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Abstract—Flash memory is a nonvolatile computer memory
comprised of blocks of cells, wherein each cell is implemented
as either NAND or NOR floating gate. NAND flash is currently
the most widely used type of flash memory. In a NAND flash
memory, every block of cells consists of numerous pages; rewriting
even a single page requires the whole block to be erased and
reprogrammed. Block erasures determine both the longevity and
the efficiency of a flash memory. Therefore, when data in a NAND
flash memory are reorganized, minimizing the total number of
block erasures required to achieve the desired data movement is
an important goal. This leads to the flash data movement problem
studied in this paper. We show that coding can significantly reduce
the number of block erasures required for data movement, and
present several optimal or nearly optimal data-movement algo-
rithms based upon ideas from coding theory and combinatorics.
In particular, we show that the sorting-based (noncoding) schemes
require��� ����� erasures to move data among � blocks, whereas
coding-based schemes require only ���� erasures. Furthermore,
coding-based schemes use only one auxiliary block, which is the
best possible and achieve a good balance between the number of
erasures in each of the � � � blocks.

Index Terms—Coding theory, combinatorics, data storage, flash
memory, graph theory, wear leveling.

I. INTRODUCTION

F LASH memory devices have become the most widely
used nonvolatile electronic memories. There are two basic

types of such devices: NAND and NOR flash memories [8].
Between them, NAND flash is currently used much more often
due to its higher data density. In a NAND flash, floating-gate
cells are organized into blocks. Each block is further partitioned
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into multiple pages, and every read or write operation accesses a
page as a unit. Typically, a page has 2 to 4 KB of data, and 64 or
128 pages comprise a block [8]. Flash memories have a unique
block erasure property: although every page can be read and
written (for the first time) individually, rewriting a page (that is,
modifying its contents) requires the whole block to be erased
and then reprogrammed. Typically, every block can endure

erasures, after which the flash memory no longer
meets quality guarantees and may break down. Block erasures
also degrade the quality of the cells, introduce errors in the data,
and reduce the overall read and write performance. Therefore,
it is critical to minimize the number of block erasures. It is
also critical to balance the number of erasures across different
blocks. For this reason, numerous wear leveling techniques
are widely used in flash-memory systems. The general idea is
to balance erasures by migrating data to different locations,
especially when data are rewritten [8].

In wear leveling, it is often desirable to move the frequently
changing data (so-called hot data) into the same blocks, while
storing the mostly static data together in other blocks. Thereby
the overall erasures caused by the hot data can be reduced (see
[8] and [9]). The specific locations to which the data are moved
can be optimized not only based on the update frequencies, but
also on the correlation among the data. Another important ap-
plication where data movement is required is defragmentation
of files. Many file systems (and database systems) implemented
in flash take the log-structured approach, wherein updates to
files are stored nonconsecutively across blocks. This way, wear
leveling is achieved and local block erasures are avoided [5].
Consequently, files are frequently fragmented. To improve per-
formance, data have to be moved periodically in order to reor-
ganize the file segments. In database systems or sensors, after
bursty incoming data flows are reliably stored, data movement
is used to store the data in a categorized manner for efficient
analysis. To facilitate data movement, a flash translation layer
(FTL) is usually employed to map logical data pages to phys-
ical pages in the flash memory [8]. Minimizing the number of
block erasures incurred during the data movement process re-
mains a major challenge.

In this paper, we show that coding techniques can signif-
icantly reduce the number of block erasures incurred during
data movement. In addition to the overall number of erasures,
we also consider other parameters, such as coding complexity
and extra storage space (number of auxiliary blocks). We
show that without coding, at least two auxiliary blocks are
needed to enable data movement, and present a sorting-based
solution that requires block erasures in order to
move data among blocks. With coding, only one auxiliary
block is needed. We present a very efficient data-movement
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algorithm based on coding over that requires only
erasures. We also present another coding-based algorithm that
requires at most erasures, which is worst-case optimal.
Although minimizing the number of erasures for every instance
of data movement is NP hard, as we prove in Section V-B,
both algorithms achieve an approximation ratio of 2 with
respect to the minimum possible number of erasures for the
given instance.

We note that a number of papers on coding for flash memories
have recently appeared in the literarture. These include codes
for efficient rewriting [3], [7], [10], [15] (also known as floating
codes or flash codes), error-correcting codes [4], and rank-mod-
ulation codes for reliable cell programming [11], [13]. However,
to the best of our knowledge, this paper is the first to address
storage coding at the page level instead of the cell level. Further-
more, our topic of study, namely the data-movement problem,
is also distinct from all previous works.

The rest of the paper is organized as follows. In Section II,
we define the data movement problem and introduce the rele-
vant notation. In Section III, sorting-based data movement algo-
rithms are presented. We further show in Section III that coding
can help minimize the auxiliary storage requirements during
data movement. In Section IV, we develop an efficient data-
movement algorithm, based on coding over . This algo-
rithm uses only erasures in order to move data among
blocks. In Section V, we present an alternative coding-based al-
gorithm, which uses at most erasures and is worst-case
optimal. The NP hardness of the general problem of minimizing
the number of erasures in data movement (for every given in-
stance) is also established in Section V. Finally, Section VI con-
tains our concluding remarks.

II. TERMS AND CONCEPTS

In this section, we formally define the data movement
problem, and present some useful concepts.

Definition 1. (Data Movement Problem): Consider blocks
storing data in a flash memory, and suppose that each block
contains pages. The blocks are denoted by ,
and the pages in block are denoted by for

. Let and be two functions

The functions and specify the desired data move-
ment. Specifically, the data initially stored in the page are
denoted by , and need to be moved into page ,
for all .

A given number of empty blocks, called auxiliary blocks, can
be used in the data movement process, and they need to be erased
in the end. To ensure data integrity, at any moment of the data
movement process, the data stored in the flash memory blocks
should be sufficient for recovering all the original data. The ob-
jective is to minimize the total number of block erasures in the
data movement process.

Clearly, the functions and together have to
form a permutation for the pages. To avoid trivial cases, we

assume that every block has at least one page whose data need to
be moved to another block (otherwise, it can be simply excluded
from the set of the blocks considered in the data movement
problem). Also note that a block has to be fully erased when-
ever any of its pages is modified.

Let us now define some terms that are used throughout the
paper. There are two useful graph representations for the data
movement problem: the transition graph and a bipartite graph.
In the transition graph , vertices represent
the data blocks . If pages of data need to be
moved from to , then there are directed edges from
to in . is a regular directed graph with outgoing edges
and incoming edges for every vertex. In the bipartite graph

, and each has vertices that represent
the blocks. If pages of data are moved from to , there
are directed edges from vertex to vertex .
The two graphs are equivalent but are used in different proofs.

Definition 2. (Block-Permutation Set and Semi-Cycle): A set
of pages that belong to different
blocks is called a block-permutation set if

If is a block-permutation set, then the
data they initially store, namely , are
called a block-permutation data set.

Let . An ordered set of pages

is called a semi-cycle if for , we have

Example 1: The data movement problem shown in Fig. 1 ex-
emplifies the construction of the transition graph and the bipar-
tite graph. The can be partitioned into three
block-permutation sets

The block-permutation sets can be further decomposed into six
semi-cycles

Every semi-cycle corresponds to a directed cycle in the transi-
tion graph, and every block-permutation set corresponds to a set
of directed cycles that enter and leave every vertex exactly once.
It is not a coincidence that the pages in the above example
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Fig. 1. Data movement with� � �,� � �. (a) The permutation table. The numbers with coordinates ��� �� are���� ��� ���� ��. For example, ����� ��� ���� ��� �
�����, and �������� ���� ��� � �����. (b) The transition graph. (c) The bipartite graph representation. The � thick edges are a perfect matching (a block-permu-
tation set). (d) After removing a perfect matching from the bipartite graph. Here for � � �� � � � � �, vertex � represents block � .

can be partitioned into block-permutation sets. The following
theorem shows it holds for the general case.

Theorem 1: The pages can be partitioned into block-
permutation sets. Therefore, the pages of data can be parti-
tioned into block-permutation data sets.

Proof: The data movement problem can be represented by
the bipartite graph, where every edge represents a page whose
data need to be moved into another block [see Fig. 1(c) for an
example]. It is known that for every bipartite graph
with bipartition (namely, and ),
we have the Hall’s Marriage Theorem [6]:

For , let denote the set of vertices in the graph
that are adjacent to at least one vertex in (that is, the

vertices in are the neighbors of the vertices in ).
Then, the graph contains a matching of if and only if

for all .
For the bipartite graph we are considering here, for ,
any vertices in the top layer have outgoing edges and, there-
fore, are connected to at least vertices in the bottom layer.
Therefore, the bipartite graph has a perfect matching. The edges
of the perfect matching correspond to a block-permutation set.
If we remove those edges, we get a bipartite graph of degree

for every vertex [see Fig. 1(c) and (d)]. With the same
argument, we can find another perfect matching and reduce the
bipartite graph to regular degree . In this way, we partition
the edges into block-permutation sets.

A perfect matching in the bipartite graph can be found using
the Ford–Fulkerson Algorithm [14] for computing maximum
flow. The idea is to connect all the top-layer vertices of the
bipartite graph to a source and connect all the bottom-layer
vertices to a sink . Then a perfect matching in the bipartite
graph is equivalent to a maximum flow of capacity between
the source and the sink . The Ford–Fulkerson Algorithm has
time complexity , so decomposing the edges in the
bipartite graph into perfect matchings has time complexity

. Therefore, we can partition the pages into
block-permutation sets in time .

III. CODING FOR MINIMIZING AUXILIARY BLOCKS

In this paper, we focus on the scenario where as few auxiliary
blocks as possible are used in the data movement process. In
this section, we show that coding techniques can minimize the
number of auxiliary blocks. Afterwards, we will study how to
use coding to minimize block erasures.

A. Data Movement Without Coding

When coding is not used, data are directly copied from page
to page. The following simple example shows that, in the worst
case, more than one auxiliary block is needed for data move-
ment. Note that denotes the data initially stored in the page

.

Example 2: Let , and let the functions and
be

It is simple to verify that without coding, there is no way to move
the data as requested with only one auxiliary block. To see that,
assume that only one auxiliary block is used. Without loss
of generality, assume that we first copy the data in –the data

and –into , and then erase . In the next step, the
only reasonable choice is to write into the data and

(which are the data we want to eventually move into ).
After this writing, has and , has and ,
and has and . The objective of the data movement
has not been met yet. However, we can see that there is no way
to proceed: in the next step, if we erase , the data will
be lost; if we erase , the data will be lost. So the data
movement fails. It is simple to verify that no feasible solution
exists. Therefore, at least two auxiliary blocks are needed.
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We now show that two auxiliary blocks are sufficient for data
movement without coding. The next algorithm uses two aux-
iliary blocks, which are denoted by and . It operates in
a way similar to bubble sort. And it sorts the data of the
block-permutation data sets in parallel.

Algorithm 1. (Bubble-Sort-Based Data Movement): Decom-
pose the pages of data into block-permutation data sets.

For

{

For

{

Copy all the data of into ;

Copy all the data of into ;

Erase and ;

For

{

Let and be the two pages of data in and ,
respectively, that belong to the th block-permutation data set.

Let be the unique page in such that when the data
movement process ends, the data stored in will be from
the th block-permutation data set.

If (which implies and
), copy the data into the page ;

otherwise, copy the data into the page .

}

Write into the pages of data that are in or but
not in .

Erase and .

}

}

In the above algorithm, for every block-permutation data set,
its data are not only sorted in parallel with other block-permu-
tation data sets, but are also always dispersed in blocks (with
every block holding one page of its data). The algorithm uses

erasures (the blocks are each erased
times, while the two auxiliary blocks and are each erased

times). If instead of bubble sorting, we use more efficient
sorting networks such as the Batcher sorting network [2] or the
AKS network [1], the number of erasures can be further reduced
to and , respectively. For simplicity, we
skip the details.

B. Storage Coding With One Auxiliary Block

In Algorithm 1, the only function of the two auxiliary blocks
and is to store the data of the data blocks when

the data in are being swapped. We now show how coding
can help reduce the number of auxiliary blocks to one, which is
clearly the best possible. Let denote the only auxiliary block,

Fig. 2. Example execution of Algorithm 2. In the rightmost column, � denotes
the data in the page � at that moment, for � � �� �� � � � � �.

and let denote its pages. For ,
statically store in page the bit-wise exclusive-OR of the
pages of data in the th block-permutation data set. We make
such a change in Algorithm 1:

When the data in are swapped, instead of erasing them
together, we first erase and write data into , then erase
and write data into .

This is feasible because for every block-permutation data set,
there are always at least pages of data related to it stored in the

blocks: pages of those data are the original data in
the block-permutation data set, and the other page of data are the
bit-wise exclusive-OR of the data of the block-permutation data
set. The total number of block erasures here is of the same order
as the algorithm without coding. Therefore, if the AKS network
is used for swapping the data, block erasures will be
used in total.

IV. EFFICIENT STORAGE CODING OVER

In this section, we present a data movement algorithm that
uses only one auxiliary block and erasures. It erases every
block either once or twice, which is well balanced. The algo-
rithm uses coding over and is very efficient.

For convenience, let us assume for now that every block has
only one page. The results will be naturally extended to the gen-
eral case where every block has pages. (Note that the erasure
of a block will affect all the block-permutation data sets. So
when , the sequence of block erasures need to be compat-
ible for the data movement of all those sets.) Let denote
the auxiliary block, and let denote its page. For ,
let denote the page in the block , and let denote the data
initially stored in the page . Let

be the permutation such that the data need to be moved into
the page . Let be the inverse permutation of . Say that
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the pages can be partitioned into semi-cycles,
denoted by

Note that since right now we consider a block to have only one
page, a semi-cycle is just a cycle in the permutation . Every
semi-cycle ( ) has a special page called tail, defined
as follows: if is the tail of , then for every other page

, we have .
We use “ ” to represent the bit-wise exclusive-OR of data.

The following algorithm uses block erasures to move data. It
consists of two passes: the forward pass and the backward pass.
Note that in the algorithm below, whenever some data are about
to be written into a page, the data can be efficiently computed
from the existing data in the flash memory blocks (namely, from
the data currently stored in the flash memory). The details will
be clear later. Also note that for , is the
data that need to be moved into the page .

Algorithm 2. ( -Coding-Based Data Movement):

FORWARD PASS:

For do:

If is not the tail of its semi-cycle, write

into the page ; otherwise, write

into the page . Then, erase the block .

BACKWARD PASS:

For do:

Write

into the page . Then, erase the block .

Example 3: Fig. 2 gives an example of the execution of Al-
gorithm 2 with and . Here

Consequently, we have

The two semi-cycles are and . In
Fig. 2, each row is a step of Algorithm 2. The numbers are the
data in the blocks (for convenience, we use to denote data in
the figure for ). The rightmost column describes
the computation performed for this step, where denotes the
data in then.

The correctness of Algorithm 2 depends on whether the data
written into a page can always be derived from the existing data
in the flash memory blocks. Theorem 2 shows this is true.

Theorem 2: When Algorithm 2 is running, at any moment,
for , if the data are not stored in the
blocks , then there must exist a set of data

that are all stored in the blocks. Therefore, can be easily
obtained by computing the bit-wise exclusive-OR of the data in
the set.

Proof: Consider a semi-cycle ( ), and let us
denote its pages by

Without loss of generality (WLOG), assume

for and

Also assume that is the “tail” of the semi-cycle, namely,
for . Now imagine a directed path

as follows:
1) has vertices, representing the data .
2) There is a directed edge from to for

. The edge represents the data

For example, the data movement problem in Example 3 has two
semi-cycles, and . We show the
corresponding directed path in Fig. 3(a) and (b).

Consider the forward pass in the algorithm. In this pass, for
, right before the data are erased, the data

are stored. Note that corresponds to a vertex in
the directed path , and corresponds to the directed
edge entering that vertex in . So, for every vertex in whose
corresponding data have been erased, there is a directed sub-
path in entering it with this property: “the data represented
by the edges in this sub-path, as well as the data represented by
the starting vertex of the sub-path, are all stored in the
blocks.” This is the same as the condition stated in the theorem
[for instance, for the data movement problem in Example 3,
after three block erasures, the stored and un-stored data are as
shown in Fig. 3(c)]. As an example, consider the erased data

. The corresponding sub-path entering it contains the data
, and , which are stored and can be used

to recover .
When the forward pass of the algorithm ends, the data repre-

sented by the vertex and all the edges in are all stored in
the blocks. Clearly, all the original data can be recovered.

Now consider the backward pass in the algorithm. In this
pass, first, the data are stored and then the data are
erased. Then, for , right before the data

are erased, the data are stored. Note that
corresponds to a vertex in the directed path , and
corresponds to the directed edge leaving that vertex in . So, for
every vertex in whose corresponding data have been erased,
there is a directed sub-path in leaving it with this property:
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Fig. 3. Directed path � corresponding to a semi-cycle, whose vertices and edges represent data. (a) The directed path � for semi-cycle �� � � � � � � � � �. (b) The
directed path � for semi-cycle �� � � � � �. (c) The stored and un-stored data after three block erasures in the “forward-pass” of the data-movement algorithm.
The vertices and edges of solid thick lines represent the data that are stored at that moment. The vertices and edges of dashed thin lines represent the data that are
not stored at that moment.

“the data represented by the edges in this sub-path, as well as
the data represented by the end vertex of the sub-path, are all
stored in the blocks.” This is the same as the condition
stated in the theorem. So, the conclusion holds.

Algorithm 2 can be easily extended to the general case where
every block has pages. Use the algorithm to process the

block-permutation data sets in parallel, in the same way as
Algorithm 1. Specifically, for and ,
let denote the unique page in such that some data
in the th block-permutation data set need to be moved into

. In the algorithm, every time is erased, write the data
related to the th block-permutation data set into . Since
every block-permutation set occupies exactly one page in each
block, there will be no conflict in writing.

V. STORAGE CODING WITH MINIMIZED NUMBER OF ERASURES

In this section, we present an algorithm that uses at most
erasures, which is worst-case optimal. It erases every

block either once or twice, which is well balanced. We further
show that it is NP hard to minimize the number of erasures for
every given instance, but our algorithm provides a 2-approxima-
tion. Namely, it uses at most twice the number of block erasures
compared to the optimal solution.

A. Optimal Solution With Canonical Labelling

The blocks initially storing data can be labelled by
in different ways. Let be an integer in

. We call a labelling of the blocks that
satisfies the following constraint a canonical labelling with
parameter :

“For and ,
no data initially stored in the block need to be moved into
the block .”

Trivially, any labelling is a canonical labelling with param-
eter . However, given an instance of the data movement
problem, it is difficult to find a canonical labelling that mini-
mizes the value of .

We now present a data-movement algorithm for blocks that
have a canonical labelling with parameter . It uses one auxiliary
block , and uses

erasures. So the smaller is, the better. For convenience, let us
again assume that every block contains only one page, and let

be as defined in the previous section. Let denote
the number of bits in a page.1 The algorithm can be naturally
extended to the general case, where every block has
pages, in the same way as introduced in the previous section.

Algorithm 3. (Data Movement With Linear Coding): This al-
gorithm is for blocks that have a canonical labelling with pa-
rameter . Let be distinct
nonzero elements in the field .

STEP 1: For do: Erase (for
there is no need to erase ), and write into the data

.
STEP 2: For do: Erase , and
write into the data .
STEP 3: For do: Erase , and write
into the page the data . Finally, erase .

Theorem 3: Algorithm 3 is correct and uses

erasures (note that the algorithm assumes that the blocks have a
canonical labelling with parameter ).

Proof: We show that each time a block is erased, it is
feasible to generate all the pages of original data using the cur-
rent data stored in the other pages. Denote by , ,
the current data stored in the page , which are a linear com-
bination of the pages of original data. The linear combination
written in each page can be represented by a matrix multiplica-
tion

The matrix defines the linear combination of the original data
written into each page. Consider the first step of the algorithm
when the block is erased. The data written in , for

, are

1When � is greater than what is needed by Algorithm 3, which is nearly al-
ways true in practice, we can partition each page into bit strings of an appropriate
length, and apply the algorithm to the strings in parallel.
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and the data stored in , for , are d

The matrix representation of this problem is

...
...

. . .
... ...

...

...

where is the zero matrix of size , and
is the unit matrix of size . Since this matrix
is invertible, it is feasible to generate all the original data and in
particular, the required data that need to be written into .

For , after erasing the block during
the second step of the algorithm, the data stored in , for

, are . The data written into , for
, are , and the data stored

in , for , are . These equations are
represented as follows:

...
...

. . .
... ...

...

...

where is a matrix of size defined as follows:
1) The th row of the matrix for is

a unit vector of length containing a one in its (
)th entry.

2) The th row of the matrix for
is a unit vector that contains a one in its th entry.

Since there are no data that are moved from block to block
, where and , the first

row vectors of the matrix are different from
the last row vectors of the matrix . Therefore, the
matrix contains a set of unit vectors where all the vectors
are different from each other. If we calculate the determinant
of the matrix on the left hand side according to the rows of the
matrix , then we are left with an matrix
of the form

...
...

...
. . .

...
...

and its determinant is not zero because it is a Vandermonde ma-
trix. Therefore, the matrix on the left hand side is invertible, and

it is feasible to generate all the original data , , and
in particular the data that need to be written into the
page .

For , after erasing the block during
the third step of the algorithm, the data stored in , for

, are , and the data stored in ,
for , are . Therefore, the matrix
representing this equations is

...
...

. . .
... ...

...

...

where is a matrix consisting of row vectors of length
, and its th row vector, , is a unit vector of

length which has a one in its th entry and zero
elsewhere. As before, all the unit vectors in the matrix are
different from each other. Therefore, the matrix on the left hand
side is invertible, and it is feasible to generate all the original
data , , and in particular the data that need
to be written into the page .

The above algorithm uses Reed–Solomon codes for data
movement. It can be extended to general MDS codes.

The following theorem shows an interesting property of
canonical labelling. Note that since every block has some data
that need to be moved into it from some other block, every
block needs to be erased at least once. So at least erasures
(including erasing the auxiliary block) are needed in any case.

Theorem 4: Assume , the number of bits in a page, is suffi-
ciently large. Let . There is a data-move-
ment solution using

erasures if and only if there is a canonical labelling of the blocks
with parameter .

Proof: First, assume that there is a data-movement solution
using erasures. Since every block (including the auxil-
iary block) is erased at least once, there are at least blocks
that are erased only once in the solution. Pick blocks erased
only once and label them as this way: “in
the solution, when , is erased before .”
Label the other blocks as arbitrarily. Let us use
contradiction to prove that no data in need to be moved into

, where , .
Assume some data in need to be moved into . After
is erased, those data must be written into because is

erased only once. When the solution erases (which hap-
pens before is erased), the data mentioned above exist in both

and . So at this moment, there are at most pages
of distinct data; however, it is impossible to recover all the
pages of original data using only pages of distinct data.
So there is a contradiction. Therefore, with the above labelling,
we have already found a canonical labelling with parameter .
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Fig. 4. NP hardness of the data movement problem. (a) A simple undirected graph � . (b) The corresponding regular directed graph � . Here every edge between
two different vertices has arrows on both sides, representing the two directed edges of opposite directions between those two vertices. There is a symbol�� beside
every directed loop, representing � parallel loops of that vertex.

The other direction of the proof comes from the existence of Al-
gorithm 3.

We can easily make Algorithm 3 use erasures by letting
and using an arbitrary block labelling. On the other

hand, erasures are necessary in the worst case. To see
that, consider an instance where and every block has
some data that need to be moved into every other block. For
such an instance, a canonical labelling has to have ,
which implies erasures by Theorem 4. So
Algorithm 3 is worst-case optimal.

B. Optimization for Each Given Instance

A specific instance of the data movement problem may re-
quire less than erasures. So it is interesting to find an
algorithm that minimizes the number of erasures for each given
instance. The following theorem shows that this is NP hard.

Theorem 5: For the data movement problem, it is NP hard to
minimize the number of erasures for every given instance.

Proof: It has been shown in Theorem 4 and its proof that
minimizing the number of erasures is as hard as finding a canon-
ical labelling for the blocks with a minimized parameter . So
we just need to show that finding a canonical labelling with min-
imized is NP hard. We prove it by a reduction from the NP hard
MAXIMUM INDEPENDENT SET problem.

Let be any simple undirected graph. Let
denote the degree of vertex and let
denote the maximum degree of . We build a regular directed
graph as follows. Let

. For all , there are three corresponding ver-
tices . If there is an undirected edge
between in , then there are two directed edges
of opposite directions between and for and

. For all , there are also two directed edges
of opposite directions between and between . Add
some loops to the vertices in to make all vertices have the
same out-degree and in-degree . See Fig. 4 for an ex-
ample.

The graph naturally corresponds to a data movement
problem with and , where is its
transition graph (the transition graph is defined in Section II).
Finding a canonical block labelling with minimized parameter

for this data movement problem is equivalent to finding
vertices—with the value of maximized—in

such that for and ,
there is no directed edge from to . We call such a set of
vertices–with maximized–the MAXIMUM SEMI-INDEPENDENT

SET of . For all , let denote the neighbors of
in .

Claim 1: “There is a maximum semi-independent set of
where , either all three corresponding vertices

are in the set, or none of them is in the
set. What is more, if are in the set, then no vertex in

is in the set.” To prove Claim 1, let
denote a maximum semi-independent set (MSS)

of (note that the order of the vertices in the set matters).
Consider two cases:

Case 1: One of is in the MSS of . WLOG, say
it is . At most two vertices—say and —in

can be in the MSS, because otherwise due to the bi-di-
rectional edges between them and , there would be no way to
place them in the MSS. Let us remove from the MSS and
add right after in the MSS. It is simple to see that we
get another MSS.

Case 2: Two of are in the MSS of . WLOG,
say they are and . At most, one vertex—say —in

can be in the MSS, for a similar
reason as Case 1. In the MSS, let us remove , move right
behind , and add right behind . Again, we get an MSS.

So in this way, we can easily convert any MSS into an MSS
satisfying the conditions in Claim 1. So Claim 1 is true.

Claim 2: “A set of vertices is a max-
imum independent set of if and only if the set of vertices

is an MSS of .” It is simple to see that this is a consequence
of Claim 1.

So given a canonical labelling with minimized parameter
for the data movement problem with as the transition graph,
in polynomial time we can convert it into an MSS of , from
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that into an MSS of satisfying the conditions of CLAIM 1,
and finally into a maximum independent set of . So, it is NP
hard to find a canonical labelling with minimized parameter .
So minimizing the number of erasures is NP hard.

Therefore, there is no polynomial time data-movement algo-
rithm that minimizes the number of erasures for every given in-
stance unless . However, since every algorithm uses at
least erasures, and Algorithm 3 can easily achieve
erasures (by setting ), we see that the algorithm is a
2-approximation algorithm.

VI. CONCLUSION

In this paper, we study the data movement problem for NAND
flash memories. We present sorting-based algorithms that do not
utilize coding, which can use as few as erasures for
moving data among blocks. We show that coding techniques
can not only minimize the number of auxiliary blocks, but also
reduce the number of erasures to . In particular, we present
a solution based on coding over that requires only era-
sures. We further present a linear-coding solution that requires
at most erasures, which is worst-case optimal. Both so-
lutions based on coding achieve an approximation ratio of two
with respect to the minimum possible number of block erasures
for each instance. They also balance the number of erasures in
different blocks very well.

The data movement problem studied here can have numerous
practical variations. In one variation, the data to be moved into
each block are specified, but the order of the data in that block is
allowed to be arbitrary. The algorithms presented in this paper
can easily solve this variation of the problem by first assigning
an arbitrary page order to each block (which does not affect
the performance of the algorithms). In another variation, we are
only given a specification as to which group of data needs to
be moved into the same block, without specifying which block.
Furthermore, the final data may be a function of the data origi-
nally stored in the blocks. Such variations require new solutions
for optimal performance. They remain open for future research.
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