
Sorting Based Data Centric Storage
Fenghui Zhang, Anxiao(Andrew) Jiang, and Jianer Chen

Dept. of Computer Science, Texas A&M Univ. College Station, TX 77843. {fhzhang, ajiang, chen}@cs.tamu.edu.

Abstract— Data-centric storage [6], which supports efficient in-
network data query and processing, is an important concept for
sensor networks. Previous approaches mostly use hash functions
to store data, where data with the same key value are stored in
sensors at or near the same geographic location.

We propose a new data-centric storage method based on
sorting. Our method is robust for different network models
and works for unlocalized homogeneous sensor networks, i.e., it
requires no location information. The idea is to sort the data in
the network based on their key values, so that queries – including
range queries – can be easily answered. The sorting method
balances the storage load well. We present a sorting algorithm
that is both decentralized and efficient.

I. INTRODUCTION

Wireless sensor networks are widely deployed nowadays to
collect data, aggregate data and answer queries. For sensor
networks, where and how to store data is an important issue.

The in-network storage is one of the solutions for data
storage, in which data are stored on the sensors themselves.
It removes the dependency on servers, and balances power
consumption better. It also supports in-network processing
well, which is important for real-time applications. Like a
database, the data in a sensor network are labelled by their key
value. To answer queries efficiently, the data with the same key
value should be aggregated and stored in the same place, and
that place should be easily accessible by any sensor querying
the data. That is the basic principle of data-centric storage [6],
which has been a well accepted concept in sensor networks.

There have been a number of data-centric storage schemes
proposed in recent years [2], [5]. Their main technique is the
geographic hash table, where the location to store the data
with the same key value is determined by a hash function.
Any sensor querying the data can use the same hash function
to find the location of the data.

Although the hash-based method is an elegant solution for
data-centric storage, two difficulties still remain: storage load
balance and the support for range queries. When the data
with some key values are more abundant than the data with
other key values, the sensors corresponding to the first group
of data need to store more data than the second group. Also,
since the hash function builds a simple mapping between keys
and locations, when there is a hole in the sensor network, the
sensors around the hole often need to store much more data
than others. And in fact, our simulations show that even the
random deployment of sensors alone can lead to substantial
load balancing problems. On the other hand, since the hash
function maps similarly key values independently to different
locations, range query (a sensor queries the data whose key
values are in a range) becomes expensive. With the hash-based

method, for every key value in the range, a separate query
message needs to be sent, even if the data of some key values
do not exist. Therefore, the communication cost can be high.

In this paper, we propose a new data-centric storage method:
sorting-based storage. The idea is to sort the data in the
network based on their key values. A primary path in the
network is used to provide a linear order of the data, and
all the edges are used to make both the sorting process and
the query process very efficient. The sorting process naturally
balances the storage load for sensors very well, regardless
of the distribution of data or the shape of the network. And
since adjacent data are stored sequentially in nearby sensors,
range queries can be easily answered. We present a sorting
algorithm that is both decentralized and very efficient. It
requires no location information, and is robust to different
network models.

Due to the page limit, we have skipped many details.
Interested readers are referred to [1] for a complete version.

II. BASIC CONCEPTS AND TERMS

Consider a network G with n nodes and m data objects
(each with an integer key). The network contains a path P
of length N that goes through every node at least once. The
NETWORK SORTING problem asks to store the data so that the
order of their key values is consistent with the order of the
corresponding nodes in the path.

In the following we define two terms used for evaluating
the complexity of an asynchronous algorithm.

Definition 1: Given a distributed network G with n nodes,
during an asynchronous computational process in the network
each node takes actions. We call it a round when every node
has taken exactly one action or given up the chance to take
an action. We call each action a step.

We will use the term load factor to measure the load balance
of a data storage scheme, defined as follows.

Definition 2: Given a storage scheme where the average
load is d data objects per node, the maximum load is dmax

data objects in a node and the minimum load is dmin data
objects in a node, the load factor of the scheme is then
max{ dmax

d
, d

dmin

}.
In order to construct the path P when the node positions

are not know, we will need some concepts related to planar
graphs, which are defined below.

Definition 3: Given a planar graph Gp embedded in the
plane, a face F is adjacent to another face F ′ if F and F ′

share an edge or a vertex. Similarly we say that a face F is
adjacent to a path P if F and P share an edge or a vertex. The
distance from a face F to a path P is the minimum number

Seventh IEEE International Symposium on Network Computing and Applications

978-0-7695-3192-2/08 $25.00 © 2008 IEEE
DOI 10.1109/NCA.2008.16

283

Authorized licensed use limited to: Texas A M University. Downloaded on June 28,2010 at 21:50:35 UTC from IEEE Xplore. Restrictions apply.

of faces we need to walk through in order to walk from F
to a face adjacent to P (by walking through adjacent faces,
not counting F itself). The distance between an edge e and
a path P is the smallest value among the distances from the
faces adjacent to e to the path P . The distance between two
paths P, P ′ is the smallest value among the distances from the
edges in P to the path P ′.

III. NETWORK SORTING AND BALANCED DATA STORAGE

To solve the NETWORK SORTING problem, we first describe
a distributed algorithm for the case where P is a Hamiltonian
path (i.e., each node appears in P exactly once, n = N) and
n = m. We will extend the algorithm to solve the general
general NETWORK SORTING problem.

During the sorting process, every node remembers the keys
of its own data and its neighbors’ data. The basic step in the
sorting algorithm is a local sorting operation:

• A node sorts the data within 1-hop based on the positions
of the nodes in the path. After the sorting, each node
whose data has changed informs its neighbors of the key
of its new data.

The key of the algorithm is to carry out the local sorting op-
erations asynchronously and efficiently. Our algorithm utilizes
a modified scheduling scheme from the d-scheduling algorithm
described in [4]. Suppose a node u’s order in the path P is
i, we assign the node u a priority i. In the sorting algorithm,
the smaller a node’s priority is, the higher a priority the node
has for carrying out a local sorting operation.

The general process of sorting with scheduling is as follows:

• Each node in whose neighborhood a local sorting is nec-
essary requests a local lock to its two hop neighborhood.
Let u be a node whose priority is the highest among
the nodes within two hops that have sent lock request.
The node u will then lock its 2-hop neighborhood and
perform a local sorting operation. After the operation,
node u increases its priority by n and release the lock.

When a node u is sorting data, its neighbors can neither
sort data nor have their data sorted by any node other than
u. The 2-hop neighbors of u cannot perform sorting, but their
data may be sorted by other nodes.

During the sorting process, the priorities of all the nodes are
in total order at any moment. The dependent graph obtained
from the network G by putting a directed edge from a node to
each neighbor with a higher priority is always a DAG (directed
acyclic graph). Therefore there will be no deadlock and the
termination is guaranteed. Here we call the actual local sorting
operation performed by a node in the network a step.

The following theorem summarizes an general bound for
the number of rounds needed to sort all the data objects in
the network. Due the space limit, we skip the proofs for all
lemmas and theorems in this paper. Interested readers are
referred to [1] for details.

Theorem 1: The sorting algorithm described above solves
the NETWORK SORTING problem for N = n = m after at
most N rounds.

Each round consists of at most N steps, the following
corollary is then straightforward.

Corollary 1: The sorting algorithm described above solves
the NETWORK SORTING problem when N = n = m with at
most O(N2) steps.

Now let us consider the case where P is not a Hamiltonian
path (i.e., N > n) and m = N . By letting each node act as
multiple virtual nodes, one for each occurrence on the path P
and letting the distance among all virtual nodes on the same
actual node be 0, the previous algorithm can be applied to
solve the sorting problem. The algorithm will again terminate
in O(N) rounds and O(N2) steps.

In the following we consider the general case when there
is no constraint for n, N and m. Before we sort the data,
each node learns the values of n, N and m. Then every node
knows that it node should have �m/n� or �m/n� data objects
in total after sorting. During the sorting process, every node u
keeps track of the number of data objects stored by each of its
virtual neighbors. When a node u performs the local sorting
operation, u collects all the keys in its neighborhood, sorts
them, and re-distribute the data objects so that every neighbor
and itself store the data as evenly as possible.

Theorem 2: The sorting algorithm described above solves
the NETWORK SORTING problem in O(Nm) rounds and
O(N2m) steps.

The upper bounds presented so far for the sorting per-
formance are for general networks. In the following, we
analyze the sorting performance for one- and two-dimensional
arrays. We summarize the results for the previously discussed
simplified model, where the path P is a Hamiltonian path,
and the number of data objects equals the number of nodes.
That is, n = N = m. These results provide evidence that the
actual sorting performance in sensor networks can be much
better than the upper bounds presented earlier, because sensor
networks often resemble two-dimensional mesh networks.

A. Sorting in linear array

When the underlying network is a linear array of n nodes,
our algorithm has the same performance as the odd-even
transposition sort algorithm described in [3].

Theorem 3: The NETWORKSORTING algorithm solves the
network sorting problem on a linear array of size n in O(n)
rounds.

B. Sorting in
√

n ×√
n grid

Now suppose our network is a
√

n×√
n grid and the path

P is a snake-like path [3]. We list a few lemmas first.
Lemma 1: Suppose the data to be sorted are only 0s and

1s. Suppose in a n1 × n2 grid (n1 ≤ n2), all the data objects
in the first i (1 ≤ i < n1) rows are sorted according to the
snake-like path P , and so are all the data objects in the last
n1 − i rows. The NETWORKSORTING algorithm will sort all
the data objects in the grid in 2n2 rounds.

Lemma 2: The NETWORKSORTING algorithm solves the
network sorting problem on a

√
n×√

n grid with data being
0s and 1s in O(

√
n log n) rounds.

284

Authorized licensed use limited to: Texas A M University. Downloaded on June 28,2010 at 21:50:35 UTC from IEEE Xplore. Restrictions apply.

By the 0-1 sorting lemma [3], we get have the following
theorem.

Theorem 4: The NETWORKSORTING algorithm solves the
NETWORK SORTING problem on a

√
n × √

n grid in
O(

√
n log n) rounds and O(n log n) steps.

The above upper bound for the NETWORKSORTING algo-
rithm matches the performance achieved by the Shear Sort
algorithm [3], which requires global synchronization. Since
the NETWORKSORTING algorithm is asynchronous, it is more
appropriate for sensor networks.

IV. IMPLEMENTATION

In this section, we give a sketch of our sorting-based
balanced data storage scheme. For details, please refer to the
complete version of this paper [1]. The storage scheme stores
data in a sorted and load-balanced way. The former property
ensures that queries, including range queries, can be efficiently
answered. In addition to presenting the construction of the path
P , we also discuss other aspects of the data-centric storage
scheme.

A. Constructing the path P

The actual complexity of the sorting algorithm relies on
the shape and length of the path P . A short path with many
shortcuts is desirable. Finding the shortest path that traverses
all nodes in a given graph is NP-hard. On the other hand,
the length of the path is at least n, and the traversing of any
spanning tree of the network will give us a path of length
roughly 2n. This gives us a simple ratio-2 approximation for
the path.

In this subsection, we present a practical algorithm that
constructs the path P , which is typically much shorter than
2n for unlocalized wireless sensor networks.

The algorithm for finding such a path consists of three major
steps: (1) planarize the network; (2) construct a snake-like
backbone path in the planarized network; (3) extend the path
to include all nodes in the original network.

There have been several papers on how to obtain a pla-
narized network efficiently for unlocalized wireless sensor
networks [7], [8]. We skip the first step here. In the following
we will discuss the second and the third steps.

1) Construct the backbone path: Assume that the network
is already planarized and we have a topological embedding
of the planar network, denoted by Gplanar . To simplify the
discussion, we assume that the outer face of the planar graph
Gplanar is a simple cycle.

Let f be the outer face of the network Gplanar. We split
f into four path segments P1, P2, P3, P4 of roughly equal
lengths. Next we stretch the outer face into a square such that
P1, P2, P3, P4 are on the north, east, south and west side of
the square, respectively. In the following discussion, the outer
face is not to be considered in super paths or the measurement
of distances.

The medial axis of two paths is defined as a path that is of
roughly the same distance from those two paths. The following

Algorithm 1 Medial-Axis
Input: Gplanar , P1, P3

Output: P ′: a path formed by nodes whose distances to
P1, P3 are roughly equal.

1: G′ ← the subgraph induced by faces and edges (excluding
the outer face and its edges) whose distances to P1 and
P3 are equal.

2: Let u, v be two nodes in G′ that are on the east and west
boundaries of Gplanar , respectively.

3: return a path P ′ from u to v in G′

Medial-Axis algorithm is used repeatedly in constructing the
backbone path.

The path P ′ separates the network Gplanar into two sub-
graphs. We recursively partition the network and find medial
axis paths. In the end, we get a set of “horizontal paths” in
the network Gplanar that do not cross each other.

The following is the algorithm for constructing all the
horizontal paths in the network.

Algorithm 2 Horizontal-paths
Input: Gplanar , P1, P3

Output: Horizontal paths containing all the nodes in Gplanar.
1: if P1 = P3, return
2: P ′ ← Medial-Axis(Gplanar, P1, P3)
3: Output P ′

4: G1 ← the subgraph between P1 and P ′

5: Horizontal-paths(G1, P1, P
′)

6: G2 ← the subgraph between P ′ and P3

7: Horizontal-paths(G2, P
′, P3)

Now we have obtained a set of horizontal paths that do not
cross each other. They form a total order from top to bottom.
A straightforward way to get the snake-like path is to take the
first path from left to right, connect it to the right end of the
second path (which is simple to do), and walk through the
second path from right to left, then turn on the third path in
a similar way, and so on.

2) Construct the path traversing all nodes: The path con-
structed so far may not include all the nodes of the original
network G. We use the following simple heuristic to include
all nodes. If a node has two neighbors that are consecutive
in the path, it inserts itself into the middle of the neighbors.
After that, if there are still a few nodes not in the path, use a
tree to attach to the path, and use the traverse of the tree as
part of the path.

B. Sorting data in the network

We assume that each node knows the total number m of data
objects stored in the network, the number n of nodes in the
network, and the length N of the path P . (These numbers
can be easily learned with a simple information collection
operation, especially with the help of the path P .) Then every
node should store m

n
data objects. A node knows how many

times it appears in the path, so it can decide how many data
objects to assign to each of its occurrences in the path. The

285

Authorized licensed use limited to: Texas A M University. Downloaded on June 28,2010 at 21:50:35 UTC from IEEE Xplore. Restrictions apply.

sorting process is described as before. It generates a sorted
and balanced storage result.

C. Data access and query

With the sorted data and the path P , querying data is simple.
When a node u wants to query data objects with the key value
k, it sends a query message that contains the value k and its
own address on P . Every node relays the query to the neighbor
whose data objects have a key closest to k as the next hop.
The process continues until the query message reaches the
destination node. The routing is guaranteed to succeed because
the edges in P can always be used for routing if necessary.
In practice, most of the time the edges not in P are shortcuts
and make routing much more efficient. To send the data back
to u, a similar routing protocol is used, except that node u’s
address on P is used for routing instead of the key k. And the
routing is also guaranteed to succeed.

Ranged queries are answered in a similar manner, because
data with adjacent key values are stored next to each other in
the path P .

D. Data dynamics

When a data object of key k is inserted into the network,
the initiator of the insertion will send the object as if it were a
query message for k. Once the message reaches its destination
(where it should be stored), the new data object will be stored
there.

The total number of the data objects in the network will be
calculated and broadcasted periodically. With the existence of
the path P , this task is simple. Once a node discovers that
its load is too heavy or too light, it first tries to solve the
imbalance locally by exchanging data with its neighbors on
the path P . If local operations fail to bring back load balance,
it triggers a re-balance process. This process is similar to the
sorting process, only cost less.

Data deletion is dealt in a very similar way as insertion.

V. PERFORMANCE EVALUATION

We conducted extensive simulations to test the performance
of our sorting based data centric storage scheme. The results
show that the performance is very stable for different network
models and different degree of data loads. We briefly compare
our results with GHT. Please refer to [1] for detailed results.

We randomly deploy n = 1500 nodes in the sensor field.
The network models we explore include unit-disk graphs
(UDG) and quasi-unit disk graphs (quasi-UDG). We also test
the storage schemes with holes being present in the sensor
field. The data objects are generated by nodes randomly with
keys in the range [0, n]. The total number of data objects we
examined ranged from 100n to 500n. Table I shows the data
load balance performance of our scheme comparing to that of
GHT with average load 500.

We compare GHT to sorting based storage scheme. For
the sorting-based schemes, we allow the storage load of
neighboring nodes to differ by at most δ = 4%, and no nodes’
storage load is allowed to be 1.5 time or more than the average

UDG UDG(hole) 2-qUDG
max σ max σ max σ

GHT 4271.18 577.56 4737.01 592.03 3740.59 571.05
Sorting 564.42 6.18 561.50 6.10 560.17 5.54

TABLE I
COMPARISON OF THE MAXIMUM AND THE STANDARD DEVIATION OF THE

STORAGE LOAD WITH AVERAGE LOAD 500.

Scheme operation UDG UDG(hole) 2-qUDG
GHT * 291.14 372.47 59.45

Sorting
query 182.37 175.97 142.77

insertion 67.62 66.14 62.20

TABLE II
COMMUNICATION COST FOR STORAGE AND QUERY: AVERAGE NUMBER OF

MESSAGES PER DATA OBJECT PER OPERATION

load. We distribute 500n random data objects in the network.
Our results shows that the average load factor of the sorting
based scheme is always close to 1, while that of GHT can be
very large (Fig. 1(a)).

We compare the average communication costs for the three
schemes. The average cost of the sorting scheme is substan-
tially lower than that of GHT (Table II).

Fig. 1 (b) shows the distribution of the distance of data
travelled during the storage process.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 200 400 600 800 1000 1200 1400

D
at

a
Lo

ad

Nodes

GHT load
Sorting based load

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 200 400 600 800 1000

N
um

be
r o

f n
od

es

Cost

Snake path sorting
Tree path sorting

GHT

(a) (b)

Fig. 1. (a) Typical data load distributions of the GHT scheme and the
sorting(snake) scheme in UDG networks with average degree approximately
7; (b) The distribution of the distance of 1000 sample data objects travelled
during the storage process.

REFERENCES

[1] F. ZHANG, A. JIANG AND J. CHEN, Sorting based data centric stor-
age, Technical Report, TR2008-5-1, Department of Computer Science,
Texas A&M University, (http://www.cs.tamu.edu/academics/tr/tamu-cs-
tr-2008-5-1), May 2008.

[2] J. NEWSOME AND D. SONG, GEM: Graph EMbedding for routing and
data centric storage in sensor networks without geographic information,
Proc. Sensys 2003, pp. 76-88, 2003.

[3] F. T. LEIGHTON, Introduction to Parallel Algorithms and Architectures:
Arrays, Trees, Hypercubes San Mateo, CA: M. Kaufmann Publishers,
1992.

[4] Y. MALKA, S. MORAN AND S. ZAKS, A lower bound on the period
length of a distributed scheduler, Algorithmica, 10(5), pp. 383-398, 1993.

[5] S. RATNASAMY, L. YIN, F. YU, D. ESTRIN, R. GOVINDAN, B. KARP,
S. SHENKER, GHT: A geographic hash table for data-centric storage,
Proc. WSNA, pp. 78-87, 2002.

[6] S. SHENKER, S. RATNASAMY, B. KARP, R. GOVINDAN, AND D.
ESTRIN, Data-centric storage in sensornets, ACM SIGCOMM HotNets,
2002.

[7] Y. WANG, J. GAO, AND J. S.B. MITCHELL, Boundary recognition in
sensor networks by topological methods, Proc. MobiCom, pp. 122-133,
2006.

[8] F. ZHANG, A. JIANG AND J. CHEN, Robust planarization of unlocalized
sensor networks, to appear in Proc. INFOCOM, Phoenix, Arizona, 2008.

286

Authorized licensed use limited to: Texas A M University. Downloaded on June 28,2010 at 21:50:35 UTC from IEEE Xplore. Restrictions apply.

