. These did not result in new theorems, but then 
Solomonoff had always been more interested in practical learning 
algori thms. In later projects (for example [22]) aimed at practical 
prediction, he defi nes as the conceptual jump size CJS of the pro-
gram z the quantity tz/pz,  where pz is some approximation to the 
apriori probability of z, and tz is its running time. The logarithm 
of the conceptual jump size and Levin’s Kt 1w 2  are clearly related. 

7. Training Sequences
Solomonoff continued to believe in the existen ce of a learning al-
gorithm that one should fi nd. He considered the approach used for  
example in practical speech recognition misguided: the algorithm 
there may have as many as  2000 tunable real number parameters. 
In the 1990s, he started a company to predict stock performance on 
a scientifi c basis provided by his theories. Eventually, h e dropped 
the venture claiming that “convergence was not fast enough.” 

In a number of reports: [13, 15, 20, 22, 9, 24], universal search as 
described above is only a star ting point for an array of approaches, 
that did not lead to new theorems, but were no less dear to Ray’s 
heart for that. Wh at we called “program” above can alternatively 
be called a “proble m solving technique”, or a “concept”. This part 
of Ray’s work was central fo r him; but the authors of the present 
article are closer to mathematics than to the experimental culture of 
artifi cial intelligence, ther efore the evaluation poses challenges for 
them. We hope that the AI community will perform a less super-
fi cial review of this part of the oevre than  what we can offer here. 

Learning proceeds in stages, where each stage includes universal 
search. The conceptua l jump size CJS introduced above (see [9]) 
continues to play a central role. Now, “probab ility” is used in the 
sense of the probability assigned by the best probabilistic model 
we ca n fi nd in the available time for the given data. There is also 
an update process introducing more and more complex concepts. 
The concepts  found useful on one stage are promoted to the status 
of primitives of a new language for the next stage, allowing  to form 
more complex composite concepts (and goals). They are combined 
in various ways, assigning preliminarily just product probability 
to the composite concept. If a composite concept proves a pplicable 
with a probability beyond this initial value, it will be turned it into 
a new building block (with a corresponding larger probability). In 
this way, one hopes to alleviate the problem of excessively large 
multiplic ative constants of universal search (see [21]). 

Ray did not limit inductive inference to a model where a learner 
is presented a stream of experimental results. He realize d that 
in practice, a lot of learning happens in a much more controlled 
situation, where there is  a “teacher” (or several). Now, super-
vised learning is a well-studied set of models: in this, a teacher 
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 provides answers to some set of questions that the learner can 
ask. In Solomonoff’s model, the teacher also orders the ques-
tions in increasing conceptual j ump size, facilitating thereby 
the above concept- building process. Already the report [13] 
sketches a system designed to recognize more and more com-
plex patterns, a s it is being fed a sequence of examples of gradu-
ally increasing complexity.1 Ray spent many years working out 
some examples in which a learning algorithm interacts with a 
training sequence. The examples were of the type of learning a 
simple language, mainly the language of arithmetic expressions. 
By now, there are systems in AI experimenting with learning 
based on universal optimal search: see Schmidhuber in [12] and 
other works. 

We are not aware of any theoretical study that distinguishes the 
kind of knowledge that the teacher can transmit directly from the 
one that the student must relearn individually, and for which the 
teacher can only guide: order problems by complexity, and check 
the student answers. The teacher may indeed be in conscious pos-
session of a network of concepts and algorithms, along with es-
timates of their “conceptual jump size”, and we should assume 
that she communicates to the student directly everything she can. 
(The arithmetic algorithms, Ray’s main example, can certainly be 
fed into a machine without need for learning.) But it appears that 
in typical realistic learning, the directly, symbolically transferable 
material is only a very incomplete projection of the mental models 
that every pupil needs to build for himself. 
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As the time of the next International Symposium on Information 
Theory (ISIT) in St. Petersburg is fast approaching, and as I am 
heavily involved in its organization, I could not help refl ecting 
upon the history of the relations between our Society and the Rus-
sian community of Information Theory. It has been a long and tur-
bulent history and I have reminisced about it repeatedly over the 
years in this column. It has been, of course, seriously infl uenced 
and affected by the political realities over the last sixty years and 
it has been fascinating, and stressful but, ultimately, its evolution 
has been determined by the intense and deep interest of both sides 
in the fi eld of Information Theory.

The legacy of Kolmogorov’s thinking has dominated the develop-
ment of the fi eld in Russia. There have been legions of outstand-
ing contributions by Russian scientists (the likes of Varshamov, 
Tsybakov, Ziablov, Zigangirov, Koshelev, Khabatiansky, Yaglom, 
Gelfand, and many others). But there have been two giants (Do-
brushin and Pinsker) who have stood out and cast a long shadow 
on the fi eld. Their scientifi c work has been complemented also by 
their boldness and independence during the dark Soviet times. It 
is in part a tribute to their pride and courage that we fi nally hold 
the coveted ISIT in Russia.

The fi rst few (and legendary) contacts between the two commu-
nities started in the 1960’s and there is a great deal of lore that 
surrounds them. From the involvement of alleged KGB agents to 
machinations inside the regime’s apparatus, these fi rst contacts are 
replete with (almost) romantic strife for breaking the barriers that 
kept the scientists of both sides apart. The 1973 Symposium on In-
formation Theory that was organized by the Russians in Tallinn, Es-
tonia, just before the IEEE ISIT in Ashkelon, Israel, drew heavy par-
ticipation by IEEE Information Theorists (mostly from the United 
States) and marked the beginning of a dramatic series of events of 
hit-and-miss contacts that eventually culminated with the upcom-
ing ISIT in St. Petersburg. I still have vividly in my mind the picture 
of Kamil Zigangirov riding the trolley-bus with us in Tallinn. I still 
hear the plea of an ordinary citizen outside our hotel to buy my 
“Polaroid” sunglasses. And I still recall the fascination of our Rus-
sian colleagues with David Middleton who stood larger than life as 
he fi lled slide after slide with long equations and multiple integrals 
as he was expanding on the physics of Noise and its relationship to 
Information Theory.

The Tallinn encounter was quickly followed by the famous  Moscow 
workshop in December 1975. This is when I had the honor and 
pleasure of meeting Dobrushin and Pinsker up close and having 
discussions with them. This is when the drama of getting a visa for 
Adrian Segall unfolded with almost cinematographic complexity 
and unpredictability. This is when we experienced the warm Rus-
sian hospitality alongside fabulous buffets of caviar, vodka, and 
untold numbers (and quantities) of libations and toasts. This is also 
when we experienced glimpses of the regime’s brutality. I still re-
member Bassalygo’s efforts to procure tickets for performances at 
the Bolshoi. And I still remember the visit to Boris Godunov’s grave 
in Zagorsk, the impressive and forbidding silhouette of the hotel 
Ukraina, the snow-packed streets, and the efforts of Lee Davisson 

to buy a fur hat (while Koshelev was 
offering to me his own as a present!).

Years of spotty contacts followed, in-
cluding the tumultuous organization 
of a workshop in New York State, 
The role of our Swedish colleagues 
(and, in particular, Rolf Johannesson) 
in keeping the contacts alive has been invaluable. The organiza-
tion of the biannual Swedish-USSR workshops that alternated be-
tween Sweden and the USSR kept the fl ame alive and provided 
plenty of opportunity for interaction and even joint work. The 
unforgettable fi rst such workshop in 1985 took place in Graenna. 
I also attended the one in Gotland in 1989 and the one in Moscow 
in 1991. This last one took place as the deep transformations in-
side Russia were already underway. I recall the fl owing torrents of 
Limonskaya Vodka and the valiant efforts of Verdu and myself to 
fi nd tickets to the Bolshoi from scalpers in the streets of Moscow. 
And I simply can never forget the gracious hosting of a superb 
dinner at a Georgian restaurant on the ground fl oor of an apart-
ment building by Mark Pinsker or another fabulous luncheon at 
a new (at the time) restaurant hosted by Ilya Dumer. And this is 
when I fi rst met my “future” colleague Sasha Barg.

A lot has happened since then. Some of the drama’s protagonists 
have passed away. Others emigrated to the United States and Eu-
rope. Some have remained in their old posts at the Institute for 
Problems for Information Transmission (known as IPPI) and have 
provided valuable links of continuity. When I see Nikita Vveden-
skaya who is still in the trenches at IPPI, I feel that time has stood 
still as she, along with others, remains a stalwart pillar of presence 
of Information Theory in this historic Institute.

In a few months a new chapter will open in St. Petersburg. The 
rough edges have been smoothened, the diffi culties have been for-
gotten, and the painful memories have faded. What remains is a 
feeling of respect, mutual understanding, and commitment to the 
fi eld of Information Theory. As we gather in the beautiful Imperial 
city with its splendid palaces, canals, theaters, and tons of culture 
and History, we should also take note of the fact that the general 
co-chair of the Symposium is none other than Vladimir (Volodja) 
Blinovsky, who is Mark Pinsker’s son. What a befi tting tribute to his 
father’s immense contributions and to the spirit of continuity and 
cooperation in the global evolution of our fi eld. Next to the shores 
of the Baltic Sea in the beautifully redecorated Hotel Park Inn (pre-
viously known as Pribaltiskaya) we will be looking East and West 
as the world of Information Theory will convene to celebrate and 
worship a timeless fi eld that keeps marking History every year for 
over six decades.

Let me take this opportunity to invite you and urge you to come 
to St. Petersburg and let me add my welcome as General Co-
Chair. We owe a great deal of gratitude to many colleagues in the 
vast Russian Federation for their perseverance, dedication, and 
hospitality, as well as their voluminous and lasting contributions 
to the fi eld.

The Historian’s Column
Anthony Ephremides
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Teaching Lossless Data Compression
Sergio Verdú 

Most courses on information theory, particularly those patterned 
after Cover and Thomas [1], cover the algorithmic side of loss-
less data compression, most notably Huffman, arithmetic and 
Lempel-Ziv codes. I like to do it at the advanced-undergraduate 
level and it is great fun to teach. However, how we describe and 
analyze those algorithms is not the purpose of this column. In-
stead, expanding on one of the items in my Shannon Lecture, I 
will discuss the teaching of the fundamental limits of lossless data 
compression. 

Although there are other source coding setups, such as (Tunstall) 
variable-to-fi xed coding, the conventional canon found in most 
textbooks, and taught in most information theory courses, deals 
with two separate source coding paradigms: 

1) Variable-length symbol-by-symbol lossless compression; 

2) Fixed-length (or fixed-to-fixed) almost-lossless compression.

The centerpieces of the fundamental limits of symbol-by-sym-
bol lossless compression are a converse result that states that 
the code-lengths of any uniquely decodable code must satisfy 
the Kraft inequality, and an achievability result that guaran-
tees the existence of a prefi x code with any set of code-lengths 
that satisfi es the Kraft inequality. Therefore, non-prefi x codes 
do not offer the prospect of increased effi ciency. The converse 
result readily leads to the conclusion that the average length of 
a variable-length symbol-by-symbol uniquely decodable code 
cannot be smaller than the source entropy, a result commonly, 
and wrongly, attributed to Shannon. A formula for the mini-
mal average length is not known, but an algorithm to compute 
it is indeed known (provided the alphabet is fi nite) since it is 
achieved by the Huffman code. Moreover, since the achiev-
ability result guarantees that a code exists whose code-lengths 
are equal to the log-reciprocal-probabilities (aka “ideal code-
lengths”) rounded-up, we can upper bound the minimal aver-
age length of a binary symbol-by-symbol lossless code by the 
entropy plus one bit. 

In contrast to the analysis of variable-length codes, the conven-
tional analysis of fi xed-length almost-lossless compression is as-
ymptotic in nature and does not just deal with averages: instead, 
by invoking Shannon’s notion of typicality and the law of large 
numbers, it shows that as long as the coding rate exceeds the 
entropy and the source is memoryless, vanishing error probabil-
ity is achievable. It is also a good idea for the teacher to show 
the converse of this statement. See, for example, the proof of [2, 
Theorem 1.1.1]. 

Some natural questions that the student may ask: 

• Arithmetic codes and Lempel-Ziv codes are strictly lossless 
and have variable length, but they are not symbol-by-sym-
bol codes. Why did we restrict the analysis of variable-
length codes to symbol-by-symbol codes? 

• Are fixed-length almost-lossless codes used in practice? 

• Why did we limit our analysis of the fundamental limits to 
memoryless sources? Aren’t sources in the real world 
redundant because of their memory? 

• If symbol-by-symbol codes cannot exploit memory, in what 
applications are they used? 

• Attaining good average length at the expense of large vari-
ance, or large probability of exceeding a given threshold, 
may not be desirable. For variable-length lossless codes, is 
there anything beyond the minimal average length that we 
can analyze? 

• There are about 2922 possible tweets (twitter messages are 
limited to no more than 140 characters). How many bits are 
required to compress 95% of the time?

First, let us address the issue of memory. Yes, if we do not exploit 
the memory in discrete sources such as text and digital photo-
graphs we do a really lousy job at compressing. But compression 
of redundant memoryless sources is much more common than 
one may think, primarily because through various reversible 
transformations such as run-length encoding (e.g. fax), linear 
transforms (e.g. JPEG) and the Burrows-Wheeler transform (e.g. 
bzip) the redundancy in memory is shifted to non-equiprobabil-
ity of the fi rst-order distribution. In those settings, symbol-by-
symbol codes, and in particular Huffman codes fi nd plenty of 
applications. But as far as the fundamental limits, I feel remiss if 
I end my coverage with memoryless sources. After all, Shannon 
gave the the asymptotic equipartition property [3, Theorem 3] 
not just for memoryless sources but for Markov sources. Peda-
gogically, after treating the memoryless case, it is not too diffi cult 
to prove the asymptotic equipartition property for stationary 
ergodic sources using Markov approximation: either by McMil-
lan’s original approach (see Gallager [4]) or the Algoet-Cover 
sandwich method [1]. 

Next, let us revisit the traditional restriction of the analysis of 
strictly lossless codes to symbol-by-symbol codes. It is not as 
severe as it sounds because we can always think of super-sym-
bols, each encompassing m consecutive symbols of the origi-
nal source. Then, the minimal average length is the entropy of 
m-words plus at most 1. This  trick is more useful conceptually 
than algorithmically, since the computational c omplexity sky-
rockets with m. Algorithmically, a preferable way to deal wit h 
memory is to abandon the symbol-by-symbol paradigm alto-
gether and use arithmetic coding or Lempel-Ziv codes. As far 
as  the analysis of the ultimate effi ciency, we can go one  step 
further and dispense with super-symbols altogether by viewing 
the whole fi le to be compressed as one symbol. But here’s the 
thing: we can get better  effi ciency than what the conventional 
analysis taught in textbooks predicts! To fi x ideas, consider the 
twitter question. Suppose we knew the probabilities of all pos-
sible tweets; what would be the best lossless data compressor? 
Would it be a Huffman code for a source with an alphabet of 2922

“symbols”? The average length of the Huffman-coded version 
will be equal to the entropy of the tweet distribution plus at 
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most 1 bit. But we can do better: list all the tweets in decreasing 
probabilities and encode them with the binary strings: 

5[, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, c6
This is the best code not just in the sense of minimizing the aver-
age, but in the much stronger sense of maximizing the cdf of the 
length at every point. Therefore, the abscissa at which the cdf of 
the length reaches 0.95 is the answer to the foregoing question. 
How much better than the Huffman code is the optimal variable-
length code? Its average length is in fact upper bounded by the en-
tropy (the ideal code-lengths are not so ideal after all) and admits 
the expression 

 a
`

k51
P 3X $ 2k 4

where the source realizations have been relabeled so that the inte-
ger X5 , is the ,th most probable outcome. According to recent 
results [5], for memoryless sources of length n and entropy H, the 
minimal average length of a fi xed-to-variable code behaves as 
nH2 11/2 2 logn1O 11 2 , rather than nH1O 11 2  for a super-sym-
bol Huffman code or an arithmetic code. (The symbol-by-symbol 
Huffman code would be even worse: n 1H1 g 2  for 0 # g , 1.) 
Wait. Wasn’t the entropy a sacrosanct limit that no variable-length 
code could beat? That is true for symbol-by-symbol uniquely 
decodable codes; however, once the super-symbol becomes the 
whole fi le to compress we should realize that the prefi x condition 
(or the uniquely decodable condition) is superfl uous. But then, 
how do we know where the compressed fi le ends? Just think of 
a fi le stored in a hard disk. Does it satisfy the prefi x condition (in 
some humongous tree) so it can tell us by itself where its “ends”? 
No. In fact, it will probably be stored in many chunks identifi ed 
by a directory of pointers. Admittedly, the optimal non-prefi x vari-
able-length code is easier said than done unless the source model 
is very simple; moreover, if the fi le to compress is long enough, 
then the penalty for imposing the extraneous prefi x condition on 
the encoded fi le gets amortized. Still, in the short run and in par-
ticular if we also pay attention to variance in addition to average, 
there are effi ciencies to reap. 

And finally, let us address why we study almost-lossless n-to-k 
codes. In those codes, one of the binary output k-strings signals 
that the input realization cannot be handled by the compres-
sor. Although all practical data compressors are strictly lossless 
and therefore variable-length, we can easily turn an almost-
lossless code into a lossless code by, for example, substituting 
the special output k-string by the input string. Conversely, we 
can easily turn a variable-length code into an almost-lossless 
fixed-length code. Another important motivation for teaching 

them is that not only do almost-lossless source codes provide 
the reason to study the asymptotic equipartition property, but 
they are the indispensable gateway to many other results in in-
formation theory, such as the source-channel separation theo-
rem, the Slepian-Wolf theorem and the random binning proof 
method, ubiquitous in multiuser information theory. Further-
more, linear channel coding is the dual problem to linear fixed-
to-fixed source coding; in fact, excellent data compressors can 
be built based on modern sparse-graph codes [6]. These are all 
good motivations to teach almost lossless compression, but in 
fact I would argue that the main reason is a very simple fact 
(proof left to the reader) that has gone unrecognized because of 
the traditional fixation with Kraft-inequality compliant vari-
able-length codes: Regardless of the source, the minimal prob-
ability of error of an n-to-k code is equal to the probability that 
the length of the optimal variable-length code for X1, c, Xn is 
greater than or equal to k. Therefore, the analysis (asymptotic 
or not) of the fundamental limits of fixed-to-fixed data com-
pression is equivalent to the analysis of the fundamental limits 
of fixed-to-variable data compression.

Sergio Verdú is with the Department of Electrical Engineering, 
Princeton University, Princeton, NJ 08544, USA, Email: verdu@
princeton.edu 
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Abstract
At the birth of information theory, Shannon surprised the commu-
nication world with the concept of random coding, which he used 
for proving the ultimate limits of his theory. This powerful tool 
is, however, non-constructive. In Shannon’s words: “An attempt 
to obtain a good approximation to ideal coding by following the 
method of the proof is generally impractical... related to the dif-
fi culty of giving an explicit construction for a good approximation 
to a random sequence.” A practical substitute to random coding 
are structured codes (one example of which - the Hamming code – 
appeared already in Shannon’s paper from 1948). Multiterminal 
information theory provides us now with a new surprise: for some 
distributed coding problems structured codes seem to be better 
than random codes! This summary of my ISIT 2010 plenary talk 
discusses how lattice codes are used in Gaussian multiterminal 
settings, and the intuition they provide for the question in the title. 

I. Motivation
It is not hard to detect the few differences between the two faces in 
Fig. 1. Once detected, it is also not too hard to describe them with 
just a few words. But would a few words be suffi cient if the two 
faces were described by two separate observers? 

An information-theoretic analogue of this question is the “two 
help one”problem of Fig. 2, which was proposed in a seminal pa-
per from the late 70’s by Körner and Marton [25]. They showed 
that if one wishes to reconstruct the modulo-two sum of two cor-
related binary sources from their independent encodings, then lin-
ear coding seems to be better than random coding. 

Specifi cally, the Körner-Marton (KM) setup consists of a bi-
nary doubly symmetric source 1X, Y 2 , and an “error” vari-
able Z5X!Y indicating when X and Y are different, i.e., 
Pr 1Z5 1 2 5 Pr 1X 2 Y 2 5 u. The goal is to encode the sources X 
and Y separately such that Z can be reconstructed losslessly. If co-
ordination between the encoders were allowed, then they could 
compute the XOR sequence Z1, c, Zn and encode it at a rate of 
H 1Z 2 . Via a “genie aided” argument, Körner and Marton showed 
that in the uncoordinated case, the sum rate required is at least 

 Rx1Ry $ 2H 1Z 2 . (1)

Furthermore, this sum rate can be achieved by a linear code: each 
encoder transmits the syndrome of the observed source relative to 
a good linear binary code for a BSC with crossover probability u. 

A common technique in proving direct coding theorems in infor-
mation theory is the use of a random code, induced by some single-
letter formula. In an attempt to fi nd such a formula for the problem 
in Fig. 2, Körner and Marton examined a “natural” extension for 
the solution of the “one help one” problem [1], [46]; the resulting 
achievable rates satisfy, [25, appendix] 

 Rx1Ry $ H 1X, Y 2 . (2)

These rates correspond to Slepian-Wolf encoding of X and Y [9],1

and are clearly strictly contained in (1) (since H 1X, Y 2 5 11H 1Z 2  
in (2) is greater than 2H 1Z 2  for u 2 1/2). Thus, the “natural” ran-
dom binning solution for the “two help one” problem is subopti-
mal, and inferior to structured (linear) coding. 

Does this mean that any random coding scheme (i.e., single-letter 
solution) would be suboptimal for the “two help one” problem? 
Instead of dealing with that directly, we turn to structured (lattice) 
coding in the Euclidean space, with the hope to get further intu-
ition about this issue in multi-terminal Gaussian setups. 

II. Why Lattices?
Lattices form effective arrangements of points in space for various 
geometric and coding problems, e.g., sphere covering and packing, 
quantization, and signaling for the additive white Gaussian-noise 

1It can also be derived from the Berger-Tung achievable region [3] for distributed 

lossy coding of X and Y with one reconstruction Ẑ under the distortion measure 

d 1X, Y, Ẑ 2 ! X!Y!Ẑ.

Fig. 1 Find (and communicate) the differences. 

Dec.

Enc. X

Enc. Y

Enc. Z

ẐY

X

Z = X ⊕ Y

Fig. 2 The Körner-Marton configuration.
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(AWGN) channel [6], [16], [10]. The best lattice for each problem 
may be different. Nevertheless, as the dimension goes to infi nity, 
there exist lattices which tend to be “perfect” for all problems. 

In the context of this talk, lattices serve as a bridge from the low 
dimensions of common modulation techniques (PCM, PAM, 
QAM) to the large dimensions of coded modulation schemes, or 
to the infi nite dimension of Shannon’s theory. They also provide 
an “algebraic” binning scheme for some Gaussian side informa-
tion problems [52], [13]. Moreover, recent developments in the 
area of Gaussian network information theory, [35], [36], [26], [40], 
[41], [38], indicate that lattices are sometimes even better than their 
random coding counterparts! 

III. Lattice Definitions and Figures of Merit
An n-dimensional lattice L is defi ned by a set of n basis vectors 
g1, c, gn in Rn. The lattice L is composed of all integer combina-
tions of the basis vectors, i.e., 

 L5 5l5G # i : i [ Zn6,  (3)

where Z5 50, 6 1, 6 2, c6, and the n 3 n generator matrix G 
is given by G5 3g1 | g2| c | gn 4. When G is the unit matrix, we 
obtain the integer lattice Zn. Thus, L in (3) can be written also as 
GZn. Note that the zero vector is always a lattice point, and that 
G is not unique for a given L. See [6] as an excellent background. 

A few important notions are associated with a lattice. The nearest 
neighbor quantizer QL 1 # 2  is defi ned by 

 QL 1x 2 5l [ L if y x2l y # y x2l r y 4 l r [ L (4)

where y # y  denotes Euclidean norm, and ties are broken in a sys-
tematic manner. The fundamental Voronoi region of L is the set of 
points in Rn closest to the zero codeword, i.e., V05 5x : QL 1x 2 5 06 . 
The Voronoi region associated with each l [ L is the set of points 
x such that QL 1x 2 5l, and is given by a shift of V0 by l. 

Other fundamental regions P0 exist which generate a lattice 
partition of the form 5l1P06l[L, and a corresponding lattice 
quantizer 

 QL, P0
1x 2 5l if x [ 1l1P0 2  (5)

For example, the fundamental parallelotope 5Ga: 0 # ai ,
1,  i5 1 cn6 amounts to transforming the unit cube (the funda-
mental region of Zn) by the generator matrix G. Nevertheless, the 
volume of all fundamental regions of L is the same, and is given 
by |det 1G 2| ! VL.

The modulo-L operation w.r.t. the lattice L and some assumed 
fundamental region P0 in (5) is defi ned as 

 x  mod P0
L5 x2QL, P0

1x 2  (6)

which is also the quantization error of x with respect to L. 

The two most well studied fi gures of merit of a lattice are its pack-
ing radius and covering radius, illustrated in Fig. 3. Here we will 
focus on two other fi gures of merit which have more of an engi-
neering fl avor: the normalized second moment, which is a measure of 

goodness for quantization, and the volume to noise ratio, which is a 
measure of goodness for AWGN channel coding. 

Mean-squared error (MSE) quantization: The second moment sL2  of 
a lattice is defi ned as the second moment per dimension of a uni-
form distribution over the fundamental Voronoi region V0, 

 sL
2 5

1
VL

# 1
n3V0

7x 72dx. (7)

A dimensionless fi gure of merit of a lattice quantizer with respect 
to the MSE distortion measure is the normalized second moment 
(NSM) 

 G 1L 2 5 sL
2

VL
2/n. (8)

The minimum possible value of G 1Ln 2  over all lattices in Rn is de-
noted by Gn. The normalized second moment of a sphere, denoted 
by Gn

*, approaches 1/ 12pe 2  as the dimension n goes to infi nity. The 
isoperimetric inequality implies that Gn . Gn

* . 1/ 12pe2  for all n. 
We also have Gn # G15G 1Z 2 5 1/12. 

The operational signifi cance of this fi gure of merit comes from 
classical results in high-resolution quantization theory. It is also 
useful in the context of constellation shaping, as we shall see in 
Sec. V. A result due to Poltyrev which appeared in [50] states that 
the sequence Gn achieves the sphere lower bound, i.e., 

 lim
nS`

Gn5
1

2pe
. (9)

Another result in [50] is that the quantization noise of a lattice 
achieving Gn is “white”, i.e., the covariance matrix of a uniform 
distribution over V0 is given by sL2 # I, where I is the identity 
 matrix. 

Coding for the unconstrained AWGN Channel: The AWGN channel is 
given by the input/output relation 

 Y5X1Z (10)

where Z is i.i.d. Gaussian noise of variance sz
2. We denote by Z an 

i.i.d. vector of length n of noise random variables. 

r cov
Λ

r pack
Λ

r effec
Λ

rN =   nPN√

Fig. 3 The fundamental Voronoi region and its packing 
radius, covering radius and effective radius (radius of the 
sphere having the same volume). Packing and covering 
efficiencies are measured by the corresponding ratios.
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The notion of lattices which are good for AWGN coding may be 
defi ned using Poltyrev’s [42] defi nition of capacity per unit vol-
ume of unconstrained channels, allowing to separate the “granu-
lar” properties of the lattice as a good channel code from the is-
sue of shaping (to meet the power constraint). The probability of 
decoding error in this setup is the probability that the noise leaves 
the Voronoi region of the transmitted lattice point 

 Pe5 Pr5Z o V06. (11)

The volume-to-noise ratio (VNR) of a lattice at probability of error 
Pe is defi ned as the dimensionless number 

 m 1L, Pe 2 5 VL
2/n

sz
2  (12)

where sz
2 is such that (11) is satisfi ed with equality [17]. Note that 

for fi xed Pe, the VNR is invariant to scaling of the lattice. The mini-
mum possible value of m 1L, Pe 2  over all lattices in Rn is denoted by 
mn 1Pe 2 . The VNR of a sphere is denoted mn

* 1Pe 2 . Since a sphere sup-
ports the isotropic vector Z better than any shape of the same vol-
ume (see the sphere bound of [17]), we have mn 1Pe 2 . mn

* 1Pe 2 . 2pe, 
where the second inequality holds for all suffi ciently small Pe, and 
mn

* 1Pe 2 S 2pe as n S `, for all Pe . 0. It follows from Poltyrev (see 
also [16], [17], [21]) that the sequence of minimum possible VNRs 
 asymptotically achieves this lower bound: 

 lim
nS`

mn 1Pe 2 5 2pe, for all 0 , Pe , 1. (13)

In fact, simultaneous goodness in both senses (9) and (13) above is 
asymptotically possible. 

Theorem 1. [10] There exists a sequence Ln of lattices of increasing 
dimension n, which satisfi es 

G 1Ln 2 S 1
2pe

and m 1Ln, Pe 2 S 2pe.

It is also shown in [10] that these lattices achieve the Minkowski 
and Rogers bounds for sphere packing and covering, and the 
Poltyrev exponent of the unconstrained AWGN channel. 

IV. Dithered Quantization
In quantization theory (as well as in some non-linear processing 
systems) the term “dithering” corresponds to intentional rand-
omization, aimed to improve the perceptual effect of the quantiza-
tion, e.g. to reduce “blocking” effects in picture coding. Dithered 
quantization is also an effective means to guarantee a desired dis-
tortion level, independent of the source statistics. 

We say that U is a “subtractive dither” if it is known at both the 
encoder and the decoder (i.e., it is a common randomness), the en-
coder adds it to the source vector s prior to the quantization, while 
the decoder subtracts it from the quantized value, so the overall 
reconstruction is QL 1s1U 2 2U. Addition and subtraction of u
before and after quantization amounts to shifting the quantizer by 
2u. Since the lattice quantizer QL 1 # 2  is periodic in space, a random 
shift U which is uniform over the lattice period makes the quantiza-
tion error uniform as well. 

Theorem 2. [50], [55] Let U be uniform over the fundamental re-
gion P0 of the lattice quantizer (5). Then, the quantization error 
QL,P0

1s1U 2 2U2 s is uniform over 2P0, the refl ection of P0, inde-
pendent of the source vector s.2 

Equivalently, 1s1U 2  mod P0
L is uniform over P0 for any s, a re-

sult termed the “Crypto Lemma” by Forney [18]. 

As a corollary of Theorem 2 and (7), the mean-squared distortion 
of a Voronoi dithered quantizer (4) is equal to the lattice second 
moment: 

 1
n E 7QL 1s1U 2 2U2 s 725sL2  (14)

independent of the source vector s. 

In high-resolution quantization theory it is common to approxi-
mate the quantization process as adding (independent) noise to 
the source. Theorem 2 shows that for dithered quantization this 
model is exact at any resolution. See Fig. 4. 

IV.A. Entropy Coded Dithered Quantization
The next theorem makes the connection to an additive-noise chan-
nel even stronger. Assume that for given source statistics, the lat-
tice quantizer output is losslessly “entropy” coded, conditioned 
on the dither value. That is, each lattice point is mapped into a 
binary word of variable length, such that the average code length 
is approximately equal to the conditional entropy of the quantizer 
output. We call such a combination of a lattice quantizer and op-
timum lossless encoding an Entropy-Coded Dithered Quantizer 
(ECDQ). 

Theorem 3. [48] The average code length of the ECDQ, i.e., the con-
ditional entropy of the dithered lattice quantizer, is equal to the mutual 
information in the equivalent additive-noise channel of Fig. 4: 

 H 1QL 1S1U 2|U 2 5 I 1S; S2U 2  (15)

The mutual information formula above resembles the 
 expression for Shannon’s rate-distortion function [9]: R 1D 2 5
inf: E51S2Ŝ226#D I 1S; Ŝ 2  This formal resemblance leads to a universal 
bound on the loss of the ECDQ. 

Theorem 4. [57], [48] For any source S, the redundancy of the ECDQ 
above the rate-distortion function under a squared error distortion mea-
sure is at most 

2Thm. 2 still holds if U is replaced by a “generalized dither”, i.e., any vector U|  such 
that 1U| mod L 2  is uniform over P0 [55].

−Z

S

Fig. 4 Equivalent additive-noise channel of a dithered lat-
tice quantizer. Z is independent of the input S, and uniform 
over the fundamental region P0 of L. 
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H 1QL 1S1U 2|U 2 2R 1D 2 # 1
2
1

1
2

log 12peG 1L 2 2  (16) 

bits, and it is only 11/2 2 log 12peG 1L 22  in the limit as D goes to zero (i.e., 
at high-resolution conditions). 

Divergence of dither from Gaussianity: The second term on the 
right hand side above can be interpreted as the divergence 
(or “Kullback-Leibler distance”) of the dither distribution 
from AWGN: 

 
1
2

log 12peG 1L 2 2 5 1
n D 1U||U* 2  (17)

where U* is a zero-mean i.i.d. Gaussian vector with Var 1Ui 2 5sL2
for all i, and where D 1 # i # 2  denotes divergence [9], [50]. Thus, for lat-
tices which are good for quantization, i.e., limnS`G 1Ln 2 5 1/ 12pe 2 , 
the divergence of the dither from Gaussianity (17) goes to 
zero, so the equivalent channel of Fig. 4 becomes an AWGN 
channel. 

IV.B. Filtered ECDQ
Consider the equivalent additive-noise channel model in Fig. 4. 
As discussed earlier, for any fi nite dimension the noise of opti-
mal quantization lattices is white [50]. If the second order statis-
tics of the source are also known, then we can use Wiener linear 
estimation principles to reduce the overall MSE in reconstructing 
the source S. 

If the source is white, then the Wiener filter is a simple scalar 
coefficient b at the output of the equivalent channel. For such 
a source the reconstruction becomes Ŝ5 b 3QL 1S1U 2 2U 4, 
where b5sS

2/ 1sS
2 1sL

2 2 , and the overall distortion 
D5 E i Ŝ2 S i 2 decreases from sL2  to D5 11/sS

2 1 1/sL
2 221. This 

reduction in distortion of the “post-filtered” ECDQ allows 
us to improve the bound of Thm. 4 in the Gaussian source 
case. 

Theorem 5. [49] For a Gaussian source with variance sS
2, the redun-

dancy of the post-fi ltered ECDQ over the rate-distortion function 
R* 1D 2 5 1/2 log 1sS

2/D 2  is at most 

 H 1QL 1S*1U 2|U 2 2R* 1D 2 # 1
2

log 12peG 1L 22  (18)

for all distortion levels 0 , D # sS
2. 

See [49] for the extension of this concept to sources with memory 
using pre/post-fi lters. 

Note that the output scaling factor b is smaller than one for the 
entire distortion range 0 , D # sS

2. Since the reconstruction Ŝ be-
longs to bL (up to a shift due to the dither), it follows that the 
decoding lattice bL is a “defl ated” version of the encoding lattice 
L. More on the meaning of this encoding-decoding “mismatch” in 
the next section. 

V. Voronoi Codebooks
As Information Theory shows us, coding for Gaussian sources and 
channels should be done using “Gaussian codebooks”. That is, the 
codewords should be selected from a Gaussian generating distri-
bution. The number of codewords is determined by the target rate, 
while the generating distribution is white, and its variance is equal 
to the source variance - in source coding, and to the  transmitter 
power – in channel coding. The resulting codebook in Rn (n be-
ing the code dimension) has roughly uniformly distributed code-
words over a sphere. Can we replace a Gaussian codebook by a 
lattice code? 

In the ECDQ system discussed above, the codebook was the whole 
(unbounded) lattice and not shaped to fi t the source variance. The 
lack of shaping is compensated for by entropy coding, which 
amounts to “soft” shaping: the lattice points which fall inside the 
typical (spherical) source region get a shorter binary representa-
tion, and dominate the coding rate, while the contribution of the 
points outside this region is negligible. A similar situation occurs 
in channel coding with probabilistic shaping [28], or alternatively, 
in unconstrained channels [42]. In fi xed-length source coding or 
power-constrained channel coding, however, the codebook must 
be bounded. 

In this section we describe a lattice codebook, whose codewords 
and shaping region both have a lattice structure. The construction 
is based on the notion of nested lattices, [51], [52], [11], [13], which 
has its roots in de Buda’s spherical lattice codes [4], [30] and For-
ney’s Voronoi constellations [14], [15], and owe its development 
to the search for structured binning schemes for side information 
problems; see the next section. 

V.A. Nested Lattices
A pair of n-dimensional lattices 1L1,  L2 2  is called nested if L2 ( L1, 
i.e., there exists corresponding generator matrices G1 and G2, such 
that 

G25G1
# J , 

where J is an n 3 n integer matrix whose determinant is greater 
than one. We call L1 the fi ne lattice and L2 the coarse lattice. The cell 
volumes of L1 and L2 satisfy 
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Fig. 5 Nested lattices: special case of self similar lattices.
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VL2
5 |det 1J 2| # VL1

. (19)

We call !n |det 1J 2|5 !n VL2
/VL1

 the nesting ratio. 

Fig. 5 shows nested hexagonal lattices with J5 3 # I, where I is the 
2 3 2 identify matrix. This is an example of the important special 
case of self similar lattices, where L2 is a scaled – and possibly re-
fl ected or rotated – version of L1. 

For some fundamental region P0, 2 of L2, the points of the set 

 L1 mod L2 ! L1 d P0, 2 (20)

are called the coset leaders of L2 relative to L1; for each v [ 5L1 

modL26 the shifted lattice L2, v5 v1L2 is called a coset of L2 rela-
tive to L1. It follows that there are VL2

/VL1
5 |det 1 J 2| different cosets. 

If P0, 2 in (20) is the fundamental Voronoi region V0, 2 of L2, then 
we obtain a Voronoi constellation [14],[15]. In the example of Fig. 
5, the Voronoi constellation consists of the bold points. A paral-
lelepiped region P0, 2 is preferable, however, if we wish to simplify 
coset enumeration [56]. 

Dithered Voronoi codebook: A dithered Voronoi codebook consists of 
all shifted fi ne lattice points l1 u, for l [ L1, inside the Voronoi 
region of the coarse lattice L2, i.e., 

 1u1L1 2  mod L2 (21)

where the dither u is an arbitrary vector in Rn to be specifi ed later. 
(For u5 0 and P0, 25 V0,2 this is the set of relative coset leaders in 
(20).) The size of this codebook is VL2

/VL1
 (independent of u), so 

the associated coding rate is 

R5
1
n

log2 1VL2
/VL1

2
bits per dimension. 

Existence of good nested lattices: The existence of a sequence of good 
pairs of nested lattices, where one of the lattices (the fi ne one or 
the coarse one) is good for AWGN channel coding, while the other 
lattice is good for source coding under mean-squared distortion, 
is addressed in [10]. See [27] for an extension. The key to proving 
the existence of such lattices is to consider an appropriate random 
ensemble of lattices. An ensemble based on generalized construction 
A was defi ned in [32], while the Minkowski-Hlawka-Siegel en-
semble is considered in [42], [21], [56]. 

V.B. Achieving the AWGN Channel Capacity
We now show an effi cient coding scheme for the AWGN channel 
Y5X1Z of (10) using a pair of nested lattices L2 ( L1. In this 
scheme L2 (the coarse lattice) is used for shaping while L1 (the fi ne 
lattice) is used for coding. 

Let the dither U be uniform over a fundamental region of L2

(or a generalized dither as mentioned earlier), and let v be any 
codeword (or coset leader) in L1 mod P0

L2, with  mod L2 w.r.t. a 
“convenient” enumeration fundamental region P0. 

To transmit the message v, the encoder outputs 

X5 1v1U 2  mod V0
L2

with mod L2 now performed w.r.t. the fundamental Voronoi re-
gion V0. By (14) we have that E5 7X 726 5sL2

2 . Thus if we chose a 
lattice with second moment sL2

2 5 P, then each codeword satisfi es 
the power constraint (on the average with respect to the dither). 

The decoder fi rst linearly estimates the vector v by 

 Ŷ5aY2U (22)

(where 0 , a # 1 is a coeffi cient to be determined later). Then, 
it quantizes Ŷ to the nearest fine lattice point, and identifies 
its coset leader in the codebook. The decoded message is thus 
V̂5QL1

1Ŷ 2  mod P0
L2. This is equivalent to 

V̂5 ca # QL1/aaY2
U
a
b d  mod P0

L2,  (23)

i.e., to decoding with respect to the infl ated lattice L1/a. (Note the 
resemblance to the defl ated lattice bL in Sec. IV.B.) 

The equivalent channel from the codeword v to the modulo es-
timation vector Y|5 Ŷ mod P0

L2 is called a modulo-lattice transfor-
mation [11]. The distributive law of the modulo operation3 and 
Thm. 2 imply: 

Theorem 6. (Effective modulo- L additive-noise channel) [11] The 
channel from v to Y| is equivalent in distribution to the modulo 
additive-noise channel 

Y|5 1v1Zeff 2  mod P0
L2

where the effective noise is given by

Zeff5 3aZ1 112a 2U r 4 mod P0
L2 (24)

and where U r is uniform over V0 and independent of v and Z.

Note that the effective (additive) noise Zeff is a weighted combina-
tion of two components: AWGN and a dither component, where 
the latter is called “self noise” because it comes from the coarse 
lattice. 

For a modulo additive-noise channel, a uniform input 
V ~ Unif 1P0 2  maximizes the mutual information I 1V;Y| 2 , which 
becomes log 1VL2

2 2 h 1Zeff 2 . The optimum a is thus the one that 
minimizes the entropy of the effective noise.4 As the lattice di-
mension increases, the self noise U r and therefore the effective 

Channel

DecoderEncoder

S

p (y |x, s)
Y ŴXW

Fig. 6 A channel with side-information at the transmitter.

3 1 1a mod V0
L2 2 1 b 2  mod P0

L25 1a1 b 2  mod P0
L2.

4For rates below capacity, a smaller a  would give better error performance 
[31], [44]. 
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noise Zeff become closer to a Gaussian distribution 
(in the divergence sense (17)), in which case mini-
mizing entropy amounts to minimizing variance. 
Thus the optimum a becomes the Wiener coeffi cient 
a5sL2

2 / 1sL2

2 1N 2 5 P/P1N,  and the resulting 
noise variance is the MMSE  solution 

 Var 1Zeff 2 5 PN
P1N

. (25)

Due to the dither, the error probability is identical for all code-
words (as refl ected by the equivalent modulo-additive channel of 
Thm. 6), and is equal to 

 Pe5 Pr5Zeff o V0, 16. (26)

Thus, by the defi nition of the the VNR (12), if we target some Pe, the 
volume of the fi ne lattice cell must be VL1

< 3m 1L1, Pe 2 # Var 1Zeff 2 4n/2

or larger, where we assumed a Gaussian Zeff.5 On the other hand, 
the power constraint implies that the volume of the coarse cell is 
VL2

5 3P/G 1L2 2 4n/2 or smaller. For the MMSE solution (25), we thus 
get a coding rate of 

 R5
1
n

 logaVL2

VL1

b < 1
2

 loga P/G 1L2 2
m 1L1, Pe 2Var 1Zeff 2 b  (27)

 5C2
1
2

 log 1G 1L2 2 # m 1L1, Pe 2 2  (28)

where C5 1/2log 111 P/N 2  is the AWGN channel capacity. 

The capacity loss in (28) is approximately the NSM-VNR cross 
product of the lattice pair. To reduce this loss, we need the coarse 
lattice to be a “good” quantizer, while the fi ne lattice should be a 
“good” AWGN channel code, both in the sense of Sec. III. For such 
a good pair of nested lattices G 1L2 2 S 1/2pe and m 1L1, Pe 2 S 2pe 
as n S `, so the system approaches the AWGN channel capacity. 
An analysis of the error exponent of Voronoi codebooks can be 
found in [31], [44]. 

V.C. Achieving the Gaussian RDF
A dual construction of a Voronoi quantizer achieving the 
 quadratic-Gaussian (QG) rate-distortion function can be designed 
along similar lines. Again, the NSM-VNR cross product of the  lattice 
pair – now with the roles of L1 and L2 switched relative to (28) – 
will determine the rate loss of the system. The coarse lattice should 
therefore be a “good” AWGN channel code, while the fi ne lattice 
should be a “good” quantizer [54]. 

VI. Side-Information Problems
Classical Information Theory deals with point-to-point commu-
nication, where a single source is transmitted over a channel to a 
single destination. In a distributed situation there may be more 
than one (possibly correlated) sources, hence more than one 
encoder, and/or more destinations, hence more than one chan-

nel output and decoder. The simplest situation, which captures 
much of the essence in the problem, are sources and channels 
with side information. 

In the source version of the problem – solved by Wyner and Ziv 
[47] – a source S is encoded knowing that a correlated signal J is 
available at the decoder (but not at the encoder). In the Gauss-
ian case, we assume that S5 J1Q, where Q is a white Gaussian 
source independent of J. 

The channel version of the problem was solved by Gelfand and 
Pinsker in [19]. It assumes that the input to a state-dependent 
channel is encoded knowing the channel states non-casually. The 
decoding is done solely based on the channel output, without 
having access to the channel states. In the special case known as 
the “dirty paper” channel (DPC), or the Costa problem, the input-
output relation is Y5X1 I1Z, where I is an interference signal 
known at the encoder, and Z (the unknown noise) is AWGN [8]. 

An interesting feature of Gaussian side-information problems 
is that their information-theoretic solutions amount to complete 
elimination of the effect of the partially known signals J and I. 

For the DPC problem, a simple variation on the Voronoi modula-
tion and decoding system of Sec. V.B achieves the same coding rate 
as in (28), where now C5 11/2 2 log 111 P/N 2  denotes the “clean” 
AWGN channel capacity [11], [39]. The main change is the subtrac-
tion of the scaled interference aI modulo the coarse lattice – see 
Fig. 7. (For a scalar-lattice solution for the causal DPC problem – 
see [11], [45].) The Gaussian Wyner-Ziv (WZ) problem is solved 
by a similar variation on the Voronoi quantization scheme of Sec. 
V.C [52]. In both DPC and WZ variations, the cosets of L2 relative to
L1 (20) replace the random bins of the classical solutions of [19], [47]. 

A nice benefi t of the dithered lattice approach is that the known 
parts (J and I) can be arbitrary signals, i.e., they do not even need 
to have a stochastic model. Yet, if J and I are random, then they 
can play the role of the dither, so common randomness becomes 
unnecessary. 

See [22] for a modulo lattice modulation (MLM) scheme for joint 
source-channel coding with side-information using a single shap-
ing lattice. 

VII. Gaussian Networks
There are many ways in which side-information paradigms can 
enter general multi-terminal networks. The obvious cases are the 
broadcast channel, in which the (joint) encoder may view the trans-
mission to one terminal as side-information for the transmission 
to the other terminals. Similarly, in multi-terminal coding of cor-
related sources, the (joint) decoder may view the reconstruction of 
one source as side information for the reconstruction of the other 

5This assumption is true for high SNR (implying a5 1), or high dimension and a 
“good” coarse lattice (to make the self-noise component “Gaussian enough”). Fur-
thermore, the effective noise Zeff is in fact more favorable than Gaussian noise for 
suffi ciently small Pe, so the Gaussian approximation provides a lower bound on the 
rate of the system. 
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Fig. 7 Lattice-strategies for the dirty-paper channel.
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sources. In both these cases, the side-information is concentrated 
in the “relevant” terminal in the network. Indeed, in the QG case, 
it is easy to fi gure out how to replace the standard information-
theoretic “random binning” technique by a lattice-based solution. 
This solution uses the the lattice-WZ and lattice-DPC schemes of 
Sec. VI as building blocks [52]. As in section VI, the main moti-
vation for such a lattice scheme is the complexity reduction (and 
perhaps the intuition) gained by a structured solution. 

A more interesting situation, however, occurs when side informa-
tion is distributed among more than one terminal. Surprisingly, it 
turns out that in some distributed linear network topologies, the 
lattice-based system outperforms the random-binning solution. 
Moreover, in some cases it is in fact optimal! Apparently, the lin-
earity of the network in these scenarios favors linear (rather than 
random) binning, as we already saw in the binary Körner-Marton 
problem. 

VII.A. The Gaussian Körner-Marton Problem
Krithivasan and Pradhan [26] extended the Körner-Marton prob-
lem of Fig. 2 to the QG case. Suppose X and Y are positively cor-
related Gaussian sources, say, Y5X1N where N is independent 
of X, and the decoder wants to reconstruct their difference N with 
some mean-squared distortion D. As they show, near-optimal per-
formance can be achieved if each source is lattice-WZ encoded, 
where the coarse lattice – tuned to match the variance of the dif-
ference N – is identical at both encoders. The decoder subtracts the 
two encodings, modulo the coarse lattice, to isolate the desired 
(quantized) difference signal. 

Unlike the original “lossless” KM setup, however, the lat-
tice scheme does not match the “genie aided” outer bound; for 
sx

2 W sn
2, it loses 3dB in distortion (one bit in the sum rate) due 

to the accumulation of two independent quantization noises. Yet, 
at least for high rates this is still better than a “standard” random 
binning solution a la Berger-Tung [3], which (implicitly) encodes 
both sources X and Y just to transmit their difference. 

VII.B. The Dirty Multiple Access Channel
We next consider what seems to be the “dual” of the Körner-Mar-
ton problem: a generalization of the Gaussian dirty-paper prob-
lem to a multiple access setup, as illustrated in Fig. 8. There are 
two additive-interference signals, one known to each transmitter 
but none to the receiver. 

It is shown in [40] that the rates achievable using Costa’s binning 
scheme (induced by his auxiliary random variables) vanish in the 
limit when the interference signals are strong. In contrast, if both 

encoders apply lattice-DPC using the same shaping (coarse) lattice 
Ls, then the sum interference is concentrated on Ls. The equivalent 
channel seen by the receiver is thus a MAC version of the modulo-
additive channel of Thm. 6, and the sum rate is positive indepen-
dent of the interferences. 

Furthermore, [40] gives an outer bound for the capacity region of 
the dirty MAC for arbitrarily strong interferences, which is strictly 
smaller than the clean MAC capacity region. Lattice-DPC of large di-
mension meets this outer bound for some cases, in particular for im-
balanced power constraints, as well as in the limit of high SNR [40].6

VII.C. The Loss of Single-Letter Characterization
Costa’s binning scheme is derived from a Gaussian single-letter 
formula. It fails on the dirty-MAC because, unlike for lattice-bin-
ning, the sum of two independent bins (from the two users) results 
in a “bad” codebook. A similar phenomena occurs in the Gaussian 
Körner-Marton problem: the difference of two independent bins, 
each one generated by a Gaussian single-letter expression, results 
in a “bad” codebook. Are there better single-letter formulas for 
these two problems? 

We conjecture that the best single-letter formula for the dirty MAC 
in the limit of strong interference and high SNR is given in terms 
of a one-dimensional lattice [40], [41]. The resulting rate loss is 
thus the “shaping gain” 11/2 2 log 12pe/12 2 < 0.254 bits, i.e., the 
divergence from Gaussianity of a scalar dither (17). For a binary 
version of the dirty MAC, it is shown in [41] that the capacity loss 
of the best known single-letter formula is ~0.2 bits. 

VII.D. Lattice Network Coding
In a standard packet switching network, nodes act as routers – 
they wish to fi nd the best route for a packet under the current 
conditions. If the infl ow to a node is higher than its output capac-
ity, then some of the packets need to be discarded. The idea of 
network coding is that a bottleneck node can “combine” together 
packets rather than choose which one to pass on and which one to 
discard. If the fi nal destination gets enough such “combinations” 
(from different routes), then it can resolve the ambiguity and de-
code all the transmitted packets reliably. 
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Ŵ2

Fig. 8 Doubly dirty MAC.
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Fig. 9 A multi-relay multi-user network scenario.

6The loss w.r.t. the outer bound in the balanced case is similar to the 3dB loss in the 
Gaussian KM; it amounts to doubling the “self noise” component in (24), hence the “1” 
in the AWGN channel capacity formula reduces to some number 1 . g . 1/2 [40], [37]. 
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The focus of most research on network coding 
has been on linear coding schemes [29]. In theory, 
though, any mapping at the nodes which is overall 
information preserving would work, as long as the 
network is lossless. In particular, random binning at 
the nodes is information preserving with high prob-
ability [20]. However, when extending the network 
coding idea to noisy networks, the structure of the 
code is essential to avoid noise accumulation and loss 
of capacity. 

Specifi cally, consider the Gaussian relay network 
proposed in [36], depicted in Fig. 9, where N users 
wish to communicate with a destination (central 
decoder) through a layer of M $ N relays. Each relay receives 
some weighted (by the fading coeffi cients) linear combination 
of the transmitted signals corrupted by AWGN. Thus, the dif-
ferent signals at the relay input are already “combined” by the 
network. Relaying this combination as is (say, in some analog or 
compressed form) means that the noise will be forwarded to the 
fi nal receiver as well. On the other hand, requiring the relay to 
decode all its input signals separately (as a MAC receiver) means 
a waste of capacity. See, e.g., [2]. 

It has been shown recently how to use lattice codes for (“physical-
layer”) network coding in the presence of Gaussian noise [35], [34], 
[36], [37]. If all the users use the same coding (fi ne) lattice, then the 
relay can decode an integer linear combination of the codewords 
(a lattice point which is close to the received signal), thus remov-
ing the channel noise before forwarding the decoded point to the 
fi nal receiver. A particularly insightful example is that of the two-
way relay, where each user computes its intended message from its 
own message and the message-sum it gets from the relay [35],[34]. 

A framework for treating non-Gaussian noise and non-additive 
channels is proposed in [12]. 

VII.E. Interference Alignment
A similar idea applies for the suppression of interference in a 
multi-node interference channel (IC). One of the interesting ob-
servations of the recent years is the idea of interference align-
ment [5]: a channel aware transmission system can make the 
 effective number of interferers seen by each receiver equal to 
one. Thus, effectively, the multi-node IC is no worse than the 
classic  double-node IC! 

The original idea was to align the interference in the time domain, 
and it used linear transformations [33]. An alternative approach, 
based on alignment in the amplitude domain, was proposed in 
[38]. This approach fi ts very naturally into the lattice framework. 

Consider the many-to-one interference channel of Fig. 10. Assum-
ing the interference path gains of users 2 to L are identical, and 
that these users use the same coding (fi ne) lattice LI, the equiva-
lent channel seen by user 1 is similar to that seen in the dirty 
MAC of Sec. VII.B: the interference signals are all concentrated on 
the points of a single lattice LI. Thus, in effect, user 1 experiences 
a single interferer. Furthermore, using an “ estimate-and-modulo” 

receiver as in Thm. 6, user 1 sees an equivalent 
modulo-LI channel. Thus, it can achieve a rate of 

R15
1
2

logamin e sLI

2

N
, 

P1N
N

f b
for large lattice dimension, corresponding to a full 
capacity in the strong interference regime. 

VIII. Open Questions
On the practical side, lattice (or alternatively, lin-
ear trellis) codes with good performance and low 
encoding and decoding complexity are essential 

to make this theory attractive. New design approaches, e.g., [43], 
may be of interest. 

The linear structure of the lattice plays a crucial role in the dis-
tributed lattice coding schemes presented in Sec. VII. For a proper 
operation, we need to align the lattice codes both in time and in 
amplitude. Yet in all the examples we considered, only one of the 
component codes of the system – either the shaping or the coding 
lattice – must be aligned. The other code does not even need to be 
a lattice! See Table 1. Other examples are of interest. 

Random coding schemes – based on traditional single-letter (i.i.d.) 
solutions – seem to fail in these setups. For example, as discussed in 
Sec. VII.C, the loss of single-letter characterization in the Gaussian 
dirty MAC setup is conjectured to be 11/2 2 log 12pe/12 2 < 0.254 bits. 

Does structure really beat random? Note that proving the exist-
ence of good lattices requires random coding arguments [4], [42], 
[32], [10], [21], [56]. Also, our analysis of the lattice coding schemes 
assumes common randomness in the form of a dither. A question 
thus remains, if the failure of the traditional random coding ap-
proach is due to inappropriate single-letter solutions, or to its in-
herent weakness. We believe the latter to be true.7

The success of lattices in these setups hinges upon a good match 
between the linearity of the code and the linearity of the source or 
channel network. Can we go beyond the linear case? 
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7Nevertheless, this  should not be seen as a discouraging fact, but rather as an indica-
tion for new directions and opportunities! 

Table 1. Which component to align.

Shaping 
(coarse) lattice

Coding 
(fi ne) lattice

Gaussian Korner Marton aligned – 

dirty MAC aligned – 

Lattice network coding – aligned 

Interference alignment – aligned 
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Abstract—Algebraic curves over a fi nite fi eld have played a cen-
tral role in both coding theory and cryptography over the past 
three decades. In coding theory the use of algebraic curves led 
to the discovery of asymptotically good codes whose parameters 
lie above the Varshamov-Gilbert bound in certain cases while in 
cryptography the use of elliptic curves led to public key crypto-
systems that are more effi cient, in some sense, for a given level 
of security than integer factorization based ones. It would seem 
natural that the use of higher dimensional varieties might lead to 
even better results for both applications. Such has not so far been 
the case in any dramatic way. The purpose of this talk is to review 
the situation on the use of Abelian varieties in these two areas.1

I. Introduction
The success enjoyed by the use of algebraic curves in both coding 
and cryptography is well documented. In coding theory the use of 
such curves led to the construction of codes whose parameters, as-
ymptotically, exceeded the Varshamov-Gilbert bound. In cryptogra-
phy, the use of elliptic curves led to cryptosystems whose security, 
as far as is known, is proportional to the square root of the group or-
der, rather than the subexponential security of integer factorization 
or certain discrete logarithm problems. The dramatic success of the 
use of curves, in both domains, make it natural to consider the use 
of higher dimensional analogs, Abelian varieties, in the sense that 
the increased degrees of freedom might yield further dividends. 

This work reviews the progress that has been made in this effort. 
The next section gives the necessary notation and background on 
Abelian varieties. The special case of Hermitian varieties is used 
for illustrative purposes. Section III reviews the progress on the 
use of higher dimensional varieties in the construction of codes 
with good parameters. Section IV considers the application of 
higher dimensional geometry to cryptography. Much of this sec-
tion focuses on Jacobians and supersingular varieties. A few com-
ments on the the subject are given in the fi nal section. Excellent 
references for the work are [6], [17], [18]. 

To make the article accessible to a wide audience, and in the inter-
ests of space, an informal approach to some of the defi nitions has 
been taken, at times sacrifi cing precision for space. 

II. Preliminaries on Abelian Varieties
Denote by Pm the set of projective 1m1 1 2 -tuples over the fi nite 
fi eld Fq:

Pm5 5 1x0, cxm 2|nonzero scalar multiples identifi ed, xi [ Fq6

where [Pm5pm,q5 qm1 qm211c1 1. Similarly denote by Am

the set of affi ne m-tuples: 

 Am5 5 1x1, c, xm 0  xi [ Fq6, [ Am5 qm.

Varieties may be either affi ne or projective. and it is convenient to 
limit the discussion to projective, with the affi ne case being simi-
lar. Let f [ Fq 3x0, x1, c, xm 45 Fq 3X 4 be a homogeneous irreduc-
ible polynomial (all monomials of same degree) and let 

 Vf5 5P [ Pm 0   f 1P 2 5 06.
Vf  will also be referred to as a hypersurface. More generally [6] 
one defi nes a prime ideal I of polynomials in Fq 3X 4 and defi ne VI

as the set of common zeros of the polynomials of I. Then V is a 
projective variety if and only if V5VI for some prime ideal in 
Fq 3X 4. For coding applications such varieties will be suffi cient. The 
dimension of a variety is [6] is the supremum of the length of a 
chain of distinct irreducible closed subspaces. A curve then is a 
variety of dimension 1 and a higher dimensional variety has di-
mension greater than 1. 

For cryptography one needs the ability to compute in the variety 
which will lead to Abelian varieties. The notion of an Abelian va-
riety [6] as a higher dimensional analog of an algebraic curve is 
introduced in an informal manner. An algebraic group is a (projec-
tive) variety, X, with regular maps 

 m: X 3 X S X  and  i: X S X

of addition and inverse along with a neutral element satisfying 
the usual properties. It can be shown that such a law must be com-
mutative and such projective algebraic groups are called Abelian 
varieties. However, if the variety is defi ned as above, say as the 
set of projective points which are the zeros of an 1m1 1 2 -variable 
homogeneous polynomial, it may not be obvious, in general, how 
to defi ne the two regular maps above on the variety and hence 
obtain an Abelian variety. 

A convenient approach for cryptographic work will be to con-
struct Abelian varieties from absolutely irreducible smooth pro-
jective curves via their Jacobian in the following manner. Let Cq be 
a curve of genus g over Fq defi ned as the set of solutions over the 
algebraic closure of Fq of the polynomial f 1x, y 2 5 0,  f [ Fq 3x, y 4
and let the set of Fq rational points on the curve be: 

C 1Fq 2 5 5P5 1x,y 2 [ Fq
2 | f 1x,y 2 5 0, f [ Fq 3x,y 4 6

A divisor D of Cq is a formal sum of the form 

 D5 a
P[Cq

mPP, 1This note is a modifi ed version of an invited talk at the Information Theory 
Workshop in Dublin, August, 2010. 
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where the mP are integers and only a fi nite number of them are 
nonzero. The divisors form a group under the natural addition. 
Defi ne the degree of the divisor D to be the sum gP[Cq

mP [ Z. The 
divisors of degree 0 form a subgroup D0. 

By a function on the curve Cq is meant a rational bivariate function 
of the form h 1x, y 2 5 a 1x, y 2 /b 1x, y 2 ,  a, b [ K 3x, y 4 where b 1x, y 2  is 
not divisible by the equation of the curve. The function h has a 
fi nite number of poles and zeros on the curve. To such a function 
we associate a divisor div 1h 2  defi ned as 

 div 1h 2 5 a
P[Cq

mPP

where, if h has a zero at P, mP is the degree of that zero, and if h has 
a pole at P, mP is the negative of the degree at that pole. The div 1h 2
is clearly of degree 0 taking into account the poles or zeros at the 
point at infi nity, O, and such a divisor is called principal i.e. the di-
visor D [ D0 is principal if there is a function h [ K 1x, y 2  such that 
D5 div 1h 2 . The set of all such principal divisors is a subgroup P.

The factor group JCq
5D0/P is referred to as the Jacobian variety of 

the curve Cq. If the curve is of genus g the Jacobian is an Abelian 
variety of dimension g. There is a natural arithmetic in the factor 
group of cosets, which is informally described here for the case of 
hyperelliptic curves, perhaps the most important extension from the 
elliptic curve case. Defi ne by JC1Fq2 to be the set of Fq rational points 
of JCq

 i.e. those elements of JCq
 fi xed by the q-power Frobenius map 

(see later). 

A hyperelliptic curve Cq of genus g over a fi nite fi eld Fq is a smooth 
projective curve which admits an affi ne equation of the form [9] 

 y21 h 1x 2y5 f 1x 2
where f  is a polynomial of degree 2g1 1 and h is a polynomial 
of degree at most g, Fq [ Fq 3x 4. Note that if the point 1x, y 2  is on 
the curve Cq then the opposite or symmetric point 1x, 2 y2 h 1x 2 2
is also. It can be shown that in each class of JC1Fq2 there is a unique 
divisor of the form D5 P11c1 Pk2 kO,  k # g, referred to as 
a reduced divisor, such that for all i 2 j Pi and Pj are not oppo-
site points. Then there is a unique representation of D by two 
polynomials 3u, v 4, deg v , deg u # g and u is monic and divides 
v21 hv2 f  [9], u, v [ Fq 3x 4. Here, the roots of the polynomial u 
are the x-coordinates of the points Pi appearing in the reduced 
divisor. With such a representation the divisor is said to be prime 
if the polynomial u is irreducible over Fq and the degree of of the 
divisor will be taken as the degree of u. It can be shown that the 
divisor D [ JC1Fq2 with representative 3u, v 4  is equal to the sum of 
the prime divisors 3ui, vi 4  where the ui are the irreducible factors 
of u. These observations will be useful in discussing their appli-
cation to cryptography in Section IV. Arithmetic on the Jacobian 
is that of addition of cosets in the factor group in terms of the 
coset representative [5]. 

The Jacobian of a curve (and especially hyperelliptic curves) of 
genus g is a useful technique for forming Abelian varieties in that 
such a construction comes with a natural addition. This observa-
tion will be of value in cryptography, discussed in Section IV. 

A natural question is which Abelian varieties arise as Jacobian of 
curves? This is known as the Schottky problem which has been 

widely investigated.. For lower dimensional varieties it is often 
the case that a given variety is the Jacobian of some curve. 

Denote by Aq an arbitrary Abelian variety of dimension g with de-
fi ning equations over the fi nite fi eld Fq, and the group of elements 
of the variety over the closure of Fq and by A 1Fqs 2  the group of Fqs

rational elements and by [A 1Fqs2  the number of such elements. 
In this last notation the dependence of the variety defi ned over Fq

is understood. A great deal is known on such quantities. Of prime 
importance is the zeta function of the variety which enumerates 
the number of elements in the group [A 1Fqs2 . The zeta function 
for an Abelian variety is defi ned as: 

 ZA 1 t 2 5 expaa`
s51

Ns
ts

s
b

where Ns5 [A 1Fqs 2 . The zeta function of a smooth projective 
 variety is rational and the numerator is the characteristic polynomi-
al of the Frobenius endomorphism. The Frobenius endomorphism 
of Aq is 

 p: x S xq

and its characteristic function is denoted PAq
1 t 2  i.e. the monic 

polynomial equation of least degree the endomorphism satisfi es 
at points of the variety. These functions encapsulate much infor-
mation of the variety, some of which is summarized here. 

It can be shown ( [23]) the roots of this polynomial 5ai6, are of 
the form zq1/2 for some 2g-th root of unity z, or 0ai 0 5"q and 
ai
# ag1i5 q. The size of the variety is given by 

[A 1Fq 2 5 PAq
11 2 5q

2g

i51
112ai 2 .

The following bounds result as a consequence 

3 1"q2 1 2 2g 4 # [A 1Fq 2 # 31"q1 1 2 2g 4
and 

|[A 1Fq 2 2 1qg1 1 2|# 2gqg2
1
21 4g qg21

and the size of the set of Fq -rational points of the variety of dimen-
sion g is O 1qg 2 . 
In the case the variety arises as the Jacobian of a curve Cq over Fq

then the number of points on the curve itself can be expressed in 
the form 

[ C 1Fqs 2 5 qs1 12 a
2g

i51
ai

s

while the number of elements of the resulting Jacobian of the 
curve is 

[ JC1Fqs25 q
2g

i51
112ai

s 2  ~ O 1qgs 2 .
An elliptic curve is of genus 1 and its Jacobian variety is in fact 
isomorphic to the elliptic curve itself, with group operation the 
usual curve addition. The number of points of the curve (over Fq) 
 determines the number of points on the curve over Fqs, s . 1. 
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Just as the Hasse-Weil bound is available for curves, states that

|[X 1Fq 2 2 1q1 1 2| # 2g"q

the analogous bound for hypersurfaces, useful in coding, in terms 
of degrees (of the defi ning multivariate polynomials) is [16]: 

for X 1Fq 2  a smooth non-degenerate (not contained in any linear 
subspace of Pm) hypersurface of degree s (of the defi ning equa-
tion) in Pm, m $ 2 over Fq, then 

 |[X 1Fq 2 2 1qm211c1 q1 1 2| # b 1s,m 2q1m212/2 (1)

where b 1s, m 2 5 1 1s2 1 2 /s 2 1 1s2 1 2m2 1 2 1 2m 2  when m is even 
and one less when m is odd. 

A. Hermitian Varieties
Hermitian varieties form a nice example of the previous theory 
and certain results for the set of rational points on an Hermitian 
hypersurface are considered here. 

For this subsection let q5 r2 for a prime power r. The m-th order 
Hermitian variety over Fq, Xm 1Fq 2 , is the set of Fq rational solutions 
to the equation 

 x0
r111 x1

r111c1 xm
r115 0. (2)

The number of solutions to this equation over Fq was fi rst given by 
Bose and Chakravarti [3], [4] and is given by 

 [Xm 1Fr2 2 5 r2m221c1 r21 11 b 1r1 1 2rm21

5
1rm112 1 2 1 2m11 2 1rm2 1 2 1 2m 21q2 1 2

It is noted this number meets the upper bound of equation (1) and 
hence the Hermitian hypersurfaces are maximal for all dimen-
sions m $ 1. 

It is a simple matter to actually construct the solutions to the Her-
mitian surface, enumerated above, as was essentially done in [3], 
[4], [2]. It is also straightforward to derive the zeta function for the 
variety (e.g. [2]) as well as other information which will prove use-
ful in their application. 

III. Abelian Varieties in Coding Theory
A brief overview of codes from hypersurfaces is given here, 
drawn mainly from the excellent survey article [16] and the pa-
per [11]. Only evaluation codes are considered i.e codes whose 
codewords are obtained by evaluating homogeneous polynomi-
als of a certain degree over the points of a projective variety, Xq. 
In particular let S # Xq be a subset of the rational points over 
of the variety Xq (often S will be the set of all rational points). 
Denote by Fq 3x0, x1, c, xm 4#h the set of homogeneous poly-
nomials over Fq of degree # h in the 1m1 1 2  variables and by 
Fq 3x0, x1, c, xm 4h5Fh, m the set of such polynomials of degree 
exactly h. Such sets will be used for the projective codes (to be 
defi ned later). 

Consider the code defi ned by the map from the space of homoge-
neous polynomials in m1 1 variables to the vector space over Fq. 

To make it concrete, let S5 5P1, P2, c, Pn6, [S5 n,  S # Xq be a 
subset of the set of points X on a variety X: 

 c: Fh,m S Fq
[S

f A 1 f 1P1 2 , f 1P2 2 , c, f 1Pn 22 .
The code is denoted by Ch 1X, S 2 . For h5 1, i.e. the set of lin-
ear forms, denote the code C 1X 2 5C1 1X, S 2 . The dimension of 
Ch 1X, S 2  is the dimension of the space of homogeneous polynomi-
als less the dimension of the kernel of the above map. To deter-
mine the minimum distance of the code, let 

V 1 f 2 5 5P [ S|f 1P 2 5 06
that is, the number of coordinate positions of the codeword cor-
responding to the homogeneous polynomial f  that are zero. Then 
the minimum distance of the code is 

d5 min
f20,f[Fh,m

1n2 | 1V 1  f 2 d S| 2 2 .
The following bound is obtained in [14]: for X  a projective variety 
of dimension m and degree s , q1 1, for h5 1 the code C1 1X, S 2  
has minimum distance: 

 d $ n2 s 1qm211c1 q1 1 2 .
Numerous other results are available for special types of surfaces 
and for linear and quadric forms. Two examples of the theory are 
briefl y noted, those of the full projective codes and those from 
Hermitian varieties. 

A. Projective Reed-Muller Codes
Since all the codes considered here can be viewed as punctured 
projective Reed-Müller codes where certain coordinate positions 
are dropped, a brief review of the information on such codes is 
noted, drawn mainly from Lachaud [15], [16] and [22]. 

The projective Reed-Müller codes are defi ned as follows. Using all 
the projective points in Pm, a variety of dimension m, and the all 
the homogeneous polynomials of degree h (i.e. those of Fh, m ), the 
resulting code will be called the projective Reed-Müller code of order 
h and denoted Rq 1h, Pm 2  and for h , q has the parameters ([15]): 

length 5pm, q,    dimension5 ah1m
h

b
distance5 1q2 h1 1 2qm21.

An affi ne version of the codes can also be defi ned. The parameters 
of the two codes are compared in [15]. It might be argued the projec-
tive codes are slightly better, but they are quite close. One can also 
obtain expressions for the code parameters when q # h # m 1q2 1 2  
[22] (for values of h above this value the codes are trivial). 

B. Codes from Hermitian Varieties
Much of the literature on codes from Hermitian varieties has fo-
cused on only a limited subset of parameters. For m5 3 the code 
formed from linear forms (h5 1) can be shown [16] to have the 
parameters 
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n5 1r21 1 2 1r31 1 2 ,  k5 4,  d5 r5.

For m5 3 but higher degree h forms, the resulting code has the 
parameters 

 n5 1r21 1 2 1r31 1 2 ,  k5 a41 h
h

b,  d $ n2 h 1r1 1 2 1r21 1 2 .
For general m the variety is of dimension m and the parameters of 
the code C1 1X, S 2 5C 1X 2  [16] are: 

 n5Xm 1Fr2 2 ,    k5m1 1,

d5 e r2m212 rm21 m ; 0  1mod 2 2
r2m21 m ; 1  1mod 2 2 .

Much of the recent work on these codes has focused on quadric 
the case, h5 2. 

While the two examples are interesting, as well as others in the 
literature, as far as the author is aware there are no examples 
of codes from hypersurfaces that exhibit signifi cantly better 
parameters than those available from curves. Modular curves 
played a prominent role in producing asymptotically good 
codes but the author is unaware of work to extend these notions 
to higher  dimensions. 

IV. Abelian Varieties in Cryptography
To discuss the use of Abelian varieties in cryptography a slight 
diversion into the complexity of the discrete logarithm problems 
is needed. 

Discrete logarithm based public key cryptosystems depend for 
their security on the complexity of fi nding discrete logarithms. In 
a multiplicative group, such as the group of nonzero elements of a 
fi nite fi eld, Fp

* (nonzero integers mod the prime p), if a is a genera-
tor, the discrete logarithm problem (DLP) is: given a, y5ax, fi nd x, 
the discrete logarithm of y. In an additive group, such as the set of 
points on an elliptic curve (under their natural addition), the DLP 
is: given a point P on the curve and xP5 P1 P1cP,   x  times, 
fi nd x. To maximize security for a given size group, such problems 
always take place in a large prime order subgroup. To simplify the 
discussion, this distinction is ignored. 

The complexity of solving the DLP in these two structures is very 
different. To understand the difference the notion of smoothness is 
noted. In the fi rst structure, an integer b [ Fp

* is called smooth with 
respect to a if all of its prime divisors are less than a. An arbitrary 
integer can be uniquely decomposed into its prime factors. This 
leads to an index calculus attack on the DLP. There are two parts to 
the attack. In the fi rst part a factor base Dx is formed consisting of 
all primes less than a given integer x. The discrete logarithms of 
all elements of Dx are found by choosing random elements in Fp

*

of the form aa for known a. If this (as an integer) factors into Dx a 
relationship is found between a and the discrete logarithms of a 
subset of elements of Dx. If a suffi cient number of independent re-
lations is found, they can be solved to fi nd the discrete logarithms 
of Dx. In the second part of the algorithm a given element whose 
logarithm is required is randomly perturbed in a certain manner 
until it factors into Dx allowing the logarithm to be found. By care-
fully choosing x (hence the size of Dx) to balance the work between 

the two parts of the algorithm, the number of operations required 
to solve the DLP can be shown to be 

Lp 1a, c 2 5O 1exp 1c ln 1p 2 alnln 1p 2 12a 2 2 .
Such complexity is referred to as subexponential- for a5 1 it is ex-
ponential (in ln 1p 2 ) and for a5 0 it is polynomial. This complexity 
is considerably less than that required for many systems that lack 
the notion of smoothness. 

In the absence of the notion of smoothness, an algorithm such as the 
baby-step-giant-step (BSGS) algorithm, applicable to any cyclic group, 
is available and has complexity O 1 !p 2 . The distinction between 
the performance of these two algorithms has driven much crypto-
graphic research over the past twenty fi ve years. The use of elliptic 
curves in cryptography was fi rst proposed in 1985 independently 
by Koblitz and Miller. There is a natural addition of points on an 
elliptic curve and a (additive) subgroup of prime order q is used for 
cryptographic applications. The reason that elliptic curves were pro-
posed is the thought that no notion of smoothness for use in the DLP 
problem was likely, for any cryptographically useful curve. While a 
notion of smoothness has been applied to an infi nite family of cer-
tain types elliptic curves [7], such curves are easily avoided in prac-
tice. Thus the best algorithm for solving the DLP for ‘useful’ elliptic 
curves is the BSGS (or similar algorithm) with complexity O 1 !q 2 .
The implication of these observations is that a discrete logarithm 
based cryptosystem in Fp

* with a 1024 bits prime (,log(p)) has a 
similar security to an elliptic curve based system over a prime 
fi eld of 163 bits. Similarly a discrete logarithm based system with 
a 3072 bit prime has a similar security to an elliptic curve system 
with a 256 bit prime. 

The success of elliptic curves led to the thought that higher di-
mensional analogs might yield further dividends. Since there is no 
natural addition of points on a hyperelliptic curve, the construc-
tion of an Abelian (Jacobian) variety JC 1Fq 2  from a curve C of genus 
g over Fq as discussed in Section II is used. Two applications of this 
theory to cryptography are mentioned here. 

The notion of using a hyperelliptic curve for cryptography was pro-
posed by by Koblitz [13] and we use the terminology introduced in 
Section II. Using a hyperelliptic curve of genus g leads to a Jacobian 
variety of dimension g and of size approximately qg. Arithmetic in 
this variety is that of the classes of the factor group. It was noted 
in Section II that each class has a unique representative that can be 
expressed as a pair of polynomials 3u, v 4. Techniques for the ad-
dition of two classes, viewing JC1Fq2 as an additive group, was fi rst 
addressed by Cantor [5]. Since then the problem has been an active 
area of research and now effective algorithms exist to perform very 
effi cient arithmetic on the Jacobian of a hyperelliptic curve. 

It was perhaps originally presumed by many research ers that, as 
there was no index calculus attack for the discrete logarithm prob-
lem on elliptic curves, the same would hold true true for hyperel-
liptic systems. However, such was not the case. Adleman et al [1] 
gave an index calculus attack on hyperelliptic systems which was 
effective for large genus. Gaudry ([9]) showed the result that there 
is a notion of a smooth divisor in the Jacobian variety which can be 
used to construct an index calculus attack, much as for a discrete 
logarithm atta ck in fi nite fi elds, that is effective for smaller genus 
curves. He defi ned a divisor with representative 3u, v 4 in JC1Fq2 to be 
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S-smooth if all its prime divisors are of degree at most S. Of course 
a 1-smooth divisor is one for which all the irreducible factors of 
the polynomial u are of degree 1. The factor base then is taken to 
be the set of all prime divisors of degree at most S. With this notion 
of smoothness he [9] proved the following : 

Theorem 1: The algorithm (for determining discrete logarithms 
in the Jacobian of a hyperelliptic curve of genus g) requires 
O 1q21 g!q 2  polynomial time operations in g log q and if one con-
siders a fi xed genus g, the algorithm takes time O 1q2 logg q 2 . 
More recent work [10] has shown an algorithm of time com-
plexity O 1q222/g 2  for small genus curves. For g5 4 the com-
plexity of such an attack would be O 1q3/2 2  and for g5 3 the 
complexity would be O 1q4/3 2  while for a BSGS type attack they 
would be O 1q2 2  and O 1q3/2 2  respectively, since the group or-
der is ~qg. The argument is to not use a system with less than 
square root (of group order complexity) since one could use 
an elliptic curve system more effectively. This would seem to 
limit the use of such curves of genus 2 and 3. However ge-
nus 2 and 3 hyperelliptic/Jacobian variety systems have been 
studied extensively in the literature. For example, for a genus 
2 hyperelliptic system, arithmetic is over Fq while the group 
order is O 1q2 2  while for an equivalent elliptic curve system the 
group order would be O 1q 2 . Thus for the same level of secu-
rity one could use a field size O 1 !q 2  in comparison with the 
elliptic system, making the bit length of the arithmetic for the 
hyperelliptic system half as long. Such considerations might 
well be important for constrained environments and genus 2 
and 3 curves appear to have very efficient implementations to 
the point where they are very competitive with elliptic curves. 

A second area where Abelian varieties have had an impact on cryp-
tography has been in the area of pairings for application to the numer-
ous (and growing) number of pairing-based protocols. Only a brief 
mention of this work is given here. As for elliptic curve based systems 
it is possible to defi ne pairings on A 1Fq 2  that map (for the Weil pair-
ing), pairs of r-torsion points of A 1Fq 2  to the multiplicative subgroup 
of a fi nite fi eld of appropriate order, say qk, where k is the smallest 
extension for which this is possible (it is referred to as the embedding 
degree). Supersingular Abelian varieties are of interest here and these 
are isogenous to a power of a supersingular elliptic curve over the 
closure of Fq. Simple Abelian varieties (i.e. those not isogenous to a 
product of lower degree varieties) are of interest. With a pairing for 
a supersingular elliptic curve, breaking the discrete logarithm prob-
lem has a complexity of the minimum of either the square root in the 
group order on the curve or that of using index calculus in the fi nite 
fi eld, using the pairing. One thus balances carefully the group order 
in the curve with the complexity order from the fi nite fi eld, which 
also depends on the embedding degree. However supersingular el-
liptic curves have a maximum embedding degree of 6. It is shown 
[8], [19], [20], [24] that supersingular Abelian varieties offer a much 
wider array of embedding degree choices and so should prove very 
useful for the implementation of such cryptosystems. A competing 
factor is that the complexity of computing the pairing increases as the 
embedding degree increases. Nonetheless, the wider range of choice 
of embedding degrees is a useful option in such protocols. 

V. Conclusion
The review has considered recent work in coding and cryptog-
raphy using higher dimensional varieties. It is diffi cult to draw 

conclusions why these applications have not enjoyed more suc-
cess. In coding theory it is perhaps due to the lack of under-
standing as to how to choose the variety and construct effective 
subsets of points of the variety, along with a suitable set of eval-
uation polynomials, for use in the code defi nition, in order to 
obtain codes with good parameters. In cryptography the subject 
of hyperelliptic curves can be viewed in terms of the Jacobian 
variety, which has enjoyed success in a limited way. It would 
also be of interest to learn how to defi ne point addition on an ar-
bitrary variety, for use as a discrete logarithm problem in cryp-
tography. In both coding and cryptography it is concluded there 
is much yet to be discovered on effectively using the higher di-
mensional varieties. 
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GOLOMB’S PUZZLE COLUMNTM 

Proofs With Integers as Exponents
Solomon W. Golomb

Each of the following problems has a solution using expressions of the form g`
j50 ajx

j (or gN
j50 ajx

j in 
 Problems 2 and 4) where the coeffi cients aj take only the values 0 or 1. 

1) Find a function f 1x 2 5 g`
j50 ajx

j such that f 1x 2 f 1x2 2 5 1/ 112 x 2 , valid in |x| , 1. (Equivalently, 
find a set S of non-negative integers such that every integer n $ 0 has a unique representation 
n5 a1 2b with a [ S and b [ S.) 

2) Prove that, to pack an a 3 b 3 c box exactly with 1 3 1 3 n bricks, it is necessary (as well as sufficient) that the integer 
n divide (at least) one of the three integers a, b, or c. 

3) For k . 1, it is possible to have k disjoint arithmetic progressions, Pi5 5ain1 bi6n50
` , 1 # i # k, whose union contains 

every positive integer exactly once (e.g., 52n1 26 h 54n1 16 h 54n1 36,  with k5 3). Prove that this is impossible if all 
the ai’s are distinct. 

4) Suppose that every integer k from 1 to n22 1 has a unique representation of the form k5 a1 b, with 
a [ A5 50, a1, a2, c, an216, b [ B5 50, b1, b2, c, bn216. 

4(a) Show, if n is prime, that the sets A and B of integers are unique (except for which is A and which is B). 
4(b)  Show by example that if n is composite (e.g. for n5 4 and for n5 10), the sets A and B are not unique.

References
Problem 1 is based on problems 1 and 4 of the “Puzzles Column” in Emissary, published by the Mathematical Sciences Research 
Institute (MSRI), for Fall, 2010. 

Problem 2, with the proof using exponents, is due to N.G. deBruijn. 

Problem 3, with proof via complex power series, is the Newman-Mirsky Theorem. 

Problem 4 is a result I published in 1972, but was probably observed earlier.
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GOLOMB’S PUZZLE COLUMNTM 

Derangements and Beyond 
Solutions

Solomon W. Golomb

From d 1n 2 5 a
n

k50
121 2 k n!

k!
 , it is clear that j divides all but the last n2 j1 1 terms. Thus, 

1) d 1n2 ; 121 2n n!
n! ; 121 2n (mod n). 

2) d 1n 2 ; 121 2nan!
n! 2

n!1n2 12 !b ; 121 2n 112n 2 ; 0 (mod n2 1). 

3) d 1n 2 ; 121 2nan!

n!
2

n!1n2 1 2 ! 1 n!1n2 2 2 !b ; 121 2n 112 n1 1n22 n 2 2 ; 121 2n 1n22 2n1 1 2 ; 121 2n 1n 1n2 2 2 1 1 2 ; 121 2n 

 (mod n2 2 ). 

 A combinatorial proof of 2) is that the number of derangements on 11, 2, 3, c, n 2  that map 1 to k must be the same, by 
 symmetry, for each k, 1 , k # n; so d 1n 2  is a multiple of n2 1. 

4) nd 1n2 1 2 1 121 2n5 na
n21

k50
121 2 k 1n2 12 !

k!
1 121 2n5 a

n21

k50
121 2 k n!

k!
1 121 2n n!

n!
5 a

n

k50
121 2 k n!

k!
5 d 1n 2 . 

5) The number of permutations on n objects with no 2-cycles is given, using inclusion/exclusion, by: 

 z 1n 2 5 n!2 an
2
b 1n2 2 2 !1 1

2!
an

2
b an2 2

2
b 1n2 4 2 !2 1

3!
an

2
b an2 2

2
b an2 4

2
b 1n2 6 2 !1 1

4!
an

2
b an2 2

2
b an2 4

2
b  

an2 6
2
b 1n2 8 2 !21c5 n!a

:n/2;
k50

121 2 k
2kk!

. 

6) Since a
`

k50

12 12 k22k

k!
5 e21/2, we fi nd z 1n 2  ~ n!"e as n S `. However, because the fi nite sum for z 1n 2  is 

 truncated at k5 :n/2;, z 1n 2  is not the nearest integer to n!/"e. 

7) A 3 3 3 “trerangement” is already a Latin square, and a 3 3 4 Latin rectangle can easily be completed (uniquely!) to a 4 3 4 
Latin square. In fact, every 3 3 n Latin rectangle can be completed to an n 3 n Latin square. 

8) t 13 2 5 1, t 14 2 5 12, t 15 2 5 276.

9) I am not aware of a general formula for t 1n 2 , but let me know if you have found one. 

10) Here are some anagrams as trerangements: 

a. AELST b. AEPRS c. EIPRIST d. EIMOPRS e. AEGILNRT 

£LEAST
STEAL
TALES

§ £PARSE
REAPS
SPEAR

§ £RIPEST
STRIRE
TRIPES

§ £ IMPOSER
PROMISE
SEMIPRO

§ £ALERTING
INTEGRAL
TRIANGLE

§
 (Example e. was suggested by Donald Knuth.) 

 Other trerangements may be possible for a., b., and c. 
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ArXiv Postings Exceed 100/Month

In 2010 the number of articles posted to the Information Theory 
(cs.IT = math.IT) section of the arXiv preprint server exceeded a 
rate of 100 per month for the first time. This makes the IT section 
the second most active in both the CS and Math categories, follow-
ing closely behind Discrete Mathematics/Combinatorics (cs.DM = 
math.CO), which had 1488 articles posted in 2010. 

Since the initiation of the IT section in 2004, the number of articles 
posted has grown rapidly: 

(This includes only primary articles, not cross-listed articles.) 

On the other hand, an informal survey of the 81 articles that ap-
peared in the November and December 2010 issues of the IEEE 
Transactions on Information Theory showed that only 36 (44%) 

had been posted previously on arXiv. “This shows that informa-
tion theory is not yet like physics, where an article that has not 
been posted on arXiv effectively doesn’t exist,” said Joachim 
Rosenthal, who has been moderator of the math.IT section section 
since its inception. Madhu Sudan, moderator of the cs.IT section 
since inception, concurred: “We seem to be about halfway up the 
adoption S-curve, which is great, but we ought to keep striving 
for 100%.” 

In a related area, the IEEE Computer Systems Society has recently 
started a new arXiv section on Systems and Control (cs.SY). At 
the 2010 Conference on Decision and Control (CDC) in Atlanta, 
former IEEE Publications Vice-President John Baillieul and CS So-
ciety President Roberto Tempo organized a panel discussion on 
“E-print servers and traditional publishing,” which included a 
segment on the IT Society’s positive experience with arXiv. Past IT 
President G. David Forney, Jr. reported that “We have seen steady 
growth and noticeable benefits to our members from more rapid 
communication of new results, with no observable negative effects 
on our Transactions.”

2004 2005 2006 2007 2008 2009 2010

41 331 365 614 791 962 1257 
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Nominations for IEEE Medals and Recognitions

The IEEE is seeking nominations by 1 July 2011 for various IEEE Medals and Recognitions. For nomination guidelines and forms, visit 
http://www.ieee.org/awards.

The Information Theory Society Paper Award shall be given annu-
ally for an outstanding publication in the fi elds of interest to the 
Society appearing anywhere during the preceding two calendar 
years (2009–2010).

The purpose of this Award is to recognize exceptional publications 
in the fi eld and to stimulate interest in and encourage contribu-
tions to fi elds of interest of the Society. The award consists of an 
appropriately worded certifi cate(s) and an honorarium of $1,000 
for single author papers or $2,000 split equally among the authors 
of multiply authored papers.

Nomination Procedure (from the bylaws):
The Awards Subcommittee shall take into account

All nominations submitted in response to the open call for nomi-
nations in the last two years;

The nominations supplied by the Publications Committee in the 
last two years;

Any nomination that its members may want to submit for 
consideration.

The Awards Subcommittee shall submit to the Board a list of up 
to three selected nominations for the Information Theory Soci-
ety Paper Award at least 3 weeks in advance of the fi rst Board 
meeting following June 1st of the award year, and shall enclose 
a rationale for each nominated paper explaining its contribution 
to the fi eld.

The Board shall then vote for the nominees by ballot, conduct-
ed by the Society President or designee at the first Board Meet-
ing following June 1st of the award year. The paper receiv-
ing the highest total number of votes in the balloting shall be 
declared the winner of the Information Theory Society Paper 
Award.

Please send a brief rationale (limited to 300 words) for each 
nominated paper explaining its contribution to the fi eld to the 
Society’s First Vice President Muriel Medard (medard@mit.edu) 
by MARCH 15 2011.

IEEE Information Theory Society 
Paper Award Call for Nominations
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Call for Papers

There will be a special session pertaining to neuroscience and information theory at the 
annual International Symposium on Information Theory (ISIT) 2011 

in St Petersburg, Russia (http://www.isit2011.org/).

This is taking place due to

(i) increasing interest in the intersection of these disciplines

• a special issue on Information Theory in Molecular Biology and Neuroscience, IEEE Transactions on Information 
Theory, February 2010

• a special issue on Methods of Information Theory in Neuroscience Research, Journal of Computational 
Neuroscience, June 2010

• 5 years of special sessions on “Methods of Information Theory in Computational Neuroscience” at the 
Computational Neuroscience Annual Meeting (CNS)

(ii) a coincidence that provided an opportunity: the Computational Neuroscience Annual Meeting (CNS) will take 
place the week before ISIT, in Stockholm, Sweden (see here http://www.cnsorg.org/2011/ for more details). 
Moreover, a special session there, titled “Methods of Information Theory in Computational Neuroscience”, will 
take place on Friday, July 29th. The link to the 2010 session is here: http://www.bionet.ee.columbia.edu/work-
shops/cns/methods10/methods10.html

The special session on neuroscience and information theory at ISIT will be of 3 hours in duration, consisting of 4 or 
5 talks of 35-40 minutes in duration. Each researcher in computational/experimental neuroscience will give an over-
view of their work and will speak to the potential synergies with information theory. The detailed scheduling of this 
ISIT session is to be determined, but will most likely take place during Monday/Tuesday at ISIT - to provide overlap 
with the CNS conference.

The hope is that intrigued researchers on both sides of the disciplines might be able to use the same trip to Europe 
to take part in both conferences and further identify the interplay between both. Such computational /experimental 
neuroscientists with preliminary results that are appropriate for ISIT are encouraged to submit a paper by the stand-
ard ISIT Feb 15, 2011 deadline (http://www.isit2011.org/authors_call.php). Analogously, information theorists with 
neuroscience results that are appropriate for CNS are encouraged to submit an abstract to the CNS annual meeting by 
the Feb 14, 2011 deadline (http://www.cnsorg.org/2011/dates.shtml).

The links to the two conferences are here:
CNS: http://www.cnsorg.org/
ISIT: http://www.isit2011.org/

For anyone with further questions, feel free to contact
- Todd Coleman (colemant@illinois.edu)

- Aurel Lazar (aurel@ee.columbia.edu)
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FORTY-NINTH ANNUAL 
ALLERTON CONFERENCE 

ON COMMUNICATION,  

CONTROL, AND COMPUTING 

September 28 – 30, 2011 

Preliminary Call for Papers 

 
 
The Forty-Ninth Annual Allerton Conference on 
Communication, Control, and Computing will be held 
from Wednesday, September 28 through Friday, 
September 30, 2011, at Allerton House, the conference 
center of the University of Illinois. Allerton House is 
located twenty-six miles southwest of the Urbana-
Champaign campus of the University in a wooded area on 
the Sangamon River. It is part of the fifteen-hundred acre 
Robert Allerton Park, a complex of natural and man-made 
beauty designated as a National natural landmark. 
Allerton Park has twenty miles of well-maintained trails 
and a living gallery of formal gardens, studded with 
sculptures collected from around the world. 
 
Papers presenting original research are solicited in the 
areas of communication systems, communication and 
computer networks, detection and estimation theory, 
information theory, error control coding, source coding 
and data compression, queueing networks, control 
systems, robust and nonlinear control, adaptive control, 
optimization, dynamic games, large-scale systems, 
robotics and automation, manufacturing systems, discrete 
event systems, intelligent control, multivariable control, 
computer vision-based control, learning theory, neural 
networks, VLSI architectures for communications and 
signal processing, and automated highway systems.  

 
Plenary lecture: Professor Avi Wigderson of the 
Institute for Advanced Study, Princeton University, will 
deliver this year’s plenary lecture. It is scheduled for 
Friday, September 30, 2011. 
 
Information for authors: Regular papers suitable for 
presentation in twenty minutes are solicited. Regular 
papers will be published in full (subject to a maximum 
length of eight 8.5” x 11” pages, in two column format) in 
the Conference Proceedings. 
 
For reviewing purposes of papers, a title and a five to ten 
page extended abstract, including references and 
sufficient detail to permit careful reviewing, are required.  
 
Manuscripts must be submitted by Wednesday, July 6, 
2011, following the instructions at the Conference 
website: http://www.csl.uiuc.edu/allerton/.  
 
Authors will be notified of acceptance via e-mail by 
August 5, 2011, at which time they will also be sent 
detailed instructions for the preparation of their papers for 
the Proceedings. 

Final versions of papers to be presented at the 
conference must be submitted electronically by 
September 30, 2011. 

 
 

Conference Co-Chairs: Sean Meyn and Bruce Hajek 
Email: allerton@csl.uiuc.edu  URL:  http://www.csl.uiuc.edu/allerton 

COORDINATED SCIENCE LABORATORY AND THE 
DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING 

University of Illinois at Urbana-Champaign 
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DATE CONFERENCE LOCATION WEB PAGE DUE DATE

March 23-25,  45th Annual Conference on Information Johns Hopkins  http://ciss.jhu.edu Passed
2011 Sciences and Systems (CISS 2011) University, MD

April 10-15,  2011 IEEE Conference on Computer Shanghai, China http://www.ieee-infocom.org Passed 
2011 Communications (INFOCOM 2011)

May 14-17,  2011 IEEE Vehicular Technology Budapest, Hungary http://www.ieeevtc.org/ Passed 
2011 Conference (VTC2011-Spring)  vtc2011spring/

May 24-26,  2011 The Sixth Conference on Madrid, Spain http://gcc.ls.fi.upm.es/tqc2011 Passed 
2011 Theory of Quantum Computation, 
  Communication and Cryptography 

(TQC 2011)

June 5-9,  2011 IEEE International Conference on  Kyoto, Japan http://www.ieee-icc.org Passed
2011 Communications (ICC 2011) 

June 20-22,  2011 IEEE Communication Sitges, Catalonia,  http://www.ieee-ctw.org March 13, 2011 
2011 Theory Workshop (CTW 2011) Spain

July 31-August 5,  2011 IEEE International Symposium on St. Petersburg,  http://www.isit2011.info Passed 
2011 Information Theory (ISIT 2011) Russia

September 28-30,  49th Annual Allerton Conference on Monticello, IL TBD July 6, 2011
2011 Communications, Control, and Computing

October 16-20,  2011 IEEE Information Theory Paraty, Brazil http://www.fee.unicamp.br April 10, 2011
2011 Workshop (ITW 2011)  /itw2011

November 6-9,  8th International Symposium on Wireless Aachen, Germany http://www.ti.rwth-aachen.de  May 30, 2011
2011 Communication Systems (ISWCS 2011)  /iswcs2011/

Major COMSOC conferences: http://www.comsoc.org/confs/index.html

Conference Calendar
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