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Abstract— This paper addresses the topology control problem
for large wireless networks that are modelled by an infinite
point process on a two-dimensional plane. Topology control is
the process of determining the edges in the network by adjusting
the transmission radii of the nodes. Topology control algorithms
should be based on local decisions, be adaptive to changes,
guarantee full connectivity and support efficient routing. We
present a family of topology control algorithms that, respectively,
achieve some or all of these requirements efficiently. The key
idea in our algorithms is a concept that we call monotone
percolation. In classical percolation theory, we are interested
in the emergence of an infinitely large connected component.
In contrast, in monotone percolation we are interested in the
existence of a relatively short path that makes monotonic progress
between any pair of source and destination nodes. Our key
contribution is that we demonstrate how local decisions on the
transmission radii can lead to monotone percolation and in turn
to efficient topology control algorithms.

Keywords: Combinatorics, Graph theory, Probability, Topol-
ogy, Topology Control, Wireless network.

I. INTRODUCTION

The topology of a wireless network is the basis for its per-
formance. Nearly all the important properties — connectivity,
data-transmission efficiency, etc. — rely on it. In this paper,
we consider large wireless networks that are modelled by an
infinite point process on a two-dimensional plane. We use the
following simplified and commonly used topology model for
wireless networks [1], [8], [12], [16], [22]: the coverage area of
a node is a disk; if the coverage radius of a node u is r, then u
has an outgoing edge to each node whose Euclidean distance
to u is less than or equal to r. (See Fig. 1 for examples.)
The topology control problem of a wireless network is for the
nodes to select their coverage radii, which will determine the
network topology.

It is very desirable that the topology control problem can be
solved with a localized construction, meaning that every node
can decide on its coverage radius by using only the information
about its nearby neighbors. This is not only for reducing
the complexity of the topology control process, including the
complexity in computational time, space and the exchanged
information flows among nodes, but also because with a
localized construction, when changes happen (e.g., when one
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Fig. 1. (a) The wireless node u has coverage radius r. u has an outgoing
edge to every node in the disk of radius r. (b) The wireless nodes cover areas
(disks) as shown, which result in the directed edges.

or more nodes move away), nodes can easily update their
coverage radii.

Despite the requirement on using localized topology control
methods, it is desirable at the same time that the network
topology has good global properties. Routing, one of the
key network functions, can serve as an example here. For a
large-scale wireless (and possibly mobile) network, the control
messages for forming and maintaining routing tables can easily
consume a large portion of the network capacity. To make
routing scalable to the network size, geographical routing or
compact routing schemes similar to it are often used [3],
[13], [14], [15], [18]. In geographical routing, when a node
is forwarding a message, it selects a neighbor whose distance
to the destination is closer than its own as the next hop in
the routing path. If a node forwarding a message has no
neighbor closer to the destination, then we call it a dead-end.
To facilitate geographical routing, the network is desired not
only to be strongly connected, but to contain no dead-ends
as well — both of which are global properties. Tradition-
ally, to deal with dead-ends, path-recovery mechanisms —
such as the perimeter routing mechanisms based on planar
subgraphs [1], [3], [7], [13] — are used. Such mechanisms
ensure correct delivery, but have the cost of extra routing
length, under-utilization of certain communication links and
possibly unbalanced load. Constructing network topologies



suitable for geographical routing is a very valuable topic. An
ideal topology will be one that eliminates dead-ends for all
destinations.

It is a challenging task to construct wireless networks with
good global topological properties by using only localized
constructions. The objectives that a good topology control
algorithm should try to achieve include:

• Localized construction: every node determines its cover-
age radius by using only the information about the nearby
nodes.

• Strong connectivity: a network is strongly connected if
there is a directed path from any node to any other node.

• Small node degree: the degree of a node v is defined to be
the number of nodes (except v itself) within the coverage
radius of v — namely, the number of outgoing edges that
v has. If v has a small degree, then it means that when
v transmits a message, its signal interferes with only a
small number of neighbors.

• Small coverage radius: it leads to small power consump-
tion.

• Small hop distortion: for any two nodes u and v, we use
h(u, v) to denote the minimum number of hops (edges) in
a directed path from u to v, and use d(u, v) to denote the
Euclidean distance between u and v. Then we define the
hop distortion for the ordered node pair (u, v) as h(u,v)

d(u,v) .
Hop distortion measures how much the shortest path
in terms of hops between a pair of nodes is stretched
when it is compared to the Euclidean distance between
those two nodes. We emphasize here that in this paper,
we consider the hop distortion for an ordered node pair
(u, v) only if h(u, v) ≥ 2. That is because if there is
an edge directly from u to v, then the hop distortion is

1
d(u,v) , which approaches ∞ if d(u, v) → 0; however it is
neither necessary nor possible to make the hop distortion
be smaller than 1

d(u,v) by using any alternative topology
control algorithm.

• Small length distortion: for any two nodes u and v,
we use l(u, v) to denote the minimum Euclidean length
of a directed path from u to v. We define the length
distortion for the ordered node pair (u, v) as l(u,v)

d(u,v) .
Length distortion measures how much the shortest path
in terms of length between a pair of nodes is stretched
when it is compared to the Euclidean distance between
them.
An example of hop distortion and length distortion is
shown in Fig. 2.

• No dead-ends for geographical routing: such a property
greatly facilitates geographical routing.

The above objectives comprehensively describe the connec-
tivity properties of a wireless network. Traditional topology
control methods often achieve only a few of them. For
example, with the common practice of making all the nodes
have the same coverage radius, the network becomes a unit-
disk graph. For an infinitely large network where the node
positions follow a random point process, such as a Poisson
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Fig. 2. In the above network, the number beside each edge is the Euclidean
distance between the two endpoints of that edge. The Euclidean distance
between u and v is 4.85. Then, the shortest path from u to v in terms of
hops is u → w1 → w2 → w3 → v, which has 4 hops. The shortest path
from u to v in terms of length is u → w1 → w4 → w5 → w6 → w7 → v,
which has length 0.95+1.15+1.05+0.85+0.85+1.0 = 5.85. So for the
ordered node pair (u, v), the hop distortion is 4

4.85
= 0.82, and the length

distortion is 5.85
4.85

= 1.21.

point process, a unit-disk graph essentially cannot be strongly
connected, has very large hop distortions and length distortions
for certain node pairs, and has infinitely many dead-ends. In
this paper, we present a family of topology control algorithms
that, respectively, achieve some or all of the above objectives
efficiently. To the best of our knowledge, this is the first
time algorithms are presented that achieve this broad set of
objectives.

We call our algorithms Monotone Percolation Algorithms,
because they share the following common features: between
any pair of source and destination nodes, there exists a
relatively short path that makes monotonic progress; every
node can reach infinitely many other nodes (i.e, the percolation
property) through directed paths. Such a percolation model
bears both clear similarity and distinction when compared to
classic percolation processes [6], [10], [19]; in particular, it
should be contrasted with the oriented percolation studied
previously [10] [19].

Our key contribution is that we demonstrate how local
decisions on the transmission radii can lead to monotone per-
colation and in turn to efficient topology control constructions.
Our algorithms use three basic tools.

The first tool is called cone-angle [16], [22], defined as
follows. Say a node u has m out-going edges, respectively to
v1, v2, · · ·, vm. We assume v1, v2, · · ·, vm have clockwise
positions around u, as illustrated in the example of Fig. 3
(where m = 6). Then the angles � v1uv2, � v2uv3, · · ·, � vmuv1

are called u’s cone-angles. (Clearly � v1uv2 + � v2uv3 + · · ·+
� vmuv1 = 2π.) In our algorithms, every node makes its
coverage radius to be large enough so that its cone-angles
are all smaller than a certain threshold.

The second tool is creating bi-directional edges between
nodes. It means that when there is a directed edge from node
u to node v, v increases its coverage radius large enough so
that there is also a directed edge from v to u.

The third tool is setting a lower bound on the coverage
radii, namely, to make all nodes’ coverage radii to be no less
than a certain threshold.

In this paper, we take different combinations of the above
tools and adjust their parameters, and observe how the prop-
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Fig. 3. The wireless node u has coverage radius r. So u has 6 outgoing
edges to the 6 neighboring nodes within distance r.

erties of the wireless-network topology will evolve as a result.
The rest of the paper is organized as follows. In Section

II, we review previous topology-control algorithms, and re-
veal their relationship to and difference from our algorithms.
From Section III to Section VI, we introduce four corre-
lated monotone-percolation topology control algorithms, and
analyze their performance. In Section VII we present the
concluding remarks.

II. RELATED WORK

A lot of topology-control algorithms have been proposed,
and the study on their performance has been extensive [5], [8],
[11], [12], [16], [17], [20], [21], [22], [23]. Those algorithms
can be approximately classified into two families.

The first family of algorithms is not adaptive to the spa-
tial variance of node densities. For example, nodes may be
required to have the same coverage radius [8], or to connect
to the same number of neighbors [5], [11], [23]. How to tune
the parameters (e.g., coverage radius, node degree) to create an
infinitely large network component or even better connectivity
properties is often studied. With such algorithms, in order to
get a strongly-connected network, the coverage radii or the
node degrees need to approach infinity if the network size
approaches infinity, which implies high power requirement and
heavy signal interference, and large hop/length distortions and
dead-ends often exist for geographical routing.

The second family of algorithms, in comparison, is adaptive.
Nodes typically choose to have small coverage radii in areas
where the node density is high, and to have large coverage radii
elsewhere. Such algorithms include [12], [16], [17], [20], [21],
[22]. These algorithms create better network topologies than
the non-adaptive ones do. However, none of them has satisfied
all the performance criteria we have proposed in Section I.

Our algorithms belong to the family of adaptive algorithms.
In particular, they are close to those algorithms that use cone-
angles. The concept of cone-angle has been used implicitly in
quite a few early topology-control works [12], [17], [21]. For
example, the NFP (Nearest with Forward Progress) algorithm
presented in [12] essentially chooses π as a threshold for cone-
angles. In 2001, Wattenhofer, Li et al. explicitly established
the concept of cone-angle in their ingenious papers [22] and
[16], where they also proposed cone-based topology-control

algorithms for maintaining connectivity and minimizing power
consumption.

Our work differs from previous results in the usage of
topology control methods and their analysis. We take flexible
combinations of the topology control tools, and the main
objective of this paper is to study how the network’s properties
change when the parameters in the tools are altered. Also
our algorithms create static topologies, unlike the previous
works [12], [17], [22] where the transmission radius change
when a node transmits to neighbors at different distances. The
networks we study are mainly directed graphs. In principle,
the two-way messages between adjacent nodes for control
functions can use an additional channel of relatively small
bandwidth. Also, the study of networks that allow directed
links shows us the limit of the performance achievable by
networks.

III. TOPOLOGY CONTROL ALGORITHM I

A. Definition of Algorithm I

Our first topology control algorithm, Algorithm I, is defined
as follows.

Definition 1: Every node chooses its coverage radius to be
the minimum value, subject to the constraint that its cone-
angles are all smaller than π. This topology control method is
denoted by Algorithm I.

In this algorithm, and also in later algorithms, we assume
that the nodes know their positions. This requirement can be
met by using positioning systems such as GPS, or by using
localization algorithms of good precision [4], [9].

An example of Algorithm I is shown in Fig. 4.
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Fig. 4. This example shows how two nodes u and v select their coverage
radii by using Algorithm I. The radii of the two dashed circles are the coverage
radii of u and v, respectively. Neither u nor v can choose a smaller coverage
radius, because otherwise its cone-angles would not all be smaller than π.

B. Node Degree Analysis

In this subsection we analyze the node degrees for Algo-
rithm I. We assume the nodes are deployed on the plane with
a Poisson point process. The following theorem shows the
distribution of a node’s degree.

Theorem 1: Assume that nodes are deployed on the plane
following a Poisson point process. Let Z denote the degree



of a node in the network constructed using Algorithm I. Then
for n = 1, 2, 3, · · ·,

Pr{Z ≤ n} = 1 − n

2n−1

Equivalently, Pr{Z = 1} = Pr{Z = 2} = 0, and

Pr{Z = n} =
n − 2
2n−1

for n = 3, 4, 5, · · ·.
Proof: We use Z to denote the degree of a generic node

u, and use v1, v2, · · ·, vn to denote the nearest n nodes from
u, where d(u, v1) ≤ d(u, v2) ≤ · · · ≤ d(u, vn). Without loss
of generality, we let the ray starting at u and going through v1

be the positive x-axis, with u as the origin. Let θi denote the
absolute angle of vi, that is, the counterclockwise angle from
the positive x-axis to the ray starting at u and going through
vi. It is simple to see that for i = 2, 3, · · · , n, θi is an i.i.d.
variable uniformly distributed in the range [0, 2π).

The n rays starting at u and going respectively through v1,
v2, · · ·, vn cut the plane into n cones. Z ≤ n if and only if all
the cone angles are smaller than π, which is equivalent to the
following event: there exist i and j where i �= 1, j �= 1 and
i �= j, such that 0 < θi < π, π < θj < θi + π, and for any k
where k /∈ {1, i, j}, either 0 < θk < θi or θj < θk < 2π. (We
do not consider incidents of zero probability, such as having
two nodes of the same absolute angle.) There are (n−1)(n−2)
ways to select the two indices i and j. The probability that
‘0 < θk < θi or θj < θk < 2π’ equals (2π + θi − θj)/2π.
Therefore, when n ≥ 3, Pr{Z ≤ n} = ( 1

2π )2
∫ π

0

∫ θi+π

π
(n −

1)(n− 2)[(2π + θi − θj)/2π]n−3dθjdθi = 1− n
2n−1 . The rest

of the proof is straightforward.

We are interested in how large the node degree is in
the average case, since it is an important measure of the
network’s global performance. The following theorem shows
that for Algorithm I, both the expectation and the variance
of the node degree are small numbers. Those two values
can be computed by using the degree distribution derived in
Theorem 1. However we present here an alternative solution
for the following reasons: the solution is intriguing and makes
the degree’s expectation and variance significantly easier to
compute; it provides a more ‘combinatorial’ analysis that can
be used for many generalized forms of Algorithm I.

Theorem 2: Assume that nodes are deployed on the plane
following a Poisson point process. Let Z denote the degree
of a node in a network constructed using Algorithm I. Then
E(Z) = 5, V ar(Z) = 4.

Proof: Let the degree Z, the node u, the nodes vi, the
number n and the absolute angles θi be defined in the same
way as in the proof for Theorem 1. For 2 ≤ i ≤ n, we define
the number Ci as Ci = θi

2π . We write Ci in the binary form:
Ci = (0.ci1ci2ci3 · · ·)2. For example, if Ci = 0.75, then its
binary form is Ci = (0.ci1ci2ci3 · · ·)2 = (0.110 · · ·)2. Let σ be
a permutation of the numbers in {2, 3, · · · , n} that satisfies this
property: if (0.0ci2ci3 · · ·)2 < (0.0cj2cj3 · · ·)2, then σ(i) <

σ(j). For example, if n = 4 and C2 = (0.010 · · ·)2, C3 =
(0.111 · · ·)2, C4 = (0.101 · · ·)2, then σ(2) = 3, σ(3) = 4,
σ(4) = 2.

For i = 2, 3, · · · , n, we denote the binary form of Cσ−1(i) by
(0.di1di2di3 · · ·)2. (σ−1 is the inverse of σ.) Then Z ≤ n has
the same probability as the following event: in the sequence
of bits d21, d31, · · ·, dn1, there is a 0 that appears behind a 1.
We can see that even if the permutation σ is arbitrarily fixed,
d21, d31, · · ·, dn1 are still n − 1 i.i.d. random variables with
the equal probability of being 0 or 1, because the permutation
σ has nothing to do with those bits.

We define the following game: “throw a fair coin at discrete
times 1, 2, 3 · · ·; if at time i, the coin shows HEADS for the
first time, then we let x = i; if at time j (j > i), the coin shows
TAILS for the first time after time i, then we let y = j−i.” By
the previous analysis, we see that Pr{Z ≤ n} = Pr{x+ y ≤
n−1}. So for any m, Pr{Z = m} = Pr{x+y+1 = m}. So
E(Z) = E(x+y+1) and V ar(Z) = V ar(x+y+1). x and y
both have the geometric distribution and they are independent.
So E(x) = E(y) = V ar(x) = V ar(y) = 1/(1

2 ) = 2. So
E(Z) = E(x) + E(y) + 1 = 5 and V ar(Z) = V ar(x) +
V ar(y) = 4.

C. Coverage Radius Analysis

The following result presents the distribution of coverage
radius for Algorithm I, when the nodes are deployed on the
plane with a Poisson point process of density λ = 1 node
per unit area. When λ takes general values, the corresponding
result can be easily obtained by a simple scaling of the distance
measure.

Theorem 3: Assume that nodes are deployed on the plane
following a Poisson point process of density λ = 1 node per
unit area. Let R denote the coverage radius of a node in a
network constructed using Algorithm I. Then for x ≥ 0, the
cumulative distribution function of R is

FR(x) = Pr{R ≤ x} = 1 − e−πx2 − πx2e−
πx2
2 .

For x ≥ 0, the probability density function of R is
fR(x) = dFR(x)

dx = 2πxe−πx2
+ π2x3e−

πx2
2 − 2πxe−

πx2
2 .

The expectation and the variance of R are E(R) =
√

2+1
2 ≈

1.207 and V ar(R) = 5
π − 3+2

√
2

4 ≈ 0.1344.

Proof: Let u be a generic node with degree Z and
coverage radius R. Let n denote the number of nodes (except
u itself) whose Euclidean distance to u is less than or equal to
x. The n rays starting at u and respectively going through the
n nodes within distance x cut the plane into n cones, whose
angle degrees are denoted by φ1, φ2, · · ·, φn. Then, FR(x) =
Pr{R ≤ x} = Pr{Z ≤ n} = Pr{∀ 1 ≤ i ≤ n, φi < π} =∑∞

j=3 Pr{n = j}Pr{∀ 1 ≤ i ≤ n, φi < π|n = j}.

n is a Poisson variable, so Pr{n = j} = (πx2)j

j! e−πx2
. If u

is seen as the origin, then for each ray starting at u and going
through one of the n nodes that are within distance x from u,
its absolute angle has an i.i.d. uniform distribution in the range
[0, 2π). Once the value of n is given, the event “∀ 1 ≤ i ≤ n,



φi < π” becomes independent of x. Therefore, by Theorem 1,
Pr{∀ 1 ≤ i ≤ n, φi < π|n = j} = 1 − j

2j−1 . So FR(x) =∑∞
j=3

(πx2)j

j! e−πx2
(1 − j

2j−1 ) = 1 − e−πx2 − πx2e−
πx2
2 . The

rest of the proof is straightforward.

Theorem 3 shows that the coverage radius on average has
a small constant value. It indicates, at the same time, that the
distribution of the coverage radius is unbounded. But that is
necessary for an infinitely large network since we want no
node to be isolated. The positive side is that the percentage of
nodes with large coverage radii diminishes exponentially fast
to 0 with respect to their coverage radii. If an upper bound is
forced onto the coverage radius, then the best one can hope
for is to maintain as strong connectivity in the network as
possible. Some discussion on this topic is addressed in the
concluding remarks.

D. Routing Property Analysis

In a network constructed by Algorithm I, when a node u
needs to route a message to a destination node v, there must
exist a node w such that there is a directed edge from u to
w and � wuv < π

2 . If d(u, v) = ∞, then d(w, v) < d(u, v),
which implies that by relaying the message to w, u makes
the message geographically closer to the destination. For a
general destination, the farther away it is, the more likely that
u will have a neighbor closer to it. In this sense, the network
facilitates geographical routing without dead-ends with high
probability for faraway destinations.

E. Connectivity Property Analysis

Theorem 4: A network constructed using Algorithm I con-
tains a unique infinitely-large and strongly-connected subgraph
that every node can reach through directed paths.

Proof: A network constructed by Algorithm I is a di-
rected graph. We use component to denote a maximal strongly
connected subgraph. A directed graph must contain one or
more components with the following property: a node in the
component cannot reach any node outside this component.
Such components are called sink components. Every node in
a direct graph can reach at least one sink component through
directed paths. In the following we first show that every sink
component in the network constructed by Algorithm I must be
infinitely large, then show that there can exist only one sink
component, thus finishing the proof.

Assume that there is a sink component that contains only
a finite number of nodes. Consider the convex hull of its
nodes on the two-dimensional plane. For every node of the
component on the convex hull, one of its cone angles must
be no less than π since it cannot reach any node outside the
convex hull, which contradicts Algorithm I. Therefore every
sink component contains infinitely many nodes.

Now assume that there are two sink components A and B
of the following property: no edge in A intersects any edge
in B . Then there exists a curve S on the two-dimensional

plane that completely separates A and B . For a point p on
an edge of A, we say that the curve S can see p if there is
another point q on S such that a curve segment can connect
p and q without intersecting any edge of A. The points on
the edges of A that S can see is the hull of the nodes in A
(respective to S) composed of line segments. By Algorithm
I, each outer angle of this hull (which is toward the curve
S) is less than π, so the hull bents toward S at each of its
turning points. Similarly, the hull of B also bents toward S at
each of its turning points, but from the other side of S. Then
it is impossible that the edges of A and B don’t intersect,
which contradicts the initial assumption. So for any two sink
components A and B , there exists a directed edge u1 → u2 in
A and a directed edge v1 → v2 in B such that they intersect
at a point t. Without loss of generality, d(t, u2) ≥ d(t, v2),
then d(u1, u2) = d(u1, t) + d(t, u2) ≥ d(u1, t) + d(t, v2) ≥
d(u1, v2), which means there is a directed edge from u1 to v2.
That contradicts the definition of sink component. Therefore
there is only one sink component in the network constructed
by Algorithm I.

Theorem 4 implies that the infinitely many nodes in the
unique sink-component can have effective communication
among themselves, and that every other node can at least send
messages to them (but not receiving messages from them).

IV. TOPOLOGY CONTROL ALGORITHM II

A. Definition of Algorithm II

The second topology control algorithm, Algorithm II, con-
sists of two steps. It is defined as follows.

Definition 2: In the first step, every node chooses its cover-
age radius to be the minimum value, subject to the constraint
that its cone-angles are all smaller than π. In the second step,
for each node v, if its coverage radius was chosen to be r
and the length of its longest incoming edge was t in the first
step, then v makes its coverage radius to be max{r, t}. This
topology control method is denoted by Algorithm II.

In other words, given the same set of wireless nodes on
the two-dimensional plane, if Algorithm I creates an edge
between two nodes, no matter if the edge is unidirectional
or bidirectional, Algorithm II creates a bidirectional edge
between them.

An example of Algorithm II is shown in Fig. 5.

B. Analysis of Connectivity and Routing Properties

The routing and connectivity properties of Algorithm I, an-
alyzed in the previous section, are also achieved by Algorithm
II, because the edges created by Algorithm II are a superset
of the edges created by Algorithm I. Additionally, Algorithm
II guarantees the strong-connectivity of the network.

Theorem 5: A network constructed using Algorithm II is
strongly connected.
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Fig. 5. The nodes in (a) and (b) have the same positions. Assume that when
Algorithm I is used for topology control, all the edges incident to v (including
both outgoing and incoming edges) are as shown in (a). Then when Algorithm
II is used for topology control, all v’s outgoing edges are as shown in (b).

Proof: For the same wireless nodes on the two-
dimensional plane, Algorithm I and Algorithm II can each
create a network, which we denote by Network I and Network
II, respectively. For any two nodes p and q, if there is a
directed path from p to q in Network I, then in Network II,
since all the edges in that path become bi-directional, p and
q can reach each other through directed paths. Consider two
arbitrary nodes u and v. By Theorem 4, in Network I there is
a strongly-connected subgraph that u1 and u2 can both reach.
Thus in Network II, u1 and u2 can reach each other through
that subgraph. So Network II is strongly connected.

C. Coverage Radius Analysis

For Algorithm II, the distribution of the coverage radius
is difficult to compute. Nevertheless, we can still prove that
its expectation and variance are upper bounded by small
constants, assuming that the nodes are deployed following a
Poisson point process with density λ = 1.

Lemma 1: Assume that nodes are deployed on the plane
following a Poisson point process of density λ = 1 node
per unit area. In a network constructed using Algorithm I,
randomly and uniformly select an edge, and denote its length
by L. (Note that a bi-directional edge is seen as two directed
edges of opposite directions.) Then the probability density
function of L is

fL(x) =
2π

5
x(e−πx2

+ πx2e−
πx2
2 ),

for x ≥ 0.

Proof: Let u be a generic node in the network constructed
by Algorithm I, and consider its outgoing edges. Use ∆(x)
to denote the probability of the following event: “u has an
outgoing edge whose length is between x and x+ dx,” where
dx → 0. Use n to denote the number of nodes within
distance x from u (except u itself). The rays starting at u and
respectively going through those n nodes cut the plane into
n cones, whose angles we denote by θ1, θ2, · · ·, θn. ∆(x) is
also the probability of having the following two events both
happen: event 1 is “there is some θi no less than π,” and event
2 is “there is a node whose Euclidean distance to u is between
x and x + dx.” Event 1 and event 2 are independent. Event 1

happens if and only if the coverage radius of u is greater than
x, so by Theorem 3, its probability is e−πx2

+ πx2e−
πx2
2 .

The probability of event 2 is π(x + dx)2 − πx2 = 2πxdx
due to the property of Poisson process. So ∆(x) = (e−πx2

+
πx2e−

πx2
2 )2πxdx.

Theorem 2 shows that the average node degree equals
5. So the summation of ∆(x) over different values of x
equals 5. Randomly and uniformly selecting an edge from
the network has the same effect as randomly and uniformly
selecting an outgoing edge of u, since u is a generic node. So
fL(x) = [limdx→0

∆(x)
dx ] · 1

5 = (e−πx2
+πx2e−

πx2
2 ) ·2πx · 1

5 =
2π
5 x(e−πx2

+ πx2e−
πx2
2 ), for x ≥ 0.

Theorem 6: Assume that nodes are deployed on the plane
following a Poisson point process of density λ = 1 node
per unit area. Let R denote the coverage radius of a node
in a network constructed using Algorithm II. Then E(R) ≤
1.6585, and V ar(R) ≤ 1.338.

Proof: Imagine that we have a very large bag, and let’s
play the following game: “deploy nodes on a plane following
the Poisson point process of density λ = 1, and use Algorithm
I to construct a network; corresponding to each node u of the
network, we put a red stick whose length equals the coverage
radius of u into the bag; corresponding to each directed edge
of the network, we put a green stick whose length equals the
length of the edge into the bag; repeat all the above steps.”

Clearly there will be infinitely many sticks in the bag,
because each network has infinite nodes and we generate the
network infinitely many times. Nevertheless, if we use LR

to denote the length of a uniformly sampled red stick and
use LG to denote the length of a uniformly sampled green
stick, we know the probability density functions of LR and
LG: fLR

(x) = 2πxe−πx2
+ π2x3e−

πx2
2 − 2πxe−

πx2
2 (by

Theorem 3), and fLG
(x) = 2π

5 x(e−πx2
+ πx2e−

πx2
2 ) (by

Lemma 1). Also, Theorem 2 tells us that the average degree of
a node is 5, so the number of green sticks is 5 times the number
of red sticks. Therefore, if we use L to denote the length of
a uniformly sampled stick in the bag (without considering its
color), then the probability density function of L is fL(x) =
[fLR

(x)+5fLG
(x)]· 16 = 2π

3 xe−πx2
+ π2

2 x3e−
πx2
2 − π

3 xe−
πx2
2 .

For Algorithm II, we see (from its definition) that a node
determines its coverage radius through these two steps: “firstly,
Algorithm I is used to construct a network; next, every node
sets its coverage radius to be the larger value among its old
coverage radius and the length of its longest old incoming
edge.” Equivalently, we can also see the nodes as using the
following method to determine their coverage radii: “every
node picks a red stick and a green stick (not necessarily
uniformly) from the bag, and sets its coverage radius to be the
maximum length of these two sticks.” Clearly, no two nodes
should pick the same red stick or green stick.

We can see that the average coverage radius for Algorithm
II cannot exceed the average coverage radius for the following
scheme: “pick just one stick out of the bag for each node (one



by one), and set the node’s coverage radius to be equal to
that stick’s length; for every node, we always pick the longest
stick that is still available (regardless of its color).” What is the
average length of the sticks picked out in the above scheme?
The number of sticks in the bag is 6 times the number of nodes.
So if we use z to denote the length of the shortest stick that
is picked, then

∫ ∞
z

fL(x)dx = 1
6 — by this relationship, we

find z ≈ 1.4115. Then the average length of the sticks picked
out in the above scheme is [

∫ ∞
z

xfL(x)dx] · 6 = 1.6585. So
E(R) ≤ 1.6585.

With the same method we can prove that E(R2) ≤ 2.7948.
The average coverage radius for Algorithm II is no less than
that of algorithm I, so E(R) ≥

√
2+1
2 ≈ 1.207 (by Theorem 3).

So V ar(R) = E(R2) − E2(R) ≤ 2.7948 − 1.2072 = 1.338.

V. TOPOLOGY CONTROL ALGORITHM III

A. Definition of Algorithm III

In the following topology control algorithm, the threshold
on cone angles is reduced to be less than π. In specific, it is set
to be a parameter θ, where θ < 2π

3 . Reducing the threshold on
cone angles strengthens the connectivity of the network. As a
result, more efficient routing paths are created.

Definition 3: Let θ be a fixed number where 0 < θ < 2π
3 .

Every node chooses its coverage radius to be the minimum
value, subject to the constraint that its cone-angles are all
smaller than or equal to θ. This topology control method is
denoted by Algorithm III.

B. Analysis of Connectivity and Routing Properties

Lemma 2: Let u and v be two nodes in a network con-
structed using Algorithm III. If there is no directed edge from
u to v, there must exist a node w, such that d(w, v) < d(u, v)
and there is a directed edge from u to w.

Proof: Let r be the coverage radius of u. If there is no
directed edge from u to v, then d(u, v) > r. Since all u’s
cone-angles are smaller than or equal to θ, u must have an
outgoing edge to a neighboring node w such that the angle
� wuv ≤ θ

2 < π
3 . Then since d(u,w) ≤ r < d(u, v), we get

d(w, v) < d(u, v).

If in Algorithm III we make θ > 2π
3 , then the statement in

Lemma 2 will no longer hold (however it will hold if θ = 2π
3 ).

So in this sense, 2π
3 is a threshold for θ in order to get the

property stated in Lemma 2. From the above lemma, it can
be seen that for any source node and destination node, the
greedy geographical routing can find a routing path between
them without meeting any dead-end. Thus the following claim
is true.

Theorem 7: A network constructed using Algorithm III
is strongly connected. What’s more, it enables geographical
routing with no dead-ends for any source-destination node pair.

C. Analysis of Length Distortion and Routing Properties

In this subsection, we prove that in a network constructed by
Algorithm III, the length distortion for any node pair is upper
bounded. In addition, a simple geographical routing method
can achieve a bounded length distortion as well.

Lemma 3: Let O and P be two nodes, and let OAE be a
sector as shown in Fig. 6, where 0 < � AOP ≤ π

3 and d(O, P) >
d(O, A) = d(O, E). For every point t in the sector (including
the boundary of the sector), we define η(t) as

η(t) =
d(O, t)

d(O, P) − d(t, P)
,

and call η(t) the competitive ratio of t. Then, in the sector,
A is the unique point that maximizes the competitive ratio —
and that maximum value, η(A), is

d(O, A)
d(O, P) − √

d2(O, P) + d2(O, A) − 2d(O, P)d(O, A) cos � AOP
.

η(A) is a strictly decreasing function in d(O, P).

AOP

OA

line
segment

O

A

E
P

sector OAE
arc AE

Fig. 6. Maximum competitive ratio in a sector.

Proof: Let C be a circle centered at P that intersects the
sector. If we move a point c along C, the value d(O, P)−d(c, P)
remains constant. If C intersects the arc ÂE, then for points on
C that are also in the sector, the intersection of C and ÂE is the
only point that maximizes the competitive ratio. If C does not
intersect the arc ÂE, then it intersects the line segment OA; then
it’s also clear that for points on C that are also in the sector,
the intersection of C and OA is the only point that maximizes
the competitive ratio. So the point (or points) in the sector that
maximizes the competitive ratio is either on the arc ÂE or on
the line segment OA. The formula of the competitive ratio for
points on ÂE and OA can be derived with simple calculation,
and its maximum value can be found using simple algebraic
methods. As a result, we find that the maximum competitive
ratio is achieved only for the point A. The formula for η(A) in
this lemma can be easily seen to be correct. η(A) is a strictly
decreasing function in d(O,P) if and only if d(O, P)−d(A, P) =
d(O, P)−√

d2(O, P) + d2(O, A) − 2d(O, P)d(O, A) cos � AOP is a
strictly increasing function in d(O, P). Then since the derivative
of d(O, P) − d(A, P) in d(O, P) equals

1 − 2d(O, P) − 2d(O, A) cos � AOP

2
√

d2(O, P) + d2(O, A) − 2d(O, P)d(O, A) cos � AOP
,

which equals

1 − d(O, P) − d(O, A) cos � AOP√
[d(O, P) − d(O, A) cos � AOP]2 + d2(O, A) sin2 � AOP

,



we see that the value is greater than 0. So η(A) is strictly
decreasing in d(O, P).

The following simple geographical routing method is guar-
anteed to work in a network constructed using Algorithm III:
“when a node u needs to forward a message to a destination
node v, u sends the message to a neighboring node w such
that � wuv ≤ θ

2 < π
3 if v is not a neighboring node of u.” We

call it Routing Method I. Now we prove the result on length
distortions.

Theorem 8: In a network constructed using Algorithm III,
for any two nodes u and v, the length distortion for the ordered
node pair (u, v) is upper bounded by

1

1 −
√

2 − 2 cos θ
2

.

Proof: In Lemma 3, it is stated that η(A) is strictly
decreasing in d(O, P), so η(A) is upper bounded by

d(O, A)
d(O, A) − √

d2(O, A) + d2(O, A) − 2d(O, A)d(O, A) cos � AOP
,

which equals
1

1 −√
2 − 2 cos � AOP

.

Now for any two nodes u and v in the network constructed
by Algorithm III, we use Routing Method I to get a path from
u to v. Let’s say that the path consists of nodes u = w1, w2,
w3, · · ·, wk+1 = v. Then the length distortion for the ordered
node pair (u, v) is at most∑k

i=1 d(wi, wi+1)
d(w1, wk+1)

,

which equals ∑k
i=1 d(wi, wi+1)∑k

i=1[d(wi, wk+1) − d(wi+1, wk+1)]
.

For i = 1, 2, · · · , k, � wi+1wiwk+1 ≤ θ
2 < π

3 , and the value
of

d(wi, wi+1)
d(wi, wk+1) − d(wi+1, wk+1)

is upper bounded by
1

1 −√
2 − 2 cos � wi+1wiwk+1

,

which is in turn upper bounded by
1

1 −
√

2 − 2 cos θ
2

.

Therefore the length distortion for the ordered node pair (u, v)
is at most 1

1−
√

2−2 cos θ
2

.

The proof of Theorem 8 actually shows that even by just
using Routing Method I, a geographical routing scheme, the
ratio between the routing path’s length and the Euclidean
distance between two arbitrarily chosen source and destination
nodes is still upper bounded by 1

1−
√

2−2 cos θ
2

.

D. Analysis of Hop Distortion, Node Degree and Coverage
Radius

For a network constructed using Algorithm III, the hop
distortion for an ordered node pair can be arbitrarily large. That
is because the node pair may exist in an area where the node
density is very high, and as a result, every path connecting
those two nodes consists of too many edges of very small
lengths. In that case, even if the length distortion for the node
pair is bounded, the hop distortion can still be unbounded.

When the nodes are assumed to follow a Poisson point
process of density λ, the distributions of the node degree and
the coverage radius can be computed in a similar way as that
for Algorithm I. We comment, however, that it appears difficult
to obtain a closed-form expression when the parameter θ takes
the general value. It is not difficult to see that for Algorithm III,
like for Algorithm I, the probability density functions for node
degree and coverage radius both decrease exponentially fast as
the values of node degree and coverage radius increase. Thus
the expectations and variances of node degree and coverage
radius have finite values (while considering the parameters θ
and λ as fixed numbers).

VI. TOPOLOGY CONTROL ALGORITHM IV

A. Definition of Algorithm IV

The fourth topology control algorithm, Algorithm IV, sets
a lower bound δ for the coverage radius. It consists of two
steps, and is defined as follows.

Definition 4: In the first step, every node chooses its cover-
age radius to be the minimum value, subject to the constraint
that its cone-angles are all smaller than or equal to θ, where
θ is a given parameter and 0 < θ < 2π

3 . In the second step,
for those nodes whose coverage radii were smaller than δ in
the first step, they set their coverage radii to be δ. Here δ is a
given parameter and δ > 0. This topology control method is
denoted by Algorithm IV.

B. Hop Distortion Analysis

For the same wireless nodes on a two-dimensional plane,
the network constructed by Algorithm IV contains the network
constructed by Algorithm III as a subgraph. So for a network
constructed using Algorithm IV, it is also strongly connected,
and the upper bound on length distortion holds here, too.
Now we show that Algorithm IV can achieve more: the hop
distortion for any node pair is upper-bounded.

Firstly we present a greedy routing algorithm, which we
shall call Routing Method II, as follows: “when a node u needs
to forward a message to a destination node v, if there is no
edge from u to v, u sends the message to its neighbor w that
satisfies the following two conditions: (1) define S as S = {p
|u has an outgoing edge to p, and � puv ≤ θ

2 < π
3 }, then

w ∈ S; (2) ∀ p ∈ S, d(w, v) ≤ d(p, v).” Routing method II is
a special case of Routing Method I.



Lemma 4: In a network constructed by Algorithm IV, if
Routing Method II is used, then for any two consecutive edges
in any routing path, the total length of those two edges is
greater than δ.

Proof: Assume Routing Method II is used. Consider the
following scenario: “node O needs to forward a message to
destination node P, and it sends the message to its neighbor C;
node C sends the message to its neighbor D.” Then to prove
this lemma, we need to prove that d(O, C) + d(C, D) > δ.
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Fig. 7. Two consecutive edges in a routing path using Routing Method II.

If P and D are the same node, then d(O, C) + d(C, D) >
δ. That is because O’s not sending the message directly to
P implies that d(O, P) is greater than the coverage radius of
O, which is lower bounded by δ. In the following proof, we
assume that P and D are not the same node.

Let the coverage radius of node O be denoted by R. See
Fig. 7 (a). Clearly, node C must be in the sector OAB; since
d(D, P) < d(C, P) and C is the closest to P than all the the

other nodes in the sector OAB, D must be out of the sector
OAB. Then there are three possibilities: Possibility 1, the line
segment CD intersects OA; Possibility 2, CD intersects the arc
ÂB; Possibility 3, CD intersects BO. We consider those three
possibilities. Without loss of generality, from now on assume
node C is in the sector OAE, where E is the point where the
line segment OP and the arc ÂB intersects.

(1) Firstly, assume CD intersects OA. Then it is as shown in
Fig. 7 (b). This is in fact an impossible case.

Imagine there is a circle that passes through these three
points — O, A and E — which we shall denote by ‘circle OAE’.
All the three inner angles in the triangle ∆OAE are smaller
than π

2 , so the center of the ‘circle OAE’ is inside the triangle
∆OAE — so the sector OAE is totally contained inside the
‘circle OAE’; then since node C lies in the sector OAE, C is in
the ‘circle OAE’ — so � OCE ≥ OAE. Then � DCP ≥ � OCE ≥
� OAE = � OEA = π−� AOE

2 = π− θ
2

2 >
π− 2π/3

2
2 = π

3 > θ
2 . Also,

2π − � DCP ≥ � ACP > � AOP = θ
2 . That contradicts the fact

that C decided to send the message to D based on the Routing
Method II.

(2) Secondly, assume CD intersects the arc ÂB. In this case,
clearly d(O, C) + d(C, D) ≥ d(O, D) > R ≥ δ, which is the
conclusion we need.

(3) Thirdly, assume CD intersects OB. Then it is as shown
in Fig. 7 (c).

Let’s see how we can adjust the positions of all the nodes to
minimize the value of d(O, C)+d(C, D). The following are the
2 steps for that adjustment: “(i) Make node D to be infinitely
close to the point F. (ii) We know � PCF = � PCD ≤ θ

2 <
π
3 , so � OFC = π − � FOP − � OGF ≤ π − � PCF − � CGP =
� CPO < � CEO < π

2 . So to minimize the value of d(C, F)
(which now equals d(C, D)), we need to make � PCF = θ

2 , and
make node P be infinitely close to the point E.” After the above
two adjustment steps, the situation becomes as shown in Fig. 7
(d).

Now let’s temporarily assume that the position of node D

is fixed, and let’s see where node C needs to be in order to
minimize d(O, C)+d(C, D). Imagine there is a circle that passes
through these three nodes — O, P and D — which we shall
call ‘circle OPD’. (Circle OPD is the dashed circle in Fig. 7
(e).) Since � POD = � PCD = θ

2 , C must be on the circle OPD. C

is also in the sector OAP, so node C can only lie on the arc ĤP.
(The arc ĤP is part of the circle OPD, and H is the intersection
point of OA and the circle OPD.) But at which position on the
arc ĤP should node C be in order to minimize d(O, C)+d(C, D)?

On the two-dimensional plane, given any number s such that
s > d(O, D), if we find out those points p such that d(O, p) +
d(p, D) = s, then we’ll see that those points form an ellipse
with O and D as its foci. (Such an ellipse is shown in dotted
line in Fig. 7 (e).) Let’s gradually increase the value of s, and
as a result the ellipse grows. Once the ellipse intersects the arc
ĤP , the first intersection point is where node C should be in
order to minimize d(O, C) + d(C, D). Clearly this intersection
point is either point H or point P. If the intersection point is P,
then we already have d(O, C) + d(C, D) = d(O, P) + d(C, D) >
d(O, P) ≥ δ. So in the rest of the proof, we assume that node



C lies where point H is, and we’ll prove that even in this case,
we still have d(O, C) + d(C, D) > δ.

Since now node C lies where H is, the situation becomes
as shown in Fig. 7 (f). From now on we no longer assume
that node D’s position is fixed. Instead, we let node C take
different positions on the line segment OA; and the position of
D becomes uniquely determined by C.

Define t as t = d(O, C), and define f(t) as f(t) =
d(O, C) + d(C, D). (Here 0 < t ≤ d(O, A) = R.) Then
f(t) = d(O, C) + d(C, D) = t + d(C,D) sin � CDO

sin � CDO
= t +

d(O,C) sin � COD
sin � CPO

= t + t sin θ
sin � CPO

= t + d(C,P)·t sin θ

d(C,P) sin � CPO
=

t + d(C,P)·t sin θ

d(O,C) sin � COP
= t + d(C,P)·t sin θ

t sin θ
2

= t + 2 cos θ
2
d(C, P) =

t+2 cos θ
2

√
d2(O, C) + d2(O, P) − 2d(O, C)d(O, P) cos � COP = t+

2 cos θ
2

√
t2 + R2 − 2tR cos θ

2
.

Let’s see when f(t) takes its minimum value. Assume that
there is a value t0 (0 < t0 ≤ R) such that the derivative
of f(t) at t = t0 — namely, df(t)

dt |t=t0 — equals 0. By
solving the equation df(t)

dt = 0, we find that t0 = R cos θ
2 −

R sin θ
2√

4 cos2 θ
2−1

. By using the fact that t0 > 0 and the above

formula, we find that θ < π
2 . Then we find that f(t0) =

R cos θ
2 + R sin θ

2

√
4 cos2 θ

2 − 1 > R cos θ
2 + R sin θ

2 =

R
√

cos2 θ
2 + sin2 θ

2 + 2 cos θ
2 sin θ

2 = R
√

1 + sin θ > R ≥ δ.

(Note that 0 < θ < 2π
3 .) So f(t0) > δ. Now let’s check

the boundary values. When t = d(O, A) = R, clearly f(t) >
R ≥ δ. When t approaches 0, the value of f(t) approaches
2R cos θ

2 > 2R cos π
3 = R ≥ δ. Then it’s not difficult to see

that f(t) > δ for any 0 < t ≤ R. So the conclusion has been
proved in this case.

Theorem 9: In a network constructed by Algorithm IV, use
Routing Method II for routing. For any two nodes O and P,
use H(O, P) to denote the number of edges in the routing path
from O to P. Assume H(O, P) ≥ 2. Then H(O,P)

d(O,P)
is upper

bounded as follows:

H(O, P)
d(O, P)

<
2

d(O, P)
+

2

δ(1 −
√

2 − 2 cos θ
2 )

.

Proof: By Theorem 8 and the fact that Routing Method
II is a special case of Routing Method I, the length of the
routing path from O to P is at most d(O, P) · 1

1−
√

2−2 cos θ
2

. The

total length of any two consecutive edges in the routing path is
more than δ (by Lemma 4), so the first 2
H(O,P)−1

2 � edges in
the routing path have a total length of more than δ
H(O,P)−1

2 �
— but that total length is less than the length of the routing
path. So δ�H(O,P)−1

2
� < d(O, P) · 1

1−
√

2−2 cos θ
2

. As a result,

H(O,P)
d(O,P)

≤ 2�H(O,P)−1
2 �+2

d(O,P)
< 2

d(O,P)
+ 2

δ(1−
√

2−2 cos θ
2 )

.

In Theorem 9, clearly d(O, P) > δ. So we have the following
conclusion.

Theorem 10: In a network constructed by Algorithm IV, for
any two nodes u and v such that u has no outgoing edge to
v, the hop distortion for the ordered node pair (u, v) is less
than

2
δ
(1 +

1

1 −
√

2 − 2 cos θ
2

).

We can see that even by just using Routing Method II,
a geographical routing method different from shortest path
routing, for any two source and destination nodes such that the
source has no outgoing edge to the destination, the ratio of the
number of hops in the routing path to the Euclidean distance
between the source-destination pair is still upper-bounded by
2
δ
(1 + 1

1−
√

2−2 cos θ
2

).

C. Analysis of Node Degree and Coverage Radius

When the nodes follow a Poisson point process of density
λ, the distributions of node degree and coverage radius for
Algorithm IV can be computed primarily based on the cor-
responding distributions for Algorithm III. For Algorithm IV,
the probability density functions for node degree and coverage
radius also decrease exponentially fast as their values increase.
Thus their expectations and variances have finite values (while
considering the parameters θ, δ and λ as fixed numbers).

VII. CONCLUDING REMARKS

In this paper, we have presented four topology-control
algorithms. Their performance is summarized in Table 1, with
respect to the seven performance criteria shown in Section I.
(A-I, A-II, A-III and A-IV respectively mean Algorithms I, II,
III and IV.)

We point out that for those entries labelled as Θ(1) in
Table 1, their values actually depend on the parameters in the
corresponding algorithms (namely, λ, θ and δ, if they exist).
Since we regard λ, θ and δ as given (fixed) numbers, the
values of the entries can indeed be seen as constants. This
should be contrasted with the performance of many previous
topology-control algorithms, whose values for these entries
can be extremely large. For example, with the scheme that all
nodes have the same coverage radius [8], to achieve strong
connectivity, both the coverage radius and the average node
degree need to be infinity. With the scheme that all nodes
have the same node degree [23], to achieve asymptotic strong
connectivity, the degree of every node needs to be Ω(log n),
where n denotes the total number of nodes in the network.
Then when n → ∞, both the average node degree and the
average coverage radius become infinity.

The upper bounds on hop distortion and length distortion
presented in this paper are for all node pairs. They are
independent of the distribution of the node positions. When
an appropriate distribution model is assumed, analysis of the
average case distortion is also valuable [2] [12].



A-I A-II A-III A-IV

Localized Yes Yes Yes Yes

construction

Strong — Yes Yes Yes

connectivity

Average Θ(1) — Θ(1) Θ(1)

node degree

Average Θ(1) Θ(1) Θ(1) Θ(1)

coverage

radius

Hop ∞ ∞ ∞ Θ(1)

distortion

upper bound*

Length ∞ — Θ(1) Θ(1)

distortion

upper bound*

Enabling Far Far Yes Yes

geographical only† only†

routing

with no

dead-ends

Hop distortion upper bound*, Length distortion upper bound*: these upper
bounds are for the maximum hop/length distortion for all the ordered node
pairs in the network.

Far only†: geographical routing is enabled with no dead-ends with high
probability only for faraway destinations.

Table 1: Summary of performance of the four topology-control algorithms.

The results in this paper can have several topics as their nat-
ural extensions. Firstly, the network considered here consists
of infinitely many nodes, which is only an approximation of
large-scale networks. For networks of finite sizes, an efficient
mechanism for dealing with the effect of network boundaries
is needed. Secondly, if upper bounds are enforced onto the
coverage radii of nodes, then constructing a network topology
without isolated nodes become impossible if the node positions
follow random point processes like the Poisson point process.
In such cases, the topology control algorithms should be mod-
ified for more realistic objectives, such as achieving the best
possible network connectivity instead of strong connectivity.
For example, if we assume that all the nodes have the same
upper limit A on their coverage radii, then we can modify our
Algorithm III to be the following algorithm (which consists
of two steps): “STEP 1, every node uses Algorithm III to
determine its coverage radius; STEP II, for every node, if
its coverage radius was greater than A in step 1, then the
nodes sets its coverage radius to be A.” Let’s call a network
constructed using the above algorithm Network I. To see how
well nodes are connected in Network I, let’s construct a second
network, which we call Network II, in the following way:
“every nodes sets its coverage radius to be A.” (Clearly, the
nodes in Network II are connected as strongly as possible.)
Then we can prove the following result:

“For any two nodes u and v, u can reach v in Network I

if and only if u can reach v in Network II.”
The proof for the above result is essentially the same as the

proof for the Theorem IV.3 in [22]. So we omit its details.
Our four algorithms take different combinations of the three

topology-control tools. Based on them, one can also predict
the performance of other algorithms using varied combinations
of those tools.

Topology control based on angle information is a very
promising direction for the design of network topologies that
achieve excellent global properties by using just localized
constructions. To progress in this direction, we are interested in
studying topology-control schemes that are fault-tolerant and
more adaptive to transmission power constraints and signal
interference. Those remain as our future research topics.

ACKNOWLEDGMENT

The authors would like to thank Matthew Cook, Jie Gao
and Michael Langberg for their helpful discussions, and thank
the anonymous reviewers for their helpful comments.

This work was supported in part by the Lee Center for Ad-
vanced Networking at the California Institute of Technology,
and by NSF grant CCR-TC-0209042.

REFERENCES

[1] K. Alzoubi, X. Li, Y. Wang, P. Wan and O. Frieder, “Geometric spanners
for wireless ad hoc networks,” IEEE Trans. Parallel and Distributed
Systems, vol. 14, no. 4, pp. 408–421, 2003.

[2] F. Baccelli, B. Blaszczyszyn and P. Muhlethaler, “A spatial reuse Aloha
MAC protocol for multihop wireless mobile networks,” in Proc. Annual
Conf. on Communication, Allerton, USA, 2003.

[3] P. Bose, P. Morin, I. Stojmenovic and J. Urrutia, “Routing with guar-
anteed delivery in ad hoc wireless networks,” in Proc. 3rd ACM Intl.
Workshop on Discrete Algorithms and Methods for Mobile Computing
and Communications DIAL M99, pp. 48–55, 1999.

[4] J. Bruck, J. Gao and A. Jiang, “Localization and routing in sensor
networks by local angle information,” manuscript, 2004.

[5] D. Dubhashi, O. Haggstrom and A. Panconesi, “Connectivity properties
of Bluetooth wireless networks,” manuscript, 2003.

[6] M. Franceschetti, Wireless Networks: from the Collective
Behavior to the Physics of Propagation, Ph.D. dissertation,
http://www.paradise.caltech.edu/papers/thesis007.pdf, 2002.

[7] J. Gao, L. J. Guibas, J. Hershberger, L. Zhang and A. Zhu, “Geometric
spanner for routing in mobile networks,” in Proc. 2nd ACM Symposium
on Mobile Ad Hoc Networking and Computing (MobiHoc’01), pp. 45-55,
2001.

[8] E. N. Gilbert, “Random plane networks”, J. SIAM, vol. 9, pp. 533–543,
1961.

[9] C. Gotsman and Y. Koren, “Distributed graph layout for sensor networks,”
in Proc. International Symposium on Grpah Drawing, Sept., 2004.

[10] G. Grimmett, Percolation, Springer-Verlag, Berlin Heidelberg, 1999.
[11] O. Haggstrom and R. Meester, “Nearest neighbor and hard sphere

models in continuum percolation,” Random Structures and Algorithms,
vol. 9, no. 3, pp. 295–315, 1996.

[12] T.-C. Hou and V. O. K. Li, “Transmission range control in multihop
packet radio networks,” IEEE Trans. Commun., vol. COM-34, no. 1, pp.
38–44, 1986.

[13] B. Karp and H. Kung, “GPSR: greedy perimeter stateless routing for
wireless networks,” in Proc. Mobicom’00, Aug., 2000.

[14] Y. Ko and N. Vaidya, “Location-aided routing (LAR) in mobile ad hoc
networks,” in Proc. Mobicom’98, Oct., 1998.

[15] E. Kranakis, H. Singh and J. Urrutia, “Compass routing on geogmetric
networks,” in Proc. 11th Canadian Conf. Computational Geometry,
Vancouver, Canada, Aug., 1999.



[16] L. Li, J. Y. Halpern, P. Bahl, Y.-M. Wang and R. Wattenhofer, “Analysis
of a cone-based distributed topology control algorithm for wireless multi-
hop networks,” in Proc. the Annual ACM Symp. Principles of Distributed
Computing, pp. 264-273, New Port, Rhode Island, USA, Aug., 2001.

[17] A. Mann and J. Ruckert, “Transmission range control for packet radio
networks or why magic numbers are distance dependent,” Lecture Notes
in Control and Information Sciences, vol. 143, pp. 818-830, 1990.

[18] M. Mauve, J. Widmer and H. Hartenstein, “A survey on position-based
routing in mobile ad-hoc networks,” IEEE Network, vol. 15, no. 6, pp.
30–39, 2001.

[19] R. Meester and R. Roy, Continuum Percolation, Cambridge University
Press, 1996.

[20] C.-C. Shen, C. Srisathapornphat, R. Liu, Z. Huang, C. Jaikaeo and
E. L. Lloyd, “CLTC: a cluster-based topology control framework for ad
hoc networks,” IEEE Trans. Mobile Computing, vol. 3, no. 1, pp. 18–32,
2004.

[21] H. Takagi and L. Kleinrock, “Optimal transmission ranges for randomly
distributed packet radio terminals,” IEEE Trans. Commun., vol. COM-32,
no. 3, pp. 246–257, 1984.

[22] R. Wattenhofer, L. Li, P. Bahl and Y.-M. Wang, “Distributed topology
control for power efficient operation in multihop wireless ad hoc net-
works,” in Proc. IEEE Infocom 2001, pp. 1388-1397, Apr., 2001.

[23] F. Xue and P. R. Kumar, “The number of neighbors needed for
connectivity of wireless networks,” Wireless Networks, vol. 10, no. 2,
pp. 169–181, 2004.

[24] M. Zorzi and R. R. Rao, “Geographic random forwarding (GeRaF) for
ad hoc and sensor networks: multihop performance,” IEEE Trans. Mobile
Computing, vol. 2, no. 4, pp. 337–348, 2003.


