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Location information is useful both for network organization and for sensor data integrity. In this
article, we study the anchor-free 2D localization problem by using local angle measurements. We
prove that given a unit disk graph and the angles between adjacent edges, it is NP-hard to find a
valid embedding in the plane such that neighboring nodes are within distance 1 from each other
and non-neighboring nodes are at least distance v/2/2 away. Despite the negative results, however,
we can find a planar spanner of a unit disk graph by using only local angles. The planar spanner
can be used to generate a set of virtual coordinates that enable efficient and local routing schemes
such as geographical routing or approximate shortest path routing. We also proposed a practical
anchor-free embedding scheme by solving a linear program. We show by simulation that it gives
both a good local embedding, with neighboring nodes embedded close and non-neighboring nodes
far away, and a satisfactory global view such that geographical routing and approximate shortest
path routing on the embedded graph are almost identical to those on the original (true) embedding.
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1. INTRODUCTION

The fast development of sensor networks in recent years has attracted a lot of
interest in the networking community. Sensor networks are closely related to
the geometric environment in which they are deployed. Sensor location informa-
tion is indispensable for both sensor data integrity and network organization.
The nature of sensor networks is data-centric. Individual sensors are not as
interesting as their sensed data. But the data from sensors is meaningless if
we do not know where the data is from. Location information can also help
networking operations such as routing and topology control. For example, ge-
ographical routing uses node locations to aid routing, such that a node sends
the message to the neighbor who is closest to the destination. With a dense
and uniform sensor deployment, geographical routing delivers messages to the
destination with high success rate in a local and efficient manner.

Traditional approaches to obtain location information include Global Posi-
tioning Systems (GPS) [Hofmann-Wellenhof et al. 2001]. But GPS is not appro-
priate for large-scale sensor localization due to its high cost, large form factor,
and outdoor constraints. There has been a lot of study on localization algorithms
that induce the locations of sensor nodes from local measurements including
distance and angle estimations between neighbors [Savvides et al. 2003, 2001;
Niculescu and Nath 2004, 2003, 2001; Shang et al. 2003; So and Ye 2005; Biswas
and Ye 2004; Moore et al. 2004; Gotsman and Koren 2004; Doherty et al. 2001].
A detailed review of these methods will be presented in the related work sec-
tion. Generally, localization algorithms can be classified as anchor-based and
anchor-free methods. Anchor-based methods assume that a (sometimes large)
number of anchor nodes know their positions already [Savvides et al. 2003,
2001; Niculescu and Nath 2004, 2003, 2001; Shang et al. 2003; Doherty et al.
2001]. Sensor nodes derive their locations by using distance measurements to
anchor nodes. Anchor-free methods output the relative positioning of the sen-
sors, subject to a global translation and rotation. In this article we focus on
anchor-free methods that deduct the geometry of the network from local mea-
surements.

Existing anchor-free algorithms take either the connectivity graph [Rao et al.
2003; Shang et al. 2003] or the distances between neighboring sensor nodes [So
and Ye 2005; Biswas and Ye 2004; Moore et al. 2004; Gotsman and Koren 2004]
as input. The distance between two communicating nodes can be estimated by
Received Signal Strength Indicator (RSSI) or Time of Arrival (ToA) techniques.
One major challenge in this approach is localization ambiguity: When the lo-
calization solution is not unique, localization algorithms may come up with a
different embedding that satisfies all the distance constraints but deviates far
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from the ground truth. This difficulty is also confirmed by the NP-hardness of
unit disk graph embedding. With purely the connectivity information, deter-
mining whether a combinatorial graph is a unit-disk graph is NP-hard, and
thus finding such an embedding in the plane (with neighboring nodes embed-
ded within distance 1 and non-neighboring nodes more than distance 1 away)
is also hard [Breu and Kirkpatrick 1998]. In fact, even a relaxed version of the
problem is still hard. Kuhn et al. proved that finding an embedding such that
non-neighboring pairs are at least 1 away and neighboring pairs are within
/3/2 is NP-hard [Kuhn et al. 2004]. Distance measurements of neighboring
nodes do not help either [Aspnes et al. 2004; Badoiu et al. 2004].
Interestingly, not as much work has been done on using angle information for
localization. Angles between adjacent edges can be measured by using multiple
ultrasound receivers [Priyantha et al. 2000], or by using directional antennas
and laser transmitters. Considering angle information adds one more dimen-
sion to the localization problem. At first sight, angle information tells us how the
graph stretches out in different directions and thus could be helpful in remov-
ing incorrect folding during localization. Indeed, Efrat et al. [2006] show that
incorporating angular information can significantly improve the performance
of mass-spring relaxation for sensor localization. Thus, we were initially moti-
vated to examine whether angle information, instead of distance information,
can make unit disk graph embedding polynomially solvable. The results we
obtained in this article, however, are contrary to our initial intuition.

Our Contribution. In this article, we study what can and cannot be done
using the connectivity together with local angle information. Given a combina-
torial unit disk graph G with the angles between adjacent edges specified, we
want to find a valid embedding of G in the plane. In other words, we want to
assign Euclidean coordinates to the vertices of G such that G is the induced
unit disk graph that meets the angle constraints. We prove that this problem is
hard. In addition, a few relaxed versions are also hard. We show that it is NP-
hard to find a v/2-approximate embedding where non-neighboring nodes are
embedded at least ~/2/2 away, or a topologically equivalent embedding where
two edges cross in the embedded graph if and only if they cross in a valid
embedding.

Despite these negative results, we show two positive results that show angle
information is useful. First, angle information, though not sufficient to derive
the global geometry, is sufficient for a topology control problem for which exist-
ing solutions all assume location information. The problem we study is to find
a planar spanner subgraph that approximates the original unit-disk graph.
Given a unit-disk graph, we would like to prune edges such that the remaining
graph is planar and the shortest path between any two nodes in the subgraph
is at most a constant factor longer than that in the original graph. Spanner sub-
graphs are useful in topology control and geographical routing. In particular,
geographical routing uses face routing on a planar subgraph to guide a packet
out of the local minima. Existing work on constructing planar spanner sub-
graphs of unit disk graphs (please refer to Rajaraman [2002] for an overview)
all assume that locations are already known. Here we show that with local angle
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information we can find a subgraph G’ of G such that for any valid embedding
£ of G, the graph £(G’) induced by the same embedding is a planar spanner of
E£(G). No two edges cross in £(G’) and the shortest path distance between two
nodes in £(G’) is at most a constant factor of that in £(G).

The significance of this result is in two folds. First, to identify the edges of
a planar spanner subgraph, we do not need the node locations; only the local
angle information suffices! Further, any straight line embedding of the combi-
natorial graph G’ in the plane, not necessarily a valid embedding of the unit
disk graph (which is NP-hard to compute), gives a set of virtual coordinates for
sensor nodes with which geographical routing is guaranteed to deliver a packet
to its destination if such a path exists. Thus, just for the purpose of geographical
routing, using accurate location information is unnecessary. Secondly, this ob-
servation can be useful in practice to improve the robustness of planar spanner
subtraction, especially when localization is not accurate.

For practical localization, we propose an embedding algorithm with local
angle information that gives surprisingly good results. We first formulate the
embedding problem by a linear program with relaxed constraints such that any
valid embedding must be a feasible solution to the LP. Through simulations,
we show that the LP finds an almost identical set of locations as the original
ones, even when the graph is sparse. We also show that the method is robust
to both noisy measurements of angles and different models of sensor networks
(e.g., quasi-unit disk graph models). A planar spanner derived based on local
angle information equipped with the virtual coordinates obtained through this
practical embedding enables geographical routing and approximate shortest
path routing with demonstrated performance almost the same as that of using
the real locations.

2. RELATED WORK

In this section we give a quick overview of existing localization algorithms and
the use of location information in geographical routing.

2.1 Localization Algorithms

A number of anchor-based localization algorithms use iterative triangulation
or its variants. Anchor nodes obtain their locations by GPS or as prespecified.
Then trilateration is used to find the locations of other sensors progressively
[Savvides et al. 2003, 2001; Niculescu and Nath 2001]. If the distances from
a sensor p to three anchors are known, the location of p is determined and p
becomes a new anchor node. Similar methods can also be done by using an-
gles [Niculescu and Nath 2004, 2003]. There are two issues that need special
care for these incremental solutions. One is to deal with cascading error accu-
mulation in large-scale networks. We can adopt optimization techniques such as
mass-spring relaxation to smooth out error distribution, or adopt robust statis-
tics to handle outliers in input measurements [Li et al. 2005]. The other issue
is to handle an insufficient number of initial anchor nodes. If the number of an-
chors is too small or the anchors are not well distributed, some nodes may not be
able to find three neighboring anchor nodes to locate themselves. In this case,
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we can use distance estimations to anchor nodes via multihop paths [Niculescu
and Nath 2001], or adopt collaborative multilateration by solving a larger op-
timization problem [Savvides et al. 2003, 2001].

Using range information and local optimization such as mass-spring relax-
ation techniques can often result in getting stuck at local minima with part of
the network flipped over the rest and generating a network layout far away
from the ground truth [Efrat et al. 2006]. To deal with localization ambiguity,
Moore et al. [2004] proposed to use robust quadrilaterals as the basic iterative
operation. A quadrilateral on four nodes with all pairs of edges is a globally rigid
component with a unique realization. The global layout is obtained by gluing
locally identified robust quadrilaterals. Similarly, with ideas from rigidity the-
ory to improve iterative multilateration on sparse networks, Goldenberg et al.
proposed recording, propagating, and verifying multiple possible locations of
sensors to discover the truth network layout [Goldenberg et al. 2006].

Global optimization techniques for sensor network localization include
multidimensional scaling (MDS) [Borg and Groenen 1997; Shang et al. 2003]
and semidefinite programming [So and Ye 2005; Biswas and Ye 2004]. They for-
mulate the problem as solving a global optimization problem for sensor locations
such that the distance constraints are satisfied. The results are typically better
than those of local optimization algorithms. But these are centralized solutions.
Comparisons of different localization algorithms have been evaluated in real
sensor deployment [Whitehouse et al. 2005; Whitehouse and Culler 2006].

From a theoretical point of view, not much is known on approximation algo-
rithm for unit disk graph embedding. So far the only known theoretical result
is an algorithm with an upper bound O(log®® n,/loglogn) on the ratio of the
longest distance between neighboring pairs to the shortest distance between
non-neighboring pairs [Moscibroda et al. 2004].

2.2 Geographical Routing

Node location information enables geographical routing. A source node knows
the location of the destination and uses it for guidance [Karp and Kung 2000;
Bose et al. 1999; Kuhn et al. 2003]. In the simplest form (greedy forwarding), a
message is forwarded to that neighbor whose Euclidean distance to the destina-
tion is the minimum among all neighbors. When a message gets stuck at a node
whose neighbors are all further away from the destination, it uses perimeter
routing (or face routing) to route along the faces of a planar subgraph, until
either the destination is reached or greedy forwarding can be performed again.
Both the node location information and a correctly constructed planar subgraph
are needed.

Due to the hardness of the localization problem, recent researchers proposed
to use virtual coordinates in place of the real coordinates. The idea is first pro-
posed by Rao et al. [2003], where they construct a set of virtual coordinates
by using only the connectivity for geographical routing. But when a message
gets stuck at a local minima, the only way for it to reach the destination is
to be flooded to the whole network. The results in the second half of this ar-
ticle can be considered as computing virtual coordinates for routing. We use
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Fig. 1. For each node p in the unit-disk graph, assume that uq, ..., u; are p’s neighbors ordered
counterclockwise. In this article we assume that the angles between edges pu; and pu;,; are given.

more information, the local angle information, and produce an embedded pla-
nar spanner subgraph together with a set of virtual coordinates such that stuck
messages can be routed to the destination by perimeter routing.

3. PRELIMINARIES

We start with some definitions on unit disk graphs and embeddings. Throughout
the article we assume that the UDG is connected, since otherwise we’ll work
on each connected component separately.

Definition 3.1. A unit-disk graph is a combinatorial (unweighted) graph
induced by a set of points in the Euclidean plane such that two points have an
edge in between if and only if their distance is no more than 1.

We emphasize here that by the notion of unit-disk graph we mean the com-
binatorial graph without the embedding. Such a unit-disk graph is induced by
a set of points in the Euclidean plane, but the configuration of the nodes in R? is
unknown. An embedding of such a combinatorial graph in the Euclidean plane
may or may not be the same as the original (unknown) configuration. For an
embedding &, we denote by £(p) the embedded point of a node p. The Euclidean
distance between two nodes p, ¢ in an embedding £ is denoted by d (E(p), £(q)).
We will sometimes abuse the notations and use p to represent £(p) when the
context is clear.

In this work we study embedding problems by using local angle informa-
tion. Specifically, besides the combinatorial unit disk graph we are also given
the angles between angularly adjacent edges (all angles are measured counter-
clockwise). See Figure 1. With the local angles constrained there is still freedom
to choose the lengths of the edges.

Definition 3.2. An «a-approximate embedding £ of a graph G with an-
gle information is an embedding of the vertices such that the distance be-
tween two nodes d(E(u), E(v)) <1 if u, v have an edge between them in G, and
d(&E(u), EW)) > 1/a if u, v do not have an edge between them in G, where « > 1.
The angle between any two adjacent edges uv, uw is as specified. A valid em-
bedding is an a-approximate embedding with o = 1.

We observe that by local angle information, we can decide whether two edges
cross in a valid embedding of the unit disk graph. Thus, when we say two edges
cross in a unit disk graph G, we actually mean that they cross in any valid
embedding of G.

LEmMma 3.3. If we know the angles between adjacent edges of a unit disk
graph, we can determine all pairs of crossing edges in a valid embedding.
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C c

A B D B
(a) (b) (c)
Fig. 2. (a) The edge AB is not located inside the angle /CBD and thus AB, CD cannot cross each
other; (b) AB is located inside the cone defined by /CBD and A, B are on the same side of the line

defined by CD, then BA must be outside the cone defined by ZCAD; (c) a correct crossing between
AB and CD.

Proor. In particular, if two edges AB, CD intersect with each other, there
must be a node that is connected with all the other three nodes [Breu and
Kirkpatrick 1998; Gao et al. 2001]. Suppose B is connected with the other three
nodes. Then AB, CD cross each other if and only if AB is located inside the cone
defined by /CBD <nm and A, B are on different sides of the line defined by
CD.

First we can decide if AB is located inside the cone defined by /CBD < =
easily by the angle information. Further, if AB is located inside the cone defined
by /CBD and A, B are on the same side of the line defined by CD, then A is
inside the triangle BCD. See Figure 2(b). Then A is connected to B, C, D due to
plane geometry. This situation can be identified with only angle information,
since BA must be outside the cone defined by /CAD. O

The previous lemma implies that we can identify all crossing edges in a
valid embedding with local angle information. Thus, one relaxation of a valid
embedding is to require that the topology of the embedded graph is equivalent
with a valid embedding, that is, only the edges that cross in a valid embedding
are allowed to cross.

Definition 3.4. A topologically equivalent embedding £ of a graph G with
angle information is an embedding of the vertices such that two edges cross in
£ if and only if they cross in a valid embedding. The angle between any two
adjacent edges uv, uw is as specified.

Remark. We notice that, without loss of generality, we can assume that in
a topologically equivalent embedding the neighboring nodes are embedded no
further than distance 1. This is because we can always do proper global scaling
that does not change the topology of the embedded graph.

THEOREM 3.5. A «/2-approximate embedding is a topologically equivalent
embedding.

Proor. Assume that there are two edges AB, CD that cross each other in a
V/2-approximate embedding £. Also assume that £* is a valid embedding. If the
following two claims are true, then £ is topologically equivalent with £*.

Claim 1. IfAB, CD crossin a valid embedding £*, then they must also cross
in a /2-approximate embedding .
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D
(c)

Fig. 3. In avalid embedding of the unit disk graph G, if two edges AB, CD cross each other, there
are only three possible cases.

Fig. 4. (a) A valid embedding £*; (b) a +/2-approximate embedding &.

Proof of Claim 1. If AB, CD cross in a valid embedding £*, then one node
must be connected to all the three other nodes. There are three possible cases,
as illustrated by Figure 3. For cases (b) and (c), if the angles between adja-
cent edges are fixed as specified, the configuration of the four nodes is unique
up to a global rigid motion and scaling. Thus AB, CD cross in any embedding
preserving the local angles. For Case (a), we argue that in a v/2-approximate
embedding AB, CD must also cross each other. In a valid embedding £* as in
Figure 4(a), AC must be longer than both AD and CD. Thus the angle /CDA >
7/3. Similarly /BDC > /3. Thus /BDA > 2x/3. If in a +/2-approximate em-
bedding &£, AB does not cross CD, then C is embedded inside the triangle
ADB, as shown in Figure 4(b). First /BCA > /BDA > 27/3. On the other hand,
d(E(A), E(C) >~2/2, d(E(B), E(C) > +/2/2, d(E(A), E(B)) < 1. Thus,

d(E(A), E(C)? +d(E(B), E(C)* > 1= d(E£(A), E(B)).

So /BCA < 7/2. This leads to a contradiction.

Claim 2. IfAB,CD crossin a v/2-approximate embedding &, then they must
also cross in a valid embedding £*.

Proof of Claim 2. There are six possible cases based on how the nodes are
connected with each other in G. See Figure 5. We argue that none of the cases
has both properties that:

—AB, CD intersect each other in £ and
—AB, CD do not intersect each other in £*.
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D
(f)

Fig. 5. A +/2-approximate embedding . Solid lines are edges in G.

(1) For Case (a) in Figure 5, let’s take a look at triangle AAC D under embed-
ding €. We know that d(£(A), £(C)) > v/2/2, d(E(A), E(D)) > +/2/2, d(E(C),
E(D)) < 1. So the angle /CAD <z /2. Similarly, /ACB <x/2, /CBD <7w/2,
/BDA <7/2. This leads to a contradiction, since the sum of the in-

ner angles of a 4-gon must be 27. So this case can never happen in
E.

(2) Case (b) cannot happen for a v/2-approximate embedding £. The intuition
is that if the two edges do not cross in a valid embedding, then the angle
/COB < /6. This contradicts with the fact that d(£(B), £(C)) > v/2/2. The
details are in the Appendix.

(3) Case (c) cannot happen. By the angle constraint, the two edges AB, CD must
cross in any planar embedding. But in a valid embedding there must be a
node that is connected to three other nodes. This leads to a contradiction.

(4) For cases (d), (e) and (f), AB and CD cross in any valid embedding.

Therefore if two edges do not cross in a valid embedding, they cannot
cross each other in any +/2-approximate embedding. This shows that an +/2-
approximate embedding is a topologically equivalent embedding. O

4. THE HARDNESS OF UDG EMBEDDING WITH ANGLES

As shown in the last section, by using local angle information we can decide
on all crossing edges in a valid embedding. However, local angle information
is not sufficient to determine a valid embedding. It turns out that the problem
of finding a valid embedding, by using the network connectivity and the local
angle information, is still hard. In fact it is even NP-hard to find a topologically
equivalent embedding or a v/2-approximate embedding. In this section we show
a polynomial reduction from the 3SAT problem, such that any 3SAT instance
can be turned into a problem of embedding a unit disk graph in the plane
with angle constraints. Therefore, as long as we can solve the UDG embedding
problem we can solve 3SAT in polynomial time, which then establishes the
hardness result.
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Fig. 6. The graph G¢ of a 3SAT instance (X7 V x9 V X3) A (x9 V X3) A (X1 V X3 V X3).

A 3SAT problem consists of a set of Boolean variables and a set of clauses
such that each clause is composed of at most 3 literals, which are either negated
or unnegated variables. The 3SAT problem is to find an assignment to the
variables such that all clauses are satisfied (i.e., having value 1). For example,
one instance of a 3SAT problem has three variables x1, x2, x3 and three clauses:
X1V Xy VX3, X9 VX3, X1 VXz Vx3. We ask for the question whether there exists a
0, 1 assignment to the variables x1, x9, x3 such that all the clauses have value
1; and if so the instance is called satisfiable.

A 3SAT instance C can be represented as a graph G¢ where the set of clauses
and variables are drawn in the plane as boxes, and there is a path connecting
a clause with a variable (or its negated version) if the variable appears in the
clause. Please see Figure 6 for an example. Such a graph can be drawn on a grid
in polynomial time [Breu and Kirkpatrick 1998]. Breu and Kirkpatrick proved
the NP-hardness of unit disk graph embedding by a reduction from a 3SAT
problem [Breu and Kirkpatrick 1998]. We use a different reduction to show
with angle information the unit-disk graph embedding is still hard. Specifi-
cally, given any 3SAT instance C represented by a graph G¢, we will realize G¢
by a unit disk graph with angle constraints such that there is a topologically
equivalent embedding if and only if the corresponding 3SAT problem is satisfi-
able. Now if there exists a polynomial algorithm to solve the UDG embedding
with angles, we can apply the polynomial algorithm to solve 3SAT. This will
establish that the UDG embedding with angles is NP-complete.

The rest of the section is devoted to the following task. Given any 3SAT
instance C, come up with a unit disk graph G and angle constraints as the
graph representation of C such that G has a UDG embedding if and only if the
3SAT instance C is satisfiable.

4.1 Realization of G¢ by Unit Disk Graphs

We first present a set of building blocks by using unit disk graphs. These build-
ing blocks will be used to realize a 3SAT instance.

—Spring. A spring is a line segment with length between ¢ and 2¢. It can
be realized by a set of 2¢ + 1 nodes placed on a straight line with only edges
between adjacent pairs of nodes, as shown in Figure 7(b). The angles between
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Fig. 7. (a) A spring; (b) the realization of a spring by unit-disk graphs.
I C A C
l

B B
(2) (b)

Fig. 8. (a) An amplifier; (b) the realization of an amplifier by unit-disk graphs.

b

(b)
Fig. 9. (a) Propagator; (b) crossing propagator.

two edges adjacent to one node are fixed as 7. In particular, each edge in a
unit disk graph has length at most 1, so a chain of 2¢ + 1 nodes have length at
most 2¢. For 3 adjacent nodes a, b, ¢ on the chain, since a cannot communicate
with ¢, their distance must be at least 1 away. Thus a chain of 2¢ + 1 nodes
is no shorter than ¢.

—Amplifier. An amplifier is a triangle with fixed inner angles. Thus the ratio
between the edge lengths of the triangle is fixed. For a number ¢ we use
an amplifier to get the number ¢/ = ¢ - £ for any ¢ > 0. An amplifier can
be realized by a unit disk graph with prespecified angles between adjacent
edges. In particular, each edge in the triangle is realized as a chain of nodes.
There might be possible edges between nodes in different chains, depending
on the magnitude of the inner angles. See Figure 8 for an example.

— Propagator and Crossing Propagator. A propagator is a rectangle (with all
inner angles specified as 7/2). The lengths of the opposing sides of the rect-
angle are thus the same. It can be implemented by a cycle of nodes with
corresponding angle constraints. A crossing propagator is a pair of crossing
rectangles. See Figure 9.

Now we are ready to explain how to realize the graph G¢ for a 3SAT instance
C by using unit disk graphs with angle constraints. The graph G¢ consists of
three components: clauses, variables, and wires to connect them.
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Fig. 10. The only two embedding of a concave cycle without incorrect crossings.

—0/1 Block (Variable Component). By using the aforesaid building blocks, we
can construct a 0/1 block that has only two types of valid embedding. In short,
we construct a concave cycle with one upper “tooth” and one bottom “tooth”
with no edges in between. With propagators and amplifiers, we are able to
force the teeth to be relatively large. Since the teeth cannot overlap (to keep
the embedding topologically correct), there are basically two ways to embed
the concave cycle: either by putting the upper tooth to the left of the bottom
tooth, or the other way around. Please see Figure 10 for the two types of
embedding with the two teeth highlighted in thick lines. The concave cycle is
bounded by AEFGHDCKLIJB, the upper tooth is the part of the cycle EFGH,
and the bottom tooth is the part of the cycle JILK. The rest of the stuff on
the peripheral of the concave cycle, consisting of propagators and amplifiers,
makes sure that the size of the teeth is relatively large.

Now suppose the length of AB = CD is ¢, we use amplifiers and prop-
agators such that the length of BC = DA = 11¢/6. There are two squares
EFGH, IJKL inside the rectangle ABCD. Both of them have side length 2¢/3.
The two squares do not have edges in between. Thus any embedding with-
out incorrect crossings will have to embed the graph in two ways: either by
putting the square EFGH to the left of IJKL or the other way around. In the
first case, the length of the path AE is no more than ¢/2 and the length of
HD is at least 2¢/3. In the second case, the length of the path AFE is at least
2¢/3, and the length of HD is no more than ¢/2. The segments AE, HD, BJ,
KC are springs, thus their lengths can be stretched and shrunk by a factor
no more than 2.
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N
11¢/6 Vg ) v
== A=
(a) (b) (c)

Fig. 11. Clause components (a) (vy V vy V v3); (b) (v1 V vg); (¢) V1.

Ch
: wires
Cy
width
Cs
clauses
— .~
Ty Ty To Tg T3 T3
variables

Fig. 12. The realization of a 3SAT instance (X1 V x2 V X3) A (xg V X3) A (x1 V X3 V x3) by a unit
disk graph. Shaded areas are 0/1 blocks for variables. In this example x; = 1, xo = 0, x3 = 0. The
instance is satisfied.

A variable component, including x and its negation x, is implemented by a
0/1 block. In fact, we use the length of AE to represent the value of a variable
x and the length of HD to represent its negated version X. A variable v is
assigned 1 if the length of AE is less than ¢/2, and 0 if the length of AE
is at least 2¢/3. Correspondingly we use the length of HD to represent the
negated variable 0. By the previous construction, the value of a variable is
always different from the value of its negated version.

—Clause Components. A clause component puts constraints on the input vari-
ables. In particular, it enforces a total maximum length on the concatenation
of springs whose lengths represent the assignments of input variables. See
Figure 11(a) for an example. If a clause is composed of three variables, then
the outer rectangle has height 11¢/6. Thus at least one of the variables has
length less than ¢/2; that is, the clause is satisfied if at least one variable is
assigned value 1. The clauses with two or one variables are designed simi-
larly with a maximum height of 7¢/6 and ¢/2, respectively. See Figure 11(b)
and 11(c). To enforce the maximum height of a clause component, we use
propagators and amplifiers.

— Wires. Wires connect variables with clauses. See Figure 12. The width of the
wires indicates the assignment of a variable. If the width of a wire is no more
than ¢/2, this means the variable connected by the wire is assigned “1”. If the
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width of a wire is at least 2¢/3, the variable connected by the wire is assigned
“0” in G¢. The wires are built by propagators.

Now we put all the components together and show a realization of the graph
G¢ (Figure 6) for a 3SAT instance C by a unit disk graph in Figure 12. This
figure omits the details in the variable components. Intuitively, the hardness
of the problem comes from the fact that the ways to embed the 0/1 blocks affect
each other through the constraints enforced by the clauses.

4.2 Hardness Results

Now we are ready to prove the NP-hardness of unit-disk graph embedding with
local angle information.

THEOREM 4.1. It is NP-hard to find a topologically equivalent embedding of
a unit-disk graph with local angle constraints.

Proor. By the construction of G¢ for a 3SAT instance G¢, we can see that
the the instance C can be satisfied if and only if we can find an embedding of
G in the plane that has the same topology and preserves all the local angles.
Since 3SAT is NP-hard, it is also NP-hard to find a topologically equivalent
embedding. O

COROLLARY 4.2. Itis NP-hard tofind a valid embedding of a unit-disk graph
with local angle constraint.

Proor. The proof is similar with the preceding theorem. For a graph G¢
of a satisfiable 3SAT instance C, we can find an embedding £ of G¢ with no
incorrect crossings. Further, we can do proper scaling and local arrangement of
£ such that € is a valid embedding. O

CoroLLARY 4.3. [Itis NP-hard tofind an a-approximate embedding of a unit-
disk graph with local angle constraints, for o < ~/2.

Proor. We construct a graph G¢ for a 3SAT instance C. By Theorem 3.5,
a +/2-approximate embedding is a topologically equivalent embedding. Thus if
we have a +v/2-approximate embedding & of G¢, then C is satisfiable. The other
direction can be proved similarly as the previous proof. O

4.3 A Summary of Hardness of Localization

Localization by using only angles between adjacent edges in a unit disk graph is
shown to be NP-hard. However, if we have more information, localization can be
solved easily from a theoretical point of view. For example, if we have the angles
between all pairs of nodes in the graph, then the graph is basically determined
up to a scaling factor. For another example, if we have both the lengths of the
edges and the angles between adjacent edges in a unit disk graph, the graph is
uniquely determined. A short summary of the hardness results on localization
is shown in Figure 13.
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Input Hardness | ref.

UDG graph only NP-hard Breu and Kirkpatrick 1998; Kuhn et al. 2004]
O(1)-hop distances NP-hard | [Aspnes et al. 2004]

O(1)-hop angles NP-hard | this paper

O(1)-hop angles & distances | in P this paper

Q(n?) pairs distances in P [Biswas and Ye 2004; So and Ye 2005]

all pairs angles in P this paper

Fig. 13. A summary of the hardness of finding a valid embedding of a UDG.

5. PLANAR SPANNER CONSTRUCTION

In the previous section we’ve shown that by using the communication graph
and local angle information, it is NP-hard to find a valid embedding of a unit-
disk graph. On the positive side we’ll show that by local angle information we
can find a planar spanner subgraph whose embedding in the plane can be used
for geographical routing with guaranteed delivery.

A planar graph is a graph that can be embedded in the plane with no edge
crossings. A c-spanner G’ of a graph G is a subgraph of G such that the shortest
path distance of u, v in G’ is at most ¢ times the shortest path distance of u, v in
G, where the shortest path distance is the sum of the Euclidean length of all the
edges on the shortest path. Moreover, ¢ is the spanning ratio of G’. A spanner
with a constant spanning ratio is usually called a spanner. In this section we’ll
show that we can construct a planar spanner for a unit disk graph by using
only those angles between adjacent edges. Recall that the location information
is not available. Thus when we say a planar spanner we mean a subgraph G’ of
the input unit disk graph G such that for any valid embedding £(G), the sub-
graph G’ on the same embedding £(G’) is a planar spanner. Finding a spanner
subgraph can be easily done without the location information; however, finding
a spanner subgraph that has a planar embedding for any valid embedding of
the UDG does not seem intuitive. The idea is to find a planar subgraph that
is guaranteed to contain a restricted Delaunay graph, namely, a subgraph of
the Delaunay triangulation with all the edges longer than 1 deleted [Gao et al.
2001].

A Delaunay triangulation on a point set in R? is a triangulation with the
empty-circle property: The circumcircle of any triangle has no other points in-
side. A restricted Delaunay graph, defined as the subgraph of the Delaunay tri-
angulation with all edges longer than 1 deleted, is known to be a 2.42-spanner
of the unit disk graph [Gao et al. 2001; Li et al. 2002]. Now we claim that with
local angle information we can find a subgraph G’ of G that is planar and con-
tains all the edges of a restricted Delaunay graph. Thus, G’ is a planar spanner
subgraph of G with spanning ratio 2.42.

Suppose two edges AB, CD cross each other in a unit disk graph, then only
one of them can possibly be a Delaunay edge, due to the planar property. We
show that we can decide which one is not a Delaunay edge by using the local
angle information. To be specific, there are only three possible cases of a pair of
crossing edges, as shown in Figure 3. Notice that in cases (b) and (c), because of
the given angle information, the positions of the four nodes are unique up to a
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Fig. 14. Thick lines are edges in the unit disk graph. Node C must lie in the circumcircle of triangle
AABD.

rigid motion and a scaling factor. Since the Delaunay triangulation is invariant
under global scaling, there is only one possible Delaunay triangulation, which
can be decided by only the angles.

For Case (a), node C is at least of distance 1 away from nodes A, B. See
Figure 14. We take the bisectors of the edge AD, BD, ¢4, {5, that intersect at a
point O. Further, O is also the center of the circumcircle of AABD. The lines
{1, £5 divide the plane into four quadrants. Node C must be inside the same
quadrant with node D since d(E(C), £(D)) <1 < d(&E(C), E(A)), d(E(C), E(D)) <
1 < d(&(C), E(B)). Thus C is inside the circumcircle of AABD. This implies that
the edge AB is not a Delaunay edge, since it violates the empty-circle property
of the Delaunay triangulation.

By the previous argument, we can decide a non-Delaunay edge between a
pair of crossing edges in a unit disk graph. Thus we can eliminate crossings by
always deleting non-Delaunay edges. In the end we’ll have a planar subgraph
G’ such that all Delaunay edges with length no more than 1 are kept. In other
words, G’ contains the restricted Delaunay graph, which is a constant spanner.

THEOREM 5.1. Given a unit disk graph and the angles between adjacent
edges, we can construct a planar spanner subgraph with spanning ratio 2.42.

We should also notice that there are possibly infinitely many valid embed-
dings of a particular unit disk graph that satisfies the angle constraints. How-
ever, the planar spanner we found is the same for all such embedded graphs.
This is a little counter-intuitive, since Delaunay triangulation has been consid-
ered very delicate: A tiny movement of a single point can possibly change the
whole graph structure. Yet we show that the restricted Delaunay graph has
some kind of robustness. Further, such a planar spanner subgraph can help
us with efficient routing in a sensor network. In particular, it can be used to
produce a set of virtual coordinates for efficient geographical routing, or a set
of distributed labels for approximate shortest path routing.
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5.1 Geographical Routing with Guaranteed Delivery

It is known that any planar graph has a straight line realization in the
plane [Fary 1948; Bryant 1989]. By using a straight line embedding of the
planar subgraph G’, each node is assigned a Euclidean coordinate that can be
used in geographical routing [Karp and Kung 2000; Bose et al. 1999]. Although
in our case the location information cannot be obtained unless P = NP, the em-
bedded planar subgraph provides a set of virtual coordinates that are equally
good for geographical routing. The virtual coordinates guarantee the delivery
of a packet if possible at all.

5.2 Approximate Shortest Path Routing

In general, graph labeling is to assign a set of distributed labels to the vertices
such that the shortest path can be inferred by using only the labels of the
source and destination. In particular, we can compute a set of labels, each with
size at most O(y/nlogn), on the vertices of a planar graph with n vertices, due
to the fact that a planar graph enjoys an O(,/n) balanced separator [Gavoille
et al. 2001]. The basic idea is to partition the graph recursively into pieces
by small-size separators. The number of recursions is logn. For a separator
of a subgraph P, we compute and store distributedly the shortest path trees
of P centered at all nodes of the separator. Each node has a label with size
O(y/nlogn). Therefore with the planar spanner G’ of the unit disk graph, we
can use the aforesaid graph labeling algorithm to construct a set of labels with
size O(y/nlogn) such that we can find a 2.42-approximate shortest path of G
by using only the labels of the source and the destination.

6. A PRACTICAL SOLUTION TO UDG EMBEDDING AND ROUTING
WITH ANGLES

Embedding a unit-disk graph is NP-hard, and it is so even when the restriction
is relaxed to find a topologically equivalent embedding. In practice, however,
we still hope to use the local angle information to find localization that well
approximates the true sensor network. The planar spanner of a sensor network
is certainly very useful for geographical routing and approximate shortest path
routing; yet before the routing works, the spanner firstly needs to be realized in
the plane where edges are embedded as straight line segments not crossing each
other. There are currently known straight line embedding algorithms for planar
graphs [Fary 1948; Bryant 1989]; however, when such algorithms are applied to
planar spanners of UDG, they distort the edge lengths and the relative positions
among nodes extremely severely, and thus are not effective in practice. In this
section, we show that we can construct an embedding method based on linear
programming, which produces very good localization solutions; the solutions
lead to nearly optimal routing performance as well. We also demonstrate the
robustness of the general embedding method to noisy measurements of angles
and to more general topological models of sensor networks. This shows that
using local angle information to do localization and routing is practically good
for sensor networks.
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B C
(©)

Fig. 15. (a) Crossing-edge constraint; (b) a subgraph where any two edges are related through a
sequence of triangles; (c) two rigid subgraphs sharing node A and connected by edge BC.

6.1 UDG Embedding Based on LP

We first consider unit-disk graphs, and formulate the embedding problem by
solving a linear program. We include as many constraints as possible such that
the optimization problem remains an LP. We take the length of each edge e,
{(e), as a variable. We arbitrarily pick an edge and make the x-axis parallel
to it. By the fact that we know the angle between any two adjacent edges, the
absolute angle of every edge e, namely, the counterclockwise angle between
the positive x-axis and e, can be uniquely determined. We see every edge as
the superposition of two directed edges of opposite directions, whose abso-
lute angles differ by 7. Then a valid UDG embedding satisfies the following
constraints.

—Edge-Length Constraint. V edge e, we have

0<s()<1. (1)
—Cycle Constraint. For any cycle that consists of edges {e, e, ..., e,}, where
for 1 <i < p, the absolute angle of ¢; is 6,,, there exist two constraints
p
Z Ue;)cosb,, =0, (2)
i=1
p
Zﬁ(e,-) sinf,, = 0. 3)

i=1
—Nonadjacent Node Pair Constraint. For any two adjacent edges ey, e whose
three endpoints do not induce a triangle subgraph, we have

Ley) + Lleg) > 1. 4)

—Crossing-Edge Constraint. For any two edges AB and CD crossing each other,
one of the four nodes must be connected to all the other three. Let’s say D is
connected to A, B, and C, and AB crosses CD at the point x (see Figure 15(a)).
Then there exists the constraint

sin /DAB
¢CD D| = ¢AD . 5
(CD) = |eD| = UAD) oAb + /DAB) ®)
The preceding constraints serve as the linear constraints in our linear pro-
gram. A feasible solution to the LP gives us an embedding of the UDG, since

we can use the edge lengths of a spanning tree and the angle information
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to determine the node positions. There are many ways to select the objective
function; as a heuristic, we choose it to be maximizing the minimum length of all
edges.

When the UDG has lots of edges, the large number of variables and con-
straints in the LP will lead to high complexity. In such cases, we can almost
always use the following method to significantly reduce the complexity. First
we reduce the number of variables. For any three edges AB, BC, and CA that
form a triangle, since the values of /ABC, /BCA, and /CAB are given, the three
edge lengths have fixed ratios. So we can regard only ¢(AB) as a variable, and
represent the lengths of BC and CA, respectively, by c¢1 - £(AB) and cs - £(AB),
for some constants ¢; and cy. Thus three variables are reduced to one variable.
Similarly, if a subgraph of the UDG satisfies the condition that for any two
of its edges eg and e,, there exist edges e, ez, ..., e,_1 such that ¢;_; and e;
are contained in a triangle for 1 <i < p (see Figure 15(b) for an example), then
all the edge lengths in this subgraph have fixed ratios. Therefore they can be
represented with only one variable. We call such a subgraph a rigid subgraph.
To push this approach further, we observe that if several rigid subgraphs share
common nodes or are connected by edges, then every cycle that travels through
multiple rigid subgraphs enables us to derive two equations like the cycle con-
straint described before. If there are enough such equations, the ratios among
the sizes of these subgraphs and the lengths of the connecting edges can be
uniquely determined. Then these subgraphs and the edges between them unite
and form a larger rigid subgraph, all of whose edge lengths can be represented
with only one variable. (For example, see Figure 15(c), where two rigid sub-
graphs share the node A and are also connected by an edge BC. All the edge
lengths there have determined ratios between themselves and therefore can
be represented with only one variable.) The improvement by this approach is
large. For example, when 1000 nodes are placed in a 18 x 18 square with a
uniform distribution, the largest connected component typically contains more
than 4500 edges; by the aforementioned approach, the number of variables in
the LP can nearly always be reduced to be less than 30. Then the number of
linear constraints can also be reduced.

The previous method not only reduces complexity, but also gives us additional
constraints for further guarantee on the quality of the embedding. For any two
nonadjacent nodes A and B in a rigid subgraph, let ¢(e) denote the edge length
in the subgraph specially chosen to be the variable, then |AB| = ¢ - ¢(e) for some
constant c. We include the constraint ¢ - ¢(e) > 1 in the LP.

We have implemented the embedding algorithm and measured its perfor-
mance on a variety of inputs. In the first experiment, we place n nodes in a
15 x 15 square with a uniform distribution, and embed the largest connected
component. The results are shown in the top part of Figure 16, where each
result is averaged over 50 experiments. In Figure 16, distance violation is the
number of nonadjacent node pairs that mistakenly have distance less than or
equal to 1 in the embedding. d.,.o- is the minimum distance between two non-
adjacent embedded nodes that mistakenly have distance less than or equal to
1 in the embedding. (So d...» < 1 if such a pair of nodes exist; if no such node
pair exists, we let deyror = 1). Extra crossing is the number of edge pairs that do
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network in square
order of node | distance | derror extra
graph degree | violation crossing
n = 200 33.22 3.6422 0.80 | 0.9728 0.00
n = 400 337.96 5.4512 9.68 | 0.7642 0.50
n = 600 596.82 7.9110 6.50 | 0.8714 0.68
n = 800 799.64 | 10.5237 1.60 | 0.9568 0.10
n = 1000 999.94 | 13.1944 0.68 | 0.9601 0.00
network in annulus
order of node | distance | derror extra
graph degree | violation crossing
n = 200 59.76 4.1810 1.70 | 0.9368 0.00
n = 400 397.30 7.4084 6.62 | 0.8426 0.42
n = 600 599.88 | 11.0106 0.90 | 0.9570 0.08
n = 800 799.88 | 14.6423 0.10 | 0.9909 0.00
n = 1000 | 1000.00 | 18.2822 0.00 | 1.0000 0.00

Fig. 16. Performance of embedding unit disk graphs deployed in a square and an annulus. Each
result is averaged over 50 experiments.

0 é ; é é 10 1‘2 1‘4 16 0 é 4; (Ii é - IO |I2 |I4 16
Fig. 17. The unit disk graph of 597 nodes randomly deployed inside a 15 x 15 square. Left: the
original UDG; right: embedding by LP.

not cross in the true UDG but mistakenly cross each other in the embedding.
Note that the other criteria for embedding are guaranteed to be satisfied by the
LP method: the edge-length constraint guarantees that every edge has length
at most 1; the cycle constraint guarantees that all the angles between adjacent
edges are as specified; the crossing-edge constraint guarantees that any two
edges that cross in the true UDG also cross in the embedding. In Figure 16
some additional properties are displayed as well, where order of graph is the
number of nodes in the embedded UDG, and node degree is the average degree
of nodes. A typical embedding result is shown in Figure 17.

In a second experiment, we place nodes in an annulus with external ra-
dius 7.5 and internal radius 2.5. The results are shown in the bottom part of
Figure 16. A typical embedding result is shown in Figure 18.
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Fig. 18. The unit disk graph of 600 nodes randomly deployed inside an annulus. Left: the original
UDG,; right: embedding by LP.

We can clearly see that the results are very good. Compared to previous
results on embedding in the literature, our results can be seen to have superb
performance without using landmarks [Biswas and Ye 2004] or edge-length
information [Gotsman and Koren 2004], even when the edges in the unit disk
graphs are sparse. The number of nonadjacent node pairs having distance less
than or equal to 1 in the embedding is very small, and even for such node pairs,
their distances are close to 1. The number of incorrect edge crossings in the
embedded graphs is very close to 0. We have also conducted experiments with
many other inputs and in areas of other shapes, and the results have been
consistently very good. Therefore the LP-based method does produce an almost
truthful localization for sensor networks.

6.2 Geographical Routing and Approximate Shortest Path Routing

In this section we examine the performance of routing schemes on the embed-
ding of a unit disk graph by the linear program. In particular, given a unit
disk graph with angle constraints, we find an embedding by the LP. Further,
we embed the planar spanner constructed in the previous section using only
local angle information. In particular we exclude the edges not in the span-
ner from the embedded UDG; if two edges still cross, we arbitrarily exclude
one (this second step is heuristic). We run a particular geographical routing
protocol (GPSR) and the approximate shortest path routing on this embedded
UDG and its planar subgraph, and compare the performance with that on the
original (true) embedding.

Geographical routing and the approximate shortest path routing have their
special requirements that differ from the criteria commonly used for localiza-
tion. Geographical routing constantly makes local decisions on choosing the
next hop, so it is important that the ranking of the distances from nearby nodes
to any faraway destination is well maintained by the embedding. The graph-
labeling-based approximate shortest path routing routes along shortest paths
in planar spanners, so the distances between all pairs of nodes, adjacent or not,
need to be well maintained in the embedding. These requirements are global
structures of a localization and differ from the comparatively more local criteria
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network in square
n= n= n= n= n=
200 400 600 800 1000
GPSR D, 1.1549 | 1.0011 | 1.0000 | 1.0000 | 1.0000
GPSR Dy, | 1.1403 | 1.0007 | 1.0000 | 1.0000 | 1.0000
ASPR D, 1.0000 | 1.0000 | 1.0001 | 1.0000 | 1.0000
ASPR Dy, | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000
network in annulus
n= n= n= n= n=
200 400 600 800 1000
GPSR D; | 1.0580 | 1.0078 | 1.0014 | 1.0000 | 1.0000
GPSR Dy, | 1.0575 | 1.0099 | 1.0012 | 1.0000 | 1.0000
ASPR D; | 1.0000 | 1.0001 | 1.0000 | 1.0000 | 1.0000
ASPR Dy, | 1.0000 | 0.9989 | 1.0000 | 1.0000 | 1.0000

Fig. 19. Length distortion and hop distortion for GPSR and ASPR, averaged over 50 experiments
and 20 source-destination pairs per experiment.

commonly used for localization: whether the node distance passes the threshold
of 1, or whether two edges incorrectly cross or not cross. The success of the two
routing algorithms in the embedded graphs shows the power of local angle in-
formation for routing, which reaches beyond the common objectives of network
localization.

We experiment on sensor networks embedded with the LP approach, and
compare its routing performance to that of the sensor networks with true co-
ordinates. In the first experiment, we place n nodes in a 15 x 15 square with
a uniform distribution, and embed the largest connected component. Then 20
source-destination node pairs are randomly selected, and routing is performed
for each pair. We measure the Euclidean length (respectively, number of hops)
of a routing path, as well as that of the routing path with the same source-
destination pair in the graph with true coordinates; we call the ratio between
them the length distortion (respectively, hop distortion), and denote it by D;
(respectively, D;,). (Note that the Euclidean length of a routing path performed
on the embedded graph should still be measured based on the true Euclidean
lengths of its edges.) In the second experiment nodes are placed in an annulus
with external radius 7.5 and internal radius 2.5, while other conditions are un-
changed. The results for GPSR and approximate shortest path routing (ASPR)
are shown in Figure 19, where each result is averaged over 50 experiments and
20 source-destination pairs in each experiment.

Figure 19 shows that GPSR and ASPR both have the same routing perfor-
mance in the embedded networks as in the true networks, both in terms of
length and hops. In fact, a detailed study showed us that most of the time, the
routing routes in the embedded networks are identical to their counterparts in
the true networks. We have also conducted experiments for many other inputs
and in areas of other shapes, and the results have been consistently as good.
Thus, not only does the LP give very good local embedding (i.e., neighboring
nodes are close and non-neighboring nodes are far away), but it also gives a
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quite accurate global view such that geographical routing and approximate
shortest path routing on the embedded graph are almost identical to those on
the original (true) embedding.

6.3 Handling Noises and Quasi-UDGs

In this subsection, we address the localization problem with noisy angle mea-
surements and with sensor networks modeled as quasi-unit disk graphs. The
simulation we have shown so far assumes that the angles are measured accu-
rately. In practice measurement errors are inevitable. The modeling of sensor
networks as UDG can be inaccurate, too, because network links can be lost
due to noise, signal interference, or obstacles, and the transmission ranges of
directional antennas are not circles [Zhou et al. 2004]. A more realistic model
for sensor networks is called quasi-unit disk graphs, where a pair of nodes de-
finately have an edge if their distance is no more than r < 1, do not have an
edge if their distance is more than 1 apart, and may or may not have an edge
if their distance is between r and 1 [Kuhn and Zollinger 2003].

We extend the LP-based embedding method to deal with noisy angle mea-
surements and quasi-unit disk graph models. We will show by simulation that
this embedding algorithm by LP is robust to measurement errors and network
models. First of all, as the noisy angles bring inconsistency, it is beneficial to
correct them and make them approach their true values. A linear program
is used to correct the angles by using the interior-angle constraint of polygons.
Specifically, for a polygon of & edges, its interior angles 61, 0s, . . ., 0, should have
a sum of (£ — 2) - 180 degrees. Because of the existence of noise/errors, we need
to relax the interior-angle constraint to

k
Zei—(k—z).mo <.

The interior-angle constraint is a linear constraint. Here ¢ is the error vari-
able associated with the polygon. For the polygons p1, pg, ... in the network, let
€1, €2, . . . denote their corresponding error variables. In practice, we only use tri-
angles and quadrilaterals for low computational complexity. In addition to the
interior-angle constraint, it is useful that the angles do not deviate from their
original measurements by too much, because the original measurements are
good estimations of the angles. With a little abuse of notation, let Gf , 93 ,...de-
note the measured noisy angles, and let 01, 0, . . . denote their corrected values.
Then fori = 1,2, - - -, we have the linear constraint |6; — 6°| < ¢;, where ¢; is the
error variable. The optimization objective of the linear program is set to

Minimize Z &+ A Z €.
i i

Here A is a constant parameter. (We set A = 0.2.) The preceding linear program
corrects the angles’ values. This LP has a very sparse coefficient matrix, so it can
be solved very efficiently. It can also be efficiently computed in a distributed way
by the sensors, since every constraint is a local constraint, and the optimization
objective is a simple summation of the local error variables.
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As the second step, the corrected angles are used to compute the edge lengths
by the same LP method as before. However, since the angles here are not accu-
rate and the network is not a UDG, it is necessary to modify the LP formulation
slightly. Specifically, the cycle constraint is modified to

P
Z L(e;) cos b, | <e,
i=1

and

P
> tle)sing,, | < e,

i=1

where ¢ and ¢ are error variables. In each cycle, one edge is seen to have absolute
angle 0, and then the other edges’ absolute angles are easily computed based on
the interior angles of the cycle. For simplicity, only cycles of five or fewer edges
are used. The nonadjacent node pair constraint is modified to £(eq1) + £(eg) > r
due to the quasi-UDG property. The edge-length constraint is maintained, and
the crossing-edge constraint is discarded. Let ¢1, €1, €9, €9, . . . be the error vari-
ables of the different cycle constraints. Then, the objective function is set to be
minimizing ) ,(e; + ¢;). A solution of the LP gives the edge lengths. Then we
randomly choose a spanning tree of the network, and use its edge lengths and
angles to determine node positions. The random spanning tree is generated a
few times, and the one that gives comparatively better embedding performance
is picked. In the final step, the node positions are refined using a small num-
ber of iterations, as follows. When the angle between two adjacent edges, the
length of the two edges, and the positions of two of their three nodes are known,
the position of the third node can be determined. In each iteration, a node sets
its new position as the average of its current position and the positions deter-
mined by such edges within two hops. The aforementioned linear program can
also be solved efficiently, and it can be computed efficiently in a distributed
way.

In the following experiment, we assume that each node measures the di-
rection of an incident edge with an independent Gaussian error N (0, o2). (So
the measurement error of a local angle has a variance of about 202.) For the
quasi-UDG model, we assume that for two nodes whose distance d is between
r and 1, there is an edge with probability %. Such a model has the property
that nearby nodes are more likely to have edges. We place n nodes in a 10 x 10
square with a random uniform distribution, and embed the largest component.
Some typical embedding results are shown in Figure 20. They show that the
embedding is very robust to angle measurement errors and the quasi-UDG
models.

To quantitatively evaluate the embedding performance, we measure the dis-
tance between the nodes’ true positions and their embedding positions. The
results are shown in Figure 21, where each result is averaged over 50 experi-
ments. We can see that the embedding performance is consistently very good.
Here o changes from 1° (small measurement error) to 15° (large measurement
error), r changes from 0.9 (relatively close to the UDG model) to 0.3 (very far
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Fig. 20. Embedding quasi-unit disk graphs with noisy angle measurements. The figures (a), (b),
and (c) correspond to a network with 350 nodes, where o = 5° and r = 0.9. The figures (d), (e), and
(f) correspond to another network with 600 nodes, where o = 11° and r = 0.6. Figures (a) and (d)
are the original quasi-UDGs. Figures (b) and (e) are embedding by LP. Figures (c) and (f) show the
difference between the nodes’ original positions (circles) and embedding positions (the other end of
the bars).
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Fig. 21. Embedding accuracy versus angle measurement error, quasi-UDG model and node den-
sity. The x-axis is o (degrees). The y-axis is the average distance between the nodes’ true positions
and their embedding positions. Top: 7 = 0.9. When n increases from 250 to 300, 350, 400, the order
of the embedded graph increases from 246.1 to 297.6, 350.0, 400.0, and its average degree increases
from 6.45 to 7.76, 9.02, 10.32. Middle: r = 0.6. When n increases from 320 to 400, 500, 600, the
order of the embedded graph increases from 312.8 to 397.7, 499.9, 599.9, and its average degree
increases from 6.30 to 7.67, 8.66, 11.44. Bottom: r = 0.3. When n increases from 450 to 600, 750,
900, the order of the embedded graph increases from 442.2 to 599.1, 749.0, 899.9, and its average
degree increases from 6.23 to 8.23, 10.24, 12.30.
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Fig. 22. Distance distortion and hop distortion for greedy-forwarding routing versus angle mea-
surement error, quasi-UDG model and node density. The x-axis is o (degrees). The y-axis is the
average distance distortion and the average hop distortion. Top: r = 0.9; middle: r = 0.6; bottom:
r=0.3.
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away from the UDG model), and the average degree changes from 6.2 (sparse
network) to 12.3 (dense network). The average distance between the nodes’ true
positions and their embedding positions is consistently less than 0.3. Since the
maximum communication range of a node is 1 and the sensor field size is 10x 10,
we can see that the embedding performance is very robust to angle measure-
ment errors, network models, and node density variations.

It is shown in Figure 21 that the embedding performance improves when o
decreases, r increases, or the average degree increases. This is because in all
the three cases, the constraints in the LP-based algorithm become stronger.

We also evaluate how the embedding influences routing performance. Since
for quasi-unit-disk graphs, connected plane subgraphs (including planar span-
ners) may not exist and GPSR is not applicable, we focus on greedy for-
warding, a widely used geographic routing method. We uniformly sample
source-destination pairs, and compare the length distortion D; and the hop dis-
tortion Dy, (as defined before) for the embedded network and the network with
true coordinates. For simplicity, we compare only those source-destination pairs
where greedy forwarding succeeds in both networks. The results are shown in
Figure 22, where each result is averaged over 50 experiments and 20 source-
destination pairs in each experiment. We see that both the average distance
distortion and the average hop distortion are very close to 1. In fact, in more
than 80% of the cases, the two networks generate the same routing path. This
shows that the embedding is good both locally and globally, and this is very
useful for geographic routing.

7. SUMMARY AND FUTURE WORK

In this article we study the embedding of unit disk graphs in the plane with
angle constraints. We show theoretically that this problem is actually NP-hard.
We also propose a solution based on linear programming that gives very good
results in practice. This work raises a few open questions. For example, it is
unknown whether we can find an algorithm that gives a good approximate
embedding with theoretical bounds in the worst case. The localization algorithm
here is for a sensor network in a plane, while in practice sensors may not exist
in the same plane.

This work has focused on the theoretical understanding of localization with
angle information. It would be natural future work to adapt some of the ideas
in real system design and evaluate the trade-offs of the benefit with angle
information versus the additional overhead of hardware requirements.

APPENDIX

Now we prove that a +/2-approximate embedding is topologically equivalent
with a valid embedding.

If there are four nodes A, B, C, D such that in the unit-disk graph G there
are edges AB,CD, AD, we show that it is impossible to have AB, CD cross in
a +/2-approximate embedding &, but not cross in a valid embedding £*.

Without loss of generality we assume that edge AB is no shorter than CD and
the embedding £ looks like Figure 23(a). First, if AB, CD crossin £, then /BAD+
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Fig. 23. (a) A v/2-approximate embedding &; (b) a valid embedding £*.

/CDA < 7. Otherwise AB, CD will never cross in any embedding preserving
the angles. Notice that the angle 6 between line AB, CD does not change for any
embedding preserving the angles. We argue that 6 is at most 7/6 if we can find a
valid embedding £* such that AB, CD do not cross. See Figure 23(b). Specifically,
in a valid embedding £* there are no edges AC in the unit disk graph. Thus,
E*(C) is outside the unit disk centered at £%(A). Moreover, £¥(B), £¥(D) are
inside the unit disk centered at £*(A). It is not hard to see that the angle 6
achieves the maximum 7/6 when £*(A). £4(B), £*(D) are exactly of distance 1
pairwise apart and D is arbitrarily close to C such that CD is arbitrarily close
to the tangent at C. So 6§ < 7/6.

In a +/2-approximate embedding &, suppose O is the intersection of edges
AB, CD. /BOC = 6 < /6. Since the length of BC, BD, CA are all greater than
v/2/2, the angles /ACB, /CBD are both less than 7/2. Thus the angles /BCD,
/CBA are less than /2 as well. Assume without loss of generality that BO is
longer than CO. We take the perpendicular line through B to the line CO and
denote the intersection as P. Further, P must be on the interior of line segment
CO since /OCB < 7/2. Thus the length of BC achieves the maximum when CO
has the same length of BO. Thus d(£(B), £(C)) < 2d(E(B), £(0))sin(x/12) <
2sin(r/12) ~ 0.52. This contradicts with the assumption that BC has length
at least v/2/2.
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