Optimal t-Interleaving on Tori¹

Anxiao (Andrew) Jiang California Institute of Technology Dept. of Electrical Engineering MC 136-93 Pasadena, CA 91125, U.S.A. e-mail: jax@paradise.caltech.edu Matthew Cook California Institute of Technology Dept. of Comput. and Neural Systems MC 136-93 Pasadena, CA 91125, U.S.A. e-mail: cook@paradise.caltech.edu Jehoshua Bruck California Institute of Technology Dept. of Electrical Engineering MC 136-93 Pasadena, CA 91125, U.S.A. e-mail: bruck@paradise.caltech.edu

Abstract — The number of integers needed to tinterleave a 2-dimensional torus has a sphere-packing lower bound. We present the necessary and sufficient conditions for tori to meet that lower bound. We prove that for tori sufficiently large in both dimensions, their t-interleaving numbers exceed the lower bound by at most 1. We then show upper bounds on t-interleaving numbers for other cases, completing a general picture for the problem of t-interleaving on 2-dimensional tori. Efficient t-interleaving algorithms are also presented.

I. INTRODUCTION

An $l_1 \times l_2$ torus is a graph with the vertex set $\{v_{i,j} | 0 \le i < l_1, 0 \le j < l_2\}$, where each vertex $v_{i,j}$ has 4 neighbors: $v_{(i-1) \mod l_1, (j-1) \mod l_2}$, $v_{(i-1) \mod l_1, (j+1) \mod l_2}$, $v_{(i+1) \mod l_1, (j-1) \mod l_2}$ and $v_{(i+1) \mod l_1, (j+1) \mod l_2}$. It is 2-dimensional. By "t-interleaving a torus", we mean to label every vertex of the torus with an integer, such that for any two vertices labelled with the same integer, the shortest path between them contains at least t edges. (An example is shown in Fig. 1 (a).) Given a torus, our objective is to find the minimum number of distinct integers needed to t-interleave it — which is called the torus' t-interleaving number — as well as the corresponding interleaving method.

t-interleaving generalizes the traditional 1-dimensional interleaving used often in telecommunications, and was originally defined in [1]. The *t*-interleaving problem for tori has natural applications in distributed data storage and burst error correction, and is closely related to Lee metric codes [2].

II. MAIN RESULTS

We consider those 2-dimensional tori that have at least t rows and t columns. For those tori, our results include:

- Let $|S_t| = \frac{t^2+1}{2}$ if t is odd, and let $|S_t| = \frac{t^2}{2}$ if t is even. $|S_t|$ is a lower bound for the t-interleaving numbers of tori, which we call the sphere-packing lower bound. We prove that an $l_1 \times l_2$ torus' t-interleaving number meets that lower bound if and only if the following condition is satisfied: $|S_t|$ divides both l_1 and l_2 if t is odd, and t divides both l_1 and l_2 if t is even. We present a set of efficient t-interleaving algorithms for such tori, which includes the lattice interleaver (a classic method used previously) as a special case.
- Define a post-threshold size (for a given parameter t) to be a pair (θ_1, θ_2) such that whenever $l_1 \ge \theta_1$ and

 $l_2 \geq \theta_2$, the *t*-interleaving number of an $l_1 \times l_2$ torus is either $|S_t| + 1$ or $|S_t|$. We prove that such postthreshold sizes exist for every *t*. We present optimal *t*-interleaving constructions for tori whose sizes exceed the post-threshold sizes that we found.

• We study upper bounds for t-interleaving numbers. Every $l_1 \times l_2$ torus' t-interleaving number is $|S_t| + O(t^2)$. And that upper bound is tight, even if $l_1 \to +\infty$ or $l_2 \to +\infty$. When both l_1 and l_2 are of the order $\Omega(t^2)$, the t-interleaving number of an $l_1 \times l_2$ torus is $|S_t| + O(t)$.

Figure 1: (a) 3-interleaving a 6×5 torus; (b) A qualitative illustration of the *t*-interleaving numbers.

The results can be illustrated qualitatively (not quantitatively, though) as Fig. 1 (b), which shows for any given t, how the $l_1 \times l_2$ tori can be divided into different classes based on their t-interleaving numbers. The uniform lattice of dots in Fig. 1 (b) are the sizes of the tori whose t-interleaving numbers equal $|S_t|$. The region labelled as 'Region I' consists of all the post-threshold sizes. The boundary curve of Region I is nonincreasing, and symmetric with respect to the line $l_2 = l_1$. Region II is the region where $l_1 = \Omega(t^2)$ and $l_2 = \Omega(t^2)$, in which the tori's t-interleaving numbers are upper-bounded by $|S_t| + O(t)$. Region III includes every torus, where the t-interleaving number is upper-bounded by $|S_t| + O(t^2)$.

For rigorous analysis and detailed results of this paper, please refer to [3].

References

- Mario Blaum, Jehoshua Bruck and Alexander Vardy, "Interleaving schemes for multidimensional cluster errors," *IEEE Trans. Information Theory*, vol. 44, no. 2, pp. 730–743, 1998.
- [2] Solomon W. Golomb and Lloyd R. Welch, "Perfect codes in the Lee metric and the packing of polyominoes," SIAM J. Appl. Math., vol. 18, no. 2, pp. 302–317, 1970.
- [3] Anxiao (Andrew) Jiang, Matthew Cook and Jehoshua Bruck, "Optimal interleaving on tori," electronic technical report, http://www.paradise.caltech.edu/papers/etr059.pdf, 2004.

¹This work was supported in part by the Lee Center for Advanced Networking at the California Institute of Technology, and by NSF grant CCR-TC-0208975.