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Abstract—The increasing density of NAND flash memories
makes data more prone to errors due to severe process vari-
ations and disturbance. The urgency to improve NAND flash
reliability encourages searching for optimal channel coding
methods. This paper reports our efforts towards a read channel
for flash memories using polar coding. Our contributions in-
clude the solutions to several challenges raised when applying
polar codes to NAND flash memories in practice. We propose
efficient schemes for shortening both non-systematic and sys-
tematic polar codes, making polar codewords be easily adapted
to flash page of any size. We demonstrate that the decoding
performance of the shortened polar codes and LDPC codes
are comparable using the data obtained by our NAND flash
characterization platform. We show the feasibility of a prac-
tical adaptive decoding framework where it is not necessary
to construct new polar codes for different channel parameters.
Experimental results show that the decoding performance ap-
proaches the optimized performance where different codes are
constructed for different channel conditions. To the best of our
knowledge, this work is the first study of polar codes for error
correction in flash memories.

I. INTRODUCTION

NAND flash geometries have scaled beyond 20nm to
achieve higher storage density. As a result, data are more
prone to errors due to severe process variation and distur-
bance. The urgency to improve NAND flash reliability calls
for continuous search for optimal channel coding schemes.

Polar codes proposed recently is the first class of capacity-
achieving codes with efficient constructions [1]. However, the
practical performance of polar codes in flash memories is still
unknown due to many important challenges raised in prac-
tice. For instance, the length of a polar codeword needs to
be an integer power of two, and such lengths do not directly
fit in flash pages of different sizes; to conduct experimental
analysis, the decoding performance of polar codes need to be
compared with that of other error correcting codes (ECCs)
on the same data from flash characterization platforms, and
such testing data are not assumed to be the codewords of any
ECC; moreover, the construction of polar codes uses channel
statistics, and one concern is that new polar codes need to be
frequently constructed for optimized performance as channel
gradually degrades, which is prohibitively expensive in prac-
tice. This paper studies the solutions to the challenges above,
and reports our efforts towards realizing polar decoders for
flash memories using multi-level cells (MLCs).

One contribution of this paper is the design and experimen-
tal evaluations of shortened polar codes in NAND flash. Punc-

tured polar codes have been studied recently [2] [3]. Punctur-
ing has low implementation complexity, however it introduces
additional erasures to received codewords and thus degrades
decoding performance. This paper explores an alternative ap-
proach through shortening. We propose the schemes for short-
ening both non-systematic [1] and systematic polar codes [4].
Shortening obtains a shorter codeword by assigning selected
codeword symbols to predetermined values made known both
to encoder and decoder. The selected symbols are removed
before transmission and are inserted back before decoding.
Therefore, shortening does not introduce additional errors.

Another contribution of this paper is an adaptive polar de-
coder for NAND flash memories that gradually degrade. The
decoder adaptively switches to use lower code rates as mem-
ory cells endure. Rate-compatible polar codes can be realized
by adjusting the size of frozen sets without constructions of
new codes [2]. This paper further shows that the property guar-
antees the feasibility of the practical adaptive polar decoding
framework. We show that repeated polar code construction is
not necessary when NAND flash channel degrades, and exten-
sive experiments demonstrate that the decoding performance
by constructing polar codes only once closely approaches the
optimized performance.

To the best of our knowledge, this paper is the first work
that studies the practical error correction performance of polar
codes for flash memories. While the results indicate that polar
codes are very promising for NAND flash, there still remain
many open problems for further explorations.

II. BASIC MODELS OF MLC NAND FLASH

An MLC NAND flash chip contains several planes. A plane
consists of a set of blocks. A block has many pages, and each
page consists many memory cells. Cells are the basic stor-
age units of flash memories. The threshold voltage of a cell is
quantized into multiple discrete levels to represent data. For
MLC NAND flash, a cell has four levels and stores two bits.
Cell levels are labeled using two-bit Gray codes. We refer the
left bit as the most significant bit (MSB) and the right bit as
the least significant bit (LSB). The statistical distributions of
cell threshold voltages in a block can be appropriately approx-
imated using Gaussian distributions. An example of cell level
distributions is shown in Figure 1.

Data stored in cells are read using either hard or soft sens-
ing. In both approaches, MSB and LSB are read indepen-
dently. Hard sensing returns a possibly noisy version of the
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data, and soft sensing outputs the log-likelihood ratio (LLR)
for each bit. Specifically, hard sensing applies one reference
threshold voltage between two adjacent distributions. As an
example, in Figure 1 let the reference threshold voltages used
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Fig. 1: Cell level distributions of MLC NAND flash.

by hard sensing be Vth,1,2, Vth,2,2, and Vth,3,2. To read LSB,
the cell threshold voltage Vth is compared with the reference
threshold voltage Vth,2,2, returning 0 if Vth > Vth,2,2, and 1
otherwise. Similarly, for MSB if Vth,1,2 < Vth < Vth,3,2, bit
0 is returned, otherwise bit 1 is returned. Soft sensing uses
k reference threshold voltages between two adjacent distribu-
tions. Figure 1 shows an example for k = 3. In general, for
i ∈ {1, 2, 3}, j ∈ {1, 2, · · · , k}, let Vth,i, j be the j-th small-
est reference threshold voltage of the k reference threshold
voltages between level i and i + 1. The domain of cell thresh-
old voltage is then divided into 3k + 1 bins by the reference
voltages. During reading, the bin that Vth falls into can be de-
termined by comparing Vth with different reference threshold
voltages, according to which the LLRs are computed. Assume
the threshold voltage Vth of a cell is found in the bin of the
voltage interval [Vth,i , Vth,i+1), and let the mean and the stan-
dard deviation of the cell level distribution of level i be µi and
σi. The LLRs of the LSB and the MSB are given by

Llsb , ln
P(V ∈ [Vth,i , Vth,i+1) | LSB = 1)
P(V ∈ [Vth,i , Vth,i+1) | LSB = 0)

= ln
∑l∈{3,4} P(V ∈ [Vth,i , Vth,i+1) | l)

∑l∈{1,2} P(V ∈ [Vth,i , Vth,i+1) | l)

= ln
Q(

Vth,i−µ3
σ3

)−Q(
Vth,i+1−µ3

σ3
) + Q(

Vth,i−µ4
σ4

)−Q(
Vth,i+1−µ4

σ4
)

Q(
Vth,i−µ1

σ1
)−Q(

Vth,i+1−µ1
σ1

) + Q(
Vth,i−µ2

σ2
)−Q(

Vth,i+1−µ2
σ2

)
,

and

Lmsb , ln
P(V ∈ [Vth,i , Vth,i+1) | MSB = 1)
P(V ∈ [Vth,i , Vth,i+1) | MSB = 0)

= ln
∑l∈{1,4} P(V ∈ [Vth,i , Vth,i+1) | l)

∑l∈{2,3} P(V ∈ [Vth,i , Vth,i+1) | l)

= ln
Q(

Vth,i−µ1
σ1

)−Q(
Vth,i+1−µ1

σ1
) + Q(

Vth,i−µ4
σ4

)−Q(
Vth,i+1−µ4

σ4
)

Q(
Vth,i−µ2

σ2
)−Q(

Vth,i+1−µ2
σ2

) + Q(
Vth,i−µ3

σ3
)−Q(

Vth,i+1−µ3
σ3

)
,

where Q(·) is the Q-function of the standard normal distri-
bution. The sign of LLR determines the value of the bit that
is more likely to be, and the absolute value of LLR measures
the level of confidence. In this paper, the performance of polar
coding using both sensing methods are studied.

The noise that happens to the MSB and the LSB of a cell is
independently modeled using cascaded channels. A cascaded
channel consists of more than one subchannels where two ad-
jacent subchannels are connected such that the output of the

first subchannel are the input of the second subchannel. Cas-
caded channels were used for modeling the errors for mag-
netic recording devices [5]. In this paper, a cascaded chan-
nel consists of two binary symmetric channels (BSCs) with
cross-over probabilities pr and pw . We refer the first BSC as
write channel and the second BSC as read channel. The write
channel models the errors that occur in programming. Such
errors include misprogram errors happened during the two-
step MLC programming, cell-to-cell interference, and stuck
cells. The read channel is implied by the cell level distribu-
tions of MLCs. When the threshold voltage of a cell is at the
region where two distributions overlaps, the cell will be mis-
read with high probability. In this work, the polar codes used
for evaluations are constructed using the equivalent BSCs of
the cascaded channels above.

III. BACKGROUND ON POLAR CODING

A polar code is a linear block error correcting code which
is provably capacity-achieving [1]. The encoder of a po-
lar code transforms N input bits u = (u1, u2, · · · , uN) to
N codeword bits x = (x1, x2, · · · , xN) through the lin-
ear transformation x = uG = uG⊗m

2 where G2 =
(

1 0
1 1
)

and G⊗m
2 is the m-th Kronecker product of G2. The N

codeword bits (x1, x2, · · · , xN) are transmitted through N
independent copies of a binary discrete memoryless chan-
nel (BDMC). For decoding, N transformed binary input
channels {W(1)

N , W(2)
N , · · · , W(N)

N } can be synthesized for
u1, u2, · · · , uN , respectively. The channels are polarized such
that for large N, the fraction of indices i for which the mu-
tual information I(W(i)

N ) is nearly 1 approaches the capacity
of the B-DMC, while the values of I(W(i)

N ) for the remaining
indices i are nearly 0. The latter set of indices are called the
frozen set. For error correction, the ui’s with i in the frozen
set take fixed values, and the other ui’s are used as informa-
tion bits. A successive cancellation (SC) decoding algorithm
achieves diminishing block error probability as N increases.

In this work, we use the concept of upgrading and degrad-
ing channels, defined based on frozen sets. As in [6], a channel
W ′ : X → Z is called ”degraded with respect to a channel
W : X → Y” if a channel equivalent to W ′ can be constructed
by concatenating W with an additional channel Q : Y → Z,
where the inputs of Q are linked with the outputs of W. That
is, W ′(z|x) = ∑y∈Y W(y|x)Q(z|y). We denote it by W ′ �
W. Equivalently, the channel W is called “an upgrade with
respect to W ′”, denoted by W �W ′.

IV. SHORTENED POLAR CODES IN FLASH MEMORIES

Polar codes require the code length be 2m where m is an in-
teger. Without length-adaptation a codeword does not directly
fit in flash memories of typical page sizes. For instance, cur-
rent flash memories typically use BCH codes, where the user
data length is 512 bytes or 1 Kbytes, and after applying the
ECC parity bits the codeword size is not a power of 2. As a
result, also the total flash page size is not a power of 2 ei-
ther. We study the approaches to shortened polar codes defined
below.
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Definition 1. An (N, K, K′)-shortened polar code (SPC) is a
polar code of length N − K′ obtained from an (N, K)-polar
code with block length N = 2m and information bit length
K by assigning K′ predetermined input symbols to known val-
ues before encoding, and removing K′ predetermined codeword
symbols after encoding.

Let us define the notations used later in this section.
Consider an (N, K) binary polar code with N = 2m. Let
the non-frozen set of the code be A , {a1, a2, · · · , aK} ⊆
{1, 2, · · · , N}, and let the frozen set Ā , {b1, b2, · · · , bN−K}
be the complement. We also assume that a1 < a2 < · · · < aK
and b1 < b2 < · · · < bN−K. Denote the input bits to the
encoder by u , (u1, u2, · · · , uN) = (uA, uĀ) to represent
u, where uA , (ui : i ∈ A) contains the message bits and
uĀ , (ui : i ∈ Ā) contains the frozen bits. The codeword
x , (x1, x2, · · · , xN) computed by encoding is written to
cells. The reading process outputs a (possibly noisy) code-
word y , (y1, y2, · · · , yN), and decoder computes the
estimated codeword x̂ , (x̂1, x̂2, · · · , x̂N).

A. Shortened non-systematic polar codes

We first study the shortening of non-systematic polar codes
(NSPCs) whose encoding of an (N, K)-NSPC follows the lin-
ear transformation x , uG.The shortening of NSPCs is based
on the following lemma:

Lemma 2. The input bits (uN−K′+1, uN−K′+2, · · · , uN) are
all 0s if and only if the bits (xN−K′+1, xN−K′+2, · · · , xN) are
all 0s.

Proof: As the matrix G is a lower triangular matrix
with ones on the diagonal, G is invertible and there is a
one-to-one mapping between the (uN−K′+1, · · · , uN) and
(xN−K′+1, · · · , xN), and when (uN−K′+1, · · · , uN) are all
0s, (xN−K′+1, · · · , xN) will be 0s.

The above lemma suggests we obtain an (N, K, K′)-SPC
from an (N, K)-NSPC by setting the last K′ input bits to 0s,
then removing the last K′ codeword symbols after encoding.
Among the K′ input bits, there are K′′ non-frozen bits and
K′ − K′′ frozen bits where K′′ = |{i|i ∈ A and N − K′ +
1 6 i 6 N}|.

Theorem 3. An (N, K, K′)-SPC obtained through the encoding
above has rate K−K′′

N−K′ ∈ [ K−K′
N−K′ ,

K
N ].

The encoding and the decoding algorithms are given below.

Encoding
1) For j = aN−K−K′+K′′+1, aN−K−K′+K′′+2, · · · , aN−K, let

u j = 0. For j ∈ Ā − {aN−K−K′+K′′+1, · · · , aN−K}, let
u j be any predetermined frozen bit (e.g. 0), completing
uĀ. For j ∈ {bK−K′′+1, bK−K′′+2, · · · , bK}, let u j =
0. Store K− K′′ message bits in (ub1 , ub2 , · · · , ubK−K′′

),
completing uA.

2) Compute x = uG, and send the shortened codeword
(x1, x2, · · · , xN−K′).

Decoding

1) After receiving the (possibly noisy) shortened code-
word (y1, y2, · · · , yN−K′), let the codeword y =
(y1, y2, · · · , yN−K′ , 0, · · · , 0) with K′ 0s in the end.

2) Correct y using a polar decoder. The decoder treats the
added bits (yN−K′+1, yN−K′+2, · · · , yN) as if they went
through a perfect channel and have unit probability of
being 0.

B. Shortened systematic polar codes

In practice, systematic codes are used in flash memories to
reduce the overhead for reading information bits. Systematic
polar codes (SYPCs) was proposed by Arıkan [4]. Let GAA be
a submatrix of G such that for each element Gi, j, the indices
i, j ∈ A, the encoder computes the codeword x = (xA, xĀ)
where the information part xA = uAGAA+ uĀGĀA and the
non-information part xĀ = uAGAĀ + uĀGĀĀ. To shorten
SYPCs, we need the following theorem:

Theorem 4. Let uĀ be 0s. There is a one-to-one cor-
respondence between (uaK−K′+1

, uaK−K′+2
, · · · , uaK ) and

(xaK−K′+1
, xaK−K′+2

, · · · , xaK ).

Proof: The matrix GAA is a K× K lower-triangular ma-
trix with ones on the diagonal. Let GCC be a submatrix of
GAA where C = {aK−K′+1, · · · , aK}. We have

(xaK−K′+1
, · · · , xaK ) = (uaK−K′+1

, · · · , uaK ) ·GCC .

Since GCC is a K′ × K′ lower-triangular matrix with ones on
the diagonal, it is also invertible.

The theorem states that it is feasible to obtain an (N, K, K′)-
SPC from an (N, K)-SYPC by letting frozen bits be 0s, and
setting the last K′ bits of uA to predetermined values before
encoding. The last K′ bits of xA are removed after encoding.

Theorem 5. An (N, K, K′)-SYPC obtained through the encod-
ing above has rate K−K′

N−K′ .

An instance of the encoding and the decoding algo-
rithms for shortened SYPCs is given below, where we assign
(uaK−K′+1

, · · · , uaK ) to all 0s.

Encoding
1) Let uĀ be 0s. Store K−K′ message bits in (ua1 , · · · , uaK−K′ ),

and let (uaK−K′+1
, · · · , uaK ) be 0s.

2) Do systematic encoding to compute x = (xA, xĀ). Send
the shortened codeword ((xa1 , xa2 , · · · , xaK−K′ ), xĀ).

Decoding
1) After receiving a (possibly noisy) shortened po-

lar codeword ((ya1 , ya2 , · · · , yaK−K′ ), yĀ), compute
yA = (ya1 , ya2 , · · · , yaK−K′ , 0, · · · , 0) with K′ 0s ap-
pended at the end. We obtain the unshortened codeword
y = (yA, yĀ).

2) Correct y with a polar decoder with frozen bits uĀ (all
0s), treating the bits (yaK−K′+1

, · · · , yaK ) as if they went
through a perfect channel and have unit probability of
being 0.
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C. Polar codes with bit-reversal permutation

For the polar codes proposed in [1], codeword symbols are
permuted by multiplying the generator matrix G with the bit-
reversal permutation matrix BN . To adapt the shortening meth-
ods for the permuted codes simply requires modifying the lo-
cations of the symbols that are removed after encoding (and
are inserted back before decoding): For permuted NSPCs, the
K′ indices of the bits that are removed are the images of the
indices (N − K′ + 1, N − K′ + 2, · · · , N) under bit-reversal
permutations; for permuted SYPCs, the K′ indices are the im-
ages of the indices {aK−K′+1, aK−K′+2, · · · , aK} under bit-
reversal permutations.

D. Performance evaluation

We evaluated the performance of shortened polar codes with
the data from the characterizations of MLC flash chips using
2Y-nm technology. The characterization process sequentially
programs each page in a block with random input bits, reads
the stored (and possibly noisy) data, and erases the block for
the next write. Such an iteration is referred as a program/erase
cycle (PEC). Raw bit error rates increase as PEC grows, and
the endurance of a cell is measured by the maximum PECs
when data fail to decode. Starting with a new chip, we con-
tinue program-erase cycling the chip, recording the raw input
and output data at multiple PECs during the lifetime of the
block. As data written to the block are pseudo-random bits,
coset coding technique is needed to view such random se-
quences as the codewords of the ECC being evaluated. Coset
coding is feasible for polar codes, and the following results
state that a random string of bits can be considered as a polar
codeword of some message bits:

Lemma 6. Given an (N, K)-polar code with frozen set Ā, ∀x ∈
{0, 1}N , there is a unique uA ∈ {0, 1}K and a unique uĀ ∈
{0, 1}N−K such that x = (uA, uĀ) ·G.

Corollary 7. Given an (N, K, K′)-SPC obtained from an
(N, K)-NSPC with frozen set Ā, let K′′ = |{i|i ∈ A and N −
K′ + 1 6 i 6 N}|, ∀x′ ∈ {0, 1}N−K′ , there is a unique u′A ∈
{0, 1}K−K′ and a unique u′Ā ∈ {0, 1}N−K−K′+K′′ , such that
(x′, 0, · · · , 0︸ ︷︷ ︸

K′

) = ((u′A, 0, · · · , 0︸ ︷︷ ︸
K′′

)A, (u′Ā, 0, · · · , 0︸ ︷︷ ︸
K′−K′′

)Ā) ·G.

Figure 2 shows the average uncorrectable bit error rates
(UBERs) of shortened polar codes at different PECs with both
hard sensing (Figure 2(a)) and soft sensing (Figure 2(b)). We
used the list decoding algorithm by Tal and Vardy [7] spec-
ified in probability domain with list size 32. For soft decod-
ing, the input noisy codeword bits were determined by the
signs of the LLRs, and the transition probability p of the BSC
used for code construction is approximated from the LLR L by
p = e−|L|/(1+ e−|L|). We compared with the performance of
the equivalent LDPC codes under min-sum decoding. Three
rates (0.93, 0.94 and 0.95) of interest to flash memories are
used. We assume each page stores 8 length-7943 polar code-
words shortened from a length-213 polar code constructed us-
ing the degrading merge algorithm [6] for the BSC with the
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Fig. 2: Comparison between polar codes and LDPC codes.

cross-over probability measured at the current PEC. The PECs
when decoding failures first occurred are of special interest to
flash memories. The results suggest the performance of both
codes are comparable, and soft sensing significantly improves
the endurance of MLCs. (Note that the endurance specified
by the vendor for this chip is 3000 PECs.) Figure 3(a) com-
pares the soft and the hard decoding performance between
polar codes of lengths 213 and 214. We found that the decod-
ing of both codes failed at the same PECs, although the longer
codes gave lower UBERs. Figure 3(b) compares the soft de-
coding performance of polar codes using a realistic soft sens-
ing scheme with that of using a genie. The genie performed
brute force search for the reference threshold voltages that
maximize the degree of symmetry of the errors. The results
show that lower BERs and higher decoding failure PEC were
achieved by the genie by making errors more symmetric.
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Fig. 3: The performance of polar codes with (a) different
block lengths as well as (b) realistic and genie soft sensing.

V. ADAPTIVE DECODING

The channels of flash memories gradually degrade as PEC
grows. Specifically, let the flash channel W(α) be parameter-
ized by PEC α ∈ N, W(α) � W(α′) for any α,α′ such that
α 6 α′. To make the decoding error rates stay low, adaptive
decoder is used in practice where lower code rates are used
when the channel becomes more noisy.

Definition 8. Let R1 > R2 > · · · > Rk−1 be k− 1 code rates
of some channel code C, and let α1 < α2 < · · · < αk be k
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selected PECs. For i ∈ {1, 2, · · · , k− 1}, an adaptive decoder
of C is the decoder which

1) changes the rate of C to Ri atαi.
2) uses rate Ri consistently for anyα ∈ [αi ,αi+1).

In this section, we show that polar codes is a good candi-
date for adaptive decoding in flash memories in the sense that
the construction of new codes is not necessary through the
lifetime of flash chips, and changing code rate only requires
freezing additional input bits. Due to the relevance, we first
state the following lemma, which restates Corollary 1 from [2].
Lemma 9. (From [2]) Let FW be the frozen set of the capacity-
achieving polar codes for W. For any two channels Wi and Wj
such that Wi � Wj, the capacity achieving polar code for Wj
can be obtained from the polar code for Wi by freezing addi-
tional input bits whose indices are in the set FWi − FWj .

Consider an ideal adaptive polar decoder with unlim-
ited code length, Ri being the capacity of W(αi), and
αi+1 = αi + 1 for i ∈ {1, 2, · · · , k − 1}. The lemma
above states that the ideal adaptive decoder can be real-
ized by simply making additional input bits frozen when
changing the rates at different PECs. In practice, adaptive
decoders use finite block lengths, and it is prohibitively
expensive to switch to a new code rate at each PEC.
Therefore, we further consider a practical adaptive polar de-
coder with code rate Ri being smaller than the capacity of
W(αi), and αi+1 > αi + 1 for i ∈ {1, 2, · · · , k − 1}. Let
W(1)(α), W(2)(α), · · · , W(N)(α) be the N subchannels of
the polar code for W(α). Let σW(α) = (x1, x2, · · · , xN)
be the length-N permutation induced by the polariza-
tion order of the subchannels such that the sequence
Pe(W(x1)(α)), Pe(W(x2)(α)), · · · , Pe(W(xN)(α)) is in as-
cending order where Pe(·) computes the maximum a posteriori
(MAP) decoding error rate of a channel.

Theorem 10. For any α,α′ such that α 6 α′, and rate-R and
rate-R′ codes are used at α and α′, respectively (R > R′), the
polar code for W(α′) can be obtained from the polar code for
W(α′) by further freezing the input bits in FW(α′) − FW(α) if

σW(α) = σW(α′). (1)

The condition (1) is motivated by our experimental obser-
vations. Figure 4 shows the theoretical decoding error proba-
bilities of some randomly selected subchannels for the polar
code constructed for the upper-odd pages. The figure suggests
the error rates almost increase with PEC (due to process vari-
ation, the rates do not increase monotonically between 0 and
1000 PECs), and that the order of polarization be well pre-
served. Assume (1) holds for any α,α′ ∈ [α1,αk]. The next
corollary states that the constructions of new codes can be
avoided for the practical adaptive decoders in Definition 8.

Corollary 11. For i ∈ {1, 2, · · · , k − 1}, when the decoder
changes the code rate Ri previously used at αi+1 − 1 to Ri+1
to be used at αi+1, it only needs to further make the input bits
in Fwαi+1

− Fwαi+1−1 frozen, and given any two PECs α,α′ ∈
[αi ,αi+1), with the same code rate Ri the polar codes for W(α)
and W(α′) are equivalent.
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Fig. 4: The theoretical decoding error rates of some subchan-
nels at different PECs. Each curve is for one subchannel.

Figure 5(a) shows the block error rates of four polar codes
of rate-0.94 for the upper-odd pages constructed at PECs
3000, 6000, 10000, and 13000, respectively. Each code is
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Fig. 5: The soft decoding performance of the codes con-
structed at fixed PECs.
tested through the whole lifetime of the flash chips. The
results suggest the codes yield very similar decoding per-
formance due to the polarization order preservation shown
in Figure 4. Figure 5(b) compares the average UBERs of
the codes constructed at 6000 PECs with the optimized per-
formance yield by codes constructed at different PECs. The
performance of the scheme without construction of new code
closely approaches the optimized performance.
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