
Weighted Bloom Filter
Jehoshua Bruck∗ Jie Gao† Anxiao (Andrew) Jiang‡

∗ Department of Electrical Engineering, California Institute of Technology. bruck@paradise.caltech.edu.
† Department of Computer Science, Stony Brook University, Stony Brook, NY 11794. jgao@cs.sunysb.edu.

‡ Department of Computer Science, Texas A&M University, College Station, TX 77843-3112. ajiang@cs.tamu.edu.

Abstract— A Bloom filter is a simple randomized data structure
that answers membership query with no false negative and a
small false positive probability. It is an elegant data compression
technique for membership information and has broad applica-
tions. In this paper, we generalize the traditional Bloom filter to
Weighted Bloom Filter, which incorporates the information on the
query frequencies and the membership likelihood of the elements
into its optimal design. It has been widely observed that in many
applications, some popular elements are queried much more often
than the others. The traditional Bloom filter for data sets with
irregular query patterns and non-uniform membership likelihood
can be further optimized. We derive the optimal configuration
of the Bloom filter with query-frequency and membership-
likelihood information, and show that the adapted Bloom filter
always outperforms the traditional Bloom filter. Under reasonable
frequency models such as the step distribution or the Zipf’s
distribution, the improvement of the false positive probability
of the weighted Bloom filter over that of the traditional Bloom
filter has been evaluated by simulations.

Keywords: Bloom Filter, Membership Query, Combinatorics

I. INTRODUCTION

A Bloom filter [3] is a compact randomized data structure
for representing a set in order to support membership queries.
It encodes the elements in a set S, called members, in a
much larger universe U , S ⊆ U . In short, a Bloom filter
is an m-bit array such that each member in S is hashed to
k positions (bits) in the array, and those bits are set to ‘1’.
A membership query takes an input element and checks the
k hashed positions. If all those bits are ‘1’, then the query
returns ‘yes’. A Bloom filter has no false negative but a low
false positive probability. In particular, when k = ln 2 · m/n,
with n = |S| being the number of members, the false positive
probability achieves its minimum value 1/2k. With only a
constant number of bits for each member on average, a Bloom
filter answers membership queries with a small false positive
probability.

The space efficiency of the Bloom filter makes it very
appealing in network applications [5]. Although theoretically a
hash table supports membership queries and yields an asymp-
totically vanishing probability of error by using only Θ(log n)
bits per element, the Bloom filter attracts a lot of interest in
practice, especially in systems that need to share information
about their available resources. In a typical scenario, e.g., the
Web cache sharing [14], user queries for desired documents
are directed to proxies instead of the original Web server,
in order to reduce traffic and alleviate network bottlenecks.
Upon a miss at a local cache, a proxy wants to check whether
other proxies have the desired document before sending out

requests to fetch the document. A Bloom filter is adopted to
summarize the contents of each proxy for two reasons – a
small false positive probability is tolerable, and the size of
the Bloom filter is much smaller compared with the list of
full URLs or documents. With a similar spirit, Bloom filters
are used in many network applications such as file search in
P2P networks [17], packet classification [8], trajectory sam-
pling [13], en-route filtering of false data in the network [23],
fast hash table lookup [22] and many others [19]. Motivated
by these applications, the traditional Bloom filter, invented by
Bloom [3], has been augmented in various ways [9], [10], [14],
[17], [18], [20].

The Bloom filter takes a hidden assumption that all elements
in the universe are viewed and treated identically, which is
the best we can assume without further information of the
query frequency distribution or their membership likelihood
(likelihood of being a member). Under this assumption it can
be shown that the Bloom filter is space-wise asymptotically
optimal with a fixed false positive probability and zero false
negative probability [5], [7]. However, it commonly occurs in
practice that elements do not get queried evenly — popular
elements are queried much more often than unpopular ele-
ments. In the measurement of the Internet traffic pattern, it is
observed that traffic flow is highly skewed and concentrates
heavily on popular files [4], [15]. If the query frequency or the
membership likelihood is not uniform over all the elements in
the universe, the traditional configuration of the Bloom filter
does not give the optimal performance. In other words, the
Bloom filter can be further optimized if we know the query
frequency or/and the membership likelihood distribution of
the elements in the universe. In many real systems, statistics
about the traffic flow such as frequencies of elements, top
k categories to which the most elements belong, can be
and are already being monitored [2], [11], [12], [16]. Thus
we can use such statistics and configure the Bloom filter
accordingly. Indeed, information such as query frequencies
has already been used to improve the performance of caching
structures [4].

In this paper, we give the optimal configuration of the
Bloom filter for items with varying query frequencies and
membership likelihood. We call such a Bloom filter the
weighted Bloom filter. In particular, each element e ∈ U is
assigned ke hash functions, where ke depends on its query
frequency and its likelihood of being a member. Therefore,
each non-member element has a different false positive prob-
ability. The average false positive probability is actually a

ISIT 2006, Seattle, USA, July 9 14, 2006

23041424405041/06/$20.00 ©2006 IEEE

Authorized licensed use limited to: Texas A M University. Downloaded on June 28,2010 at 21:36:36 UTC from IEEE Xplore. Restrictions apply.

weighted sum over the query frequencies of the elements in
the universe. Intuitively, an element is assigned more hash
functions if its query frequency is high and its chance of
being a member is low. When the query frequencies and
the membership likelihoods are the same for all elements in
the universe, the weighted Bloom filter degenerates to the
traditional Bloom filter. Thus our model is a generalization and
further optimization of the traditional Bloom filter. We also
evaluate the performance gain of the weighted Bloom filter
over the traditional one, under various frequency distributions
such as step-like functions or Zipf distributions [4], [21],
[24]. We observe that the improvement in the false positive
probability is significant under reasonable frequency models.

The weighted Bloom filter can be gracefully integrated
with existing frequency estimators [2], [11], [12], [16], which
usually maintain a set of ‘hot’ categories. Such rough fre-
quency estimations are represented by popularity buckets. All
the elements in a ‘hot’ category share the same frequency
estimation. The elements are classified into categories by
attributes that are easily checkable, such as the web files of
a popular website or the songs of a popular singer. Similarly
the membership likelihood can also be estimated using such a
category-based technique. The estimated query frequency and
membership likelihood of an element determine the number
of hash functions used for it in the Bloom filter. The efficient
estimation of item popularity and membership likelihood jus-
tifies the practicality of the weighted Bloom filter. We discuss
more on the implementation issues in Section III.

Due to the space limitation, we skip some proofs and
detailed analysis in this paper. Interested readers please refer
to the full version [6].

II. AN OVERVIEW OF BLOOM FILTER

We first give a quick introduction to the traditional Bloom
filter [3]. A Bloom filter is used to represent a set of elements
S in a big universe U . The number of elements in S (called
members), n = |S|, is usually much smaller than the size
of the universe, N = |U |. That is, S ⊆ U and n � N .
A Bloom filter is an m-bit array and uses k independent
uniformly random hash functions {hi | i = 1, 2, · · · , k} which
map to range {1, · · · ,m}. For each element x in S, the hi(x)-
th bits in the Bloom filter, i = 1, · · · , k, are set to ‘1’. For a
membership query about whether an element y is in the set
S, the answer is ‘yes’ if all the bits hi(y) are ‘1’ and ‘no’
otherwise.

The query to a Bloom filter has no false negative – if an
element is a member, the query always returns ‘yes’. There
is a small false positive probability. The query to a non-
member may get an answer ‘yes’ if the bits corresponding
to its hashed positions are all ‘1’ accidentally. Assuming that
the hash functions are perfectly random, the probability of a
false positive for a non-member element can be calculated in a
simple way. After all the n members are hashed to the Bloom
filter, the probability that a specific bit remains ‘0’ is simply

p = (1 − 1
m

)kn ≈ e−kn/m.

Therefore, the probability of a false positive is

PFP =
(
1 − (1 − 1

m
)kn

)k ≈ (1 − e−kn/m)k = (1 − p)k.

To obtain the best performance of the Bloom filter, we
would like to choose k that minimizes the false positive
probability. Intuitively, more hash functions for an element will
increase the chances of finding a ‘0’ for a non-member but will
also increases the total number of ‘1’s in the filter. The optimal
number of hash functions can be obtained by taking the
derivative of PFP to be zero. This reveals that the Bloom filter
has the best performance if k is set to ln 2 ·m/n. In that case,
the false positive probability is PFP = 1/2k = 2−(m/n) ln 2.

III. WEIGHTED BLOOM FILTER

The traditional Bloom filter does not differentiate the query
frequencies of different elements or their a priori likelihoods
of being members. In this section, we study Weighted Bloom
Filter, the Bloom filter optimized based on the elements’ query
frequencies and their probabilities of being members. In many
applications, query frequencies and membership likelihoods
are estimated or collected with well developed techniques [2],
[11], [12], [16]. Statistics of such information are maintained,
especially for a set of ‘hot’ categories. As will be shown later,
such data is useful in optimizing the optimal configuration of
a Bloom filter. The performance improvement is remarkable
even with rough estimations of query frequencies and mem-
bership likelihoods represented by categories. We will present
the optimal configuration for the weighted Bloom filter, and
show that it generalizes the traditional Bloom filter.

Same as the traditional Bloom filter, a weighted Bloom filter
uses m bits to record the n member elements in a set S.
(|S| = n.) There are N elements in total in the universe,
where N � n. We assume that the probability of an element
e’s being a member, denoted by xe, is independent of all the
other elements. We introduce the indicator random variable
Xe for each e ∈ U as follows:

Xe =
{

1 , if e ∈ S
0 , if e /∈ S

We use E{·} to denote the expectation of a random variable.
E{Xe} = xe.

The basic rationale for designing the weighted Bloom
filter is as follows. The filter’s false positive probability is
a weighted sum of each individual element’s false positive
probability, where the weight corresponding to an individual
element is positively correlated with the element’s query
frequency and is negatively correlated with the element’s
probability of being a member. Therefore, we would in general
like to assign more hash functions to an element with a
higher query frequency or with a lower probability of being
a member, in order to reduce the false-positive probability of
an element with a higher weight.

For each element e ∈ U , denote its query frequency by
fe. Then the probability that a query is about an element
a ∈ U equals fa/

∑
e∈U fe. Denote the number of hash

functions used for an element e by ke. The total number

ISIT 2006, Seattle, USA, July 9 14, 2006

2305

Authorized licensed use limited to: Texas A M University. Downloaded on June 28,2010 at 21:36:36 UTC from IEEE Xplore. Restrictions apply.

of hash functions used for elements in S is denoted by
K =

∑
e∈S ke =

∑
e∈U Xe · ke. The rule of answering the

membership queries is the same as before. Specifically, for
an element e, we check all the ke corresponding bits in the
Bloom filter, and say ‘e is a member’ if and only if all the ke

bits are 1. So there is no false negative and possibly a small
false positive probability.

All the hash functions are uniformly random hash functions.
Therefore the probability that a specific bit remains ‘0’ in the
Bloom filter, denoted by p, only depends on the total number
of hash functions operated on the Bloom filter. Specifically,
we have:

p = (1 − 1
m

)K ≈ e−
K
m . (1)

To simplify the analysis, we assume in the standard way [5],
[18] that each bit in the Bloom filter is set to ‘0’ with
probability p and ‘1’ with probability 1− p, independently of
the other bits. This is a valid simplification — with n being
relative large (as in the typical setting for using a Bloom filter),
the fraction of 0 bits in the Bloom filter is sharply concentrated
around p, as shown in [18]. In practice, the dependency
between the bits in the Bloom filter is negligible [1]. The
probability of a false positive is the weighted sum of the
false positive probabilities of all non-members in the universe,
denoted by PFP :

PFP =
∑

e∈U−S fe(1−p)ke

∑
e∈U−S fe

=
∑

e∈U (1−Xe)·fe(1−p)ke
∑

e∈U (1−Xe)·fe

=
∑

e∈U
(1−Xe)fe∑

i∈U (1−Xi)·fi
· (1 − p)ke .

(2)

Denote by re the normalized query frequency of e ∈ U ,

re =
(1 − Xe)fe∑

i∈U (1 − Xi) · fi
. (3)

Then the false positive probability can be represented as

PFP =
∑
e∈U

re(1 − p)ke . (4)

Then, the expectation of the false positive probability is
E{PFP }. Given a fixed-sized Bloom filter of m bits, we
would like to minimize the expected false positive probability
by optimizing the number of hash functions assigned to each
element. Our main result in this paper is to derive the best
configuration of the weighted Bloom filter, as shown in the
following theorem.

Theorem 3.1. In order to minimize the expected false positive
probability E{PFP } of a weighted Bloom filter, the Bloom
filter should be configured as follows: Assuming that ke, for
e ∈ U , can be any real number, the number of hash functions
for an element e ∈ U is

ke =
m

n
· ln 2 + (lnE{re} −

∑
i∈U

xi

n
· lnE{ri}) · 1

ln 2
; (5)

With the above ke for e ∈ U , the probability that a bit in the
Bloom filter is ‘0’ is

p = 1/2; (6)

and the expectation of the false-positive probability is:

E{PFP } = 2−(m/n) ln 2 · N ·
∏
e∈U

E{re}xe/n. (7)

Proof: We explain here the intuition on how to derive the
best configuration of the weighted Bloom filter. For detailed
derivation, please refer to the full paper [6]. Basically, we
see the number of hash functions assigned to an element e ∈
U as a variable, and seek a local optimum of E{PFP } by
taking its partial derivative with respect to ke. By solving the
equations we obtain the relative ratios of ke for each e ∈
U . While adjusting the number of hash functions assigned to
individual elements, we should also scale those numbers by an
appropriate factor in order to control the portion of the Bloom
filter bits that are set to be ‘1’s, because the overall false-
positive probability will be hurt when the portion is too large
or too small. We choose the total number of hash functions,
K, to be an appropriate value so as to minimize the expected
false positive probability E{PFP }, and show that the local
optimum found is in fact also the global optimum. �

In practice, ke needs to be a non-negative integer. So
when implementing the weighted Bloom filter, we round
ke to a nearby non-negative integer. More details on the
implementation of the weighted Bloom filter will be studied
in subsection III-B.

A. Generalization of Bloom Filter

In this subsection, we compare the weighted Bloom filter
to the traditional Bloom filter and show that our result is
a generalization and further optimization of the traditional
optimal configuration. In the traditional Bloom filter [3], no
knowledge about an element’s query frequency or membership
likelihood is assumed. Its optimal configuration is:⎧⎨

⎩
p = 1/2;
ke = (m/n) ln 2 ,∀e ∈ U;
PFP = 2−(m/n) ln 2.

In the weighted Bloom filter setting, all the elements should
be treated the same when no knowledge about query frequen-
cies or membership likelihood is available. Then we can set
fe and xe to be constants, ∀e ∈ U . More specifically, xe =
E{Xe} = n/N , where n = |S| and N = |U |. By equation 3,
we see that E{re} is a constant as well for any e ∈ U . Since∑

e∈U E{re} = E{∑e∈U re} = 1, we have that ∀ e ∈ U ,
E{re} = 1/N . By plugging xe = n/N and E{re} = 1/N
for all e ∈ U into equations 5 and 7, we obtain the formulas
ke = (m/n) ln 2 and PFP = 2−(m/n) ln 2, the same as the
second and the third formulas of the traditional Bloom filter’s
configuration. By taking equation 6 into account, we see that
the traditional optimal configuration of Bloom filter is reduced
to our solution as a special case.

When the elements in U have varying query frequencies
or membership likelihood, the false-positive probability of the
weighted Bloom filter usually becomes better than that of the
traditional Bloom filter. We use here a simple scenario for
illustration. Consider the case where all the elements have
identical membership likelihood, but their query frequencies

ISIT 2006, Seattle, USA, July 9 14, 2006

2306

Authorized licensed use limited to: Texas A M University. Downloaded on June 28,2010 at 21:36:36 UTC from IEEE Xplore. Restrictions apply.

vary from element to element. Then the expected false-positive
probability, as shown in equation 7, becomes:

E{PFP } = 2−(m/n) ln 2 · N · ∏e∈U E{re}xe/n

= 2−(m/n) ln 2 ·
∏

e∈U E{re}1/N

∑
e∈U E{re}/N

≤ 2−(m/n) ln 2.

(8)

The first step holds because xe = n/N for all e ∈ U ,
and

∑
e∈U E{re} = 1. The second step, the inequality, holds

because the geometric average of E{re} is no greater than
the arithmetic average of E{re}. In fact, the inequality will
become equality only if E{re} = 1/N for all e ∈ U , which,
in turn, leads to the requirement that fi = fj for all i, j ∈
U . (We skip the details of the proof.) So the false-positive
probability of the traditional Bloom filter always exceeds that
of the weighted Bloom filter unless all the elements have the
same query frequency.

B. Efficient Implementation of Weighted Bloom Filter

The optimal result we have derived does not consider the
constraint that the number of hash functions assigned to each
element needs to be a non-negative integer. Also, computing
E{re} is often non-trivial — the expression for re (equation 3)
contains N binary random variables Xi, so there are totally
2N disjoint cases. Below we present an efficient way to
approximately compute the optimal solution.

Firstly, consider the expression for re as shown in equa-
tion 3. We get:

E{re}
= E{ (1−Xe)fe∑

i∈U (1−Xi)·fi
}

= Prob{Xe = 0} · E{ (1−0)fe∑
i∈U−{e}(1−Xi)·fi+(1−0)fe

}+
Prob{Xe = 1} · E{ (1−1)fe∑

i∈U−{e}(1−Xi)·fi+(1−1)fe
}

= (1 − xe) · E{ fe∑
i∈U−{e}(1−Xi)·fi+fe

}
(9)

When the value of
∑

i∈U−{e}(1−Xi) ·fi well concentrates
around its expectation, E{re} can be approximately computed
as

E{re}
≈ (1 − xe) · fe

E{∑i∈U−{e}(1−Xi)·fi}+fe

= (1 − xe) · fe∑
i∈U−{e}(1−E{Xi})·fi+fe

= (1 − xe) · fe∑
i∈U−{e}(1−xi)·fi+fe

= (1−xe)fe∑
i∈U (1−xi)fi−(1−xe)fe+fe

= (1−xe)fe

xefe+
∑

i∈U (1−xi)fi

(10)

Thus we first compute the term
∑

i∈U (1−xi)fi, which will
be used in computing E{re} for each e ∈ U . Equation 10
provides an efficient way to compute E{re}. Given E{re},
we can compute ke for e ∈ U using equation 5. Then as a
heuristic, we round ke to its nearby non-negative integer.

C. Numerical Analysis of Weighted Bloom Filter

It is commonly observed that across many scales in society
and economics, human behaviors exhibit inherent character-
istics. Statistics about query frequencies of Web pages [4],

[21] and input to search engines [15] often revealed that user
queries data are skewed where a few popular items or files
are searched much more often than majority unpopular ones.
Numerous studies have found that the distribution of query
frequencies follows Zipf’s law [24], which states that the
relative probability of a request for the ith most popular item
is inversely proportional to the power of i. We also study a
simplified analog of the Zipf’s distribution, which we denote
by the step distribution where there are only two categories,
the popular (or hot) set and the unpopular (cold) set. This
models the case when accurate frequency distributions are not
known and only a rough bucketing on the popularity of the
elements is maintained. Such kind of simple bucketing can
be created and updated efficiently by recent algorithms on
streaming data, which usually use an extremely small amount
of storage space and a few passes of the data set [2], [11],
[12], [16]. We have evaluated the performance of weighted
Bloom filter on queries whose frequency distributions follow
Zipf’s law or the like. Even with a rough estimation of the
query frequency distribution, such as the 2-bucketing, the
performance improvement of weighted Bloom filter over the
traditional configuration is impressive.

We start with a simplified analog of the Zipf’s distribution,
which we call the Step Distribution, defined as follows. The
universe U is partitioned into two subsets: a hot set A and
a cold set B. The percentage of A in the universe is α =
|A|/|U |. So 0 ≤ α ≤ 1 and α = 1−|B|/|U |. Each element in
B has query frequency f , while each element in A has query
frequency c · f , c ≥ 1. The value of c shows how popular the
‘hot’ elements are in terms of query compared to the ‘cold’
elements. We assume that each element in the universe has
the same likelihood of being a member.

A simple calculation shows that the number of hash func-
tions assigned to elements in set A and B are respectively,

ke =
{

(m/n) ln 2 + (1 − α)(ln c/ln 2) , if e ∈ A
(m/n) ln 2 − α(ln c/ln 2) , if e ∈ B

.

The ratio R of the false positive probability of the weighted
Bloom filter to the false positive probability of the traditional
Bloom filter is:

R =
cα

αc + (1 − α)
.

We call 1/R, the inverse ratio of the two false positive
probabilities, the PFP improvement. The greater the PFP

improvement is, the better. The above formulas assume that
the number of hash functions assigned to each element,
ke, can be any real number; when we round ke to nearby
non-negative integers, the two formulas should be adjusted
accordingly. When all ke take non-negative integer values, the
PFP improvement corresponding to different values of α and
c are illustrated in Figure 1.

In Figure 1, the vertical axis is the PFP improvement. The
two horizontal axes are α that varies in [0, 1] and c that varies
in [1, 10000]. We see that the PFP improvement increases
with c, because the performance gain of weighted Bloom filter
improves when the query frequencies become more skewed.

ISIT 2006, Seattle, USA, July 9 14, 2006

2307

Authorized licensed use limited to: Texas A M University. Downloaded on June 28,2010 at 21:36:36 UTC from IEEE Xplore. Restrictions apply.

0
5000

100000 0.2 0.4 0.6 0.8 1

0

50

100

150

200

250

300

350

400

YX

Z

Fig. 1. PFP improvement of the weighted Bloom filter, when the query
frequencies are modelled with the step distribution. The vertical axis is the
PFP improvement. The two horizontal axes are, respectively, α that varies
in [0, 1] and c that varies in [1, 10000]. Here m/n = 14.

When c is fixed, the best performance improvement appears
when there are neither too many nor too few hot elements,
in which case the query frequencies there are more skewed.
The difference in the number of hash functions assigned to
hot elements and cold elements is moderate — in a typical
Bloom filter configuration with m/n = 14, the number of
hash functions assigned to hot elements and to cold elements
varies between 10 and 23 and between 0 and 10, respectively.
However, the improvement of the false positive probability is
a lot. The maximum PFP improvement here is 396.9.

We have also studied the performance of weighted Bloom
filter when the query frequencies follow the Zipf distribution,
or when the query frequencies have positive or negative corre-
lations with the membership likelihoods. All these cases have
natural applications, and substantial performance improvement
by the weighted Bloom filter has been observed. Details can
be found in the full paper [6].

IV. CONCLUSIONS

In this paper we have deepened our understanding on the
well-known Bloom filter structure. When more information
about the membership likelihood and query frequencies is
available, we derived the optimal Bloom filter configuration
and investigated efficient implementation schemes in practice.
We have compared the performance of the weighted Bloom
filter with the traditional Bloom filter under reasonable query
frequency and membership likelihood models. For the future
work, it would be interesting to evaluate the performance gain
of the weighted Bloom filter on real network traces and further
investigate the integration of the Bloom filter with network
statistics estimators.

Acknowledgements: This work was supported in part by
the Lee Center for Advanced Networking at the California
Institute of Technology, and by NSF grant CCR-TC-0209042.

REFERENCES

[1] M. Adler, S. Chakrabarti, M. Mitzenmacher, and L. Rasmussen. Par-
allel randomized load balancing. Random Structures and Algorithms,
13(2):159–188, 1998.

[2] B. Babcock and C. Olston. Distributed top-k monitoring. In SIGMOD
’03: Proceedings of the 2003 ACM SIGMOD international conference
on Management of data, pages 28–39, New York, NY, USA, 2003. ACM
Press.

[3] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Communications of the ACM, 13(7):422–426, 1970.

[4] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web caching
and zipf-like distributions: evidence and implications. In Proc. IEEE
INFOCOM’99, pages 126–134, 1999.

[5] A. Broder and M. Mitzenmacher. Network applications of bloom filters:
A survey. In Proceedings of the 40th Annual Allerton Conference on
Communication, Control, and Computing, pages 636–646, 2002.

[6] J. Bruck, J. Gao, and A. A. Jiang. Weighted bloom filter. Technical
Report ETR072, Distributed Information Systems Group, Department
of Electrical Engineering, California Institute of Technology, 2006.
http://www.paradise.caltech.edu/papers/etr072.pdf.

[7] L. Carter, R. Floyd, J. Gill, G. Markowsky, and M. Wegman. Exact and
approximate membership testers. In STOC ’78: Proceedings of the tenth
annual ACM symposium on Theory of computing, pages 59–65, 1978.

[8] F. Chang, W. Feng, and K. Li. Approximate caches for packet
classification. In Proceedings of INFOCOM, volume 4, pages 2196–
2207, Hong Kong, China, 2004.

[9] B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal. The Bloomier filter: An
efficient data structure for static support lookup tables. In Proceedings
of the Annual ACM-SIAM Symposium on Discrete Algorithms, pages
30–39, New Orleans, LA., United States, 2004.

[10] S. Cohen and Y. Matias. Spectral Bloom filters. In Proc. SIGMOD,
pages 241–252, 2003.

[11] G. Cormode and S. Muthukrishnan. What’s hot and what’s not:
tracking most frequent items dynamically. In PODS ’03: Proceedings
of the twenty-second ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, pages 296–306, New York, NY, USA,
2003. ACM Press.

[12] E. D. Demaine, A. López-Ortiz, and J. I. Munro. Frequency estimation
of internet packet streams with limited space. In ESA ’02: Proceedings
of the 10th Annual European Symposium on Algorithms, pages 348–360,
London, UK, 2002. Springer-Verlag.

[13] N. Duffield and M. Grossglauser. Trajectory sampling with unreliable
reporting. In Proc. INFOCOM’04, volume 3, pages 1570–1581, Hong
Kong, China, 2004.

[14] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary cache: a
scalable wide-area web cache sharing protocol. IEEE/ACM Transactions
on Networking, 8(3):281–293, 2000.

[15] Google. Google zeitgeist – search patterns, trends, and surprises
according to google. http://www.google.com/press/zeitgeist.html.

[16] R. M. Karp, S. Shenker, and C. H. Papadimitriou. A simple algorithm
for finding frequent elements in streams and bags. ACM Trans. Database
Syst., 28(1):51–55, 2003.

[17] A. Kumar, J. Xu, and E. W. Zegura. Efficient and scalable query routing
for unstructured peer-to-peer networks. In Proc. INFOCOM’05, Miami,
Florida, U.S.A., 2005.

[18] M. Mitzenmacher. Compressed bloom filters. IEEE/ACM Transactions
on Networking, 10(5):604–612, 2002.

[19] P. Mutaf and C. Castelluccia. Compact neighbor discovery. In Proc.
INFOCOM’05, Miami, FL, USA, 2005.

[20] S. C. Rhea and J. Kubiatowicz. Probabilistic location and routing. In
Proc. INFOCOM’02, volume 3, pages 1248–1257, 2002.

[21] P. Rodriguez, C. Spanner, and E. W. Biersack. Analysis of web
caching architectures: hierarchical and distributed caching. IEEE/ACM
Transactions on Networking, 9(4):404–418, 2001.

[22] H. Song, S. Dharmapurikar, J. Turner, and J. Lockwood. Fast hash table
lookup using extended Bloom filter: An aid to network processing. In
Proc. SIGCOMM, Philadelphia, PA, USA, 2005.

[23] F. Ye, H. Luo, S. Lu, and L. Zhang. Statistical en-route filtering of
injected false data in sensor networks. In Proc. INFOCOM’04, volume 4,
pages 2446–2457, 2004.

[24] C. K. Zipf. Human Behavior and the Principle of Least Effort: An
Introduction to Human Ecology. Addison Wesley Press, Inc., Cambridge,
MA, 1949.

ISIT 2006, Seattle, USA, July 9 14, 2006

2308

Authorized licensed use limited to: Texas A M University. Downloaded on June 28,2010 at 21:36:36 UTC from IEEE Xplore. Restrictions apply.

