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Abstract A deep understanding of the structural proper-

ties of wireless networks is critical for evaluating the

performance of network protocols and improving their

designs. Many protocols for wireless networks—routing,

topology control, information storage/retrieval and numer-

ous other applications—have been based on the idealized

unit-disk graph (UDG) network model. The significant

deviation of the UDG model from many real wireless net-

works is substantially limiting the applicability of such

protocols. A more general network model, the quasi unit-

disk graph (quasi-UDG) model, captures much better the

characteristics of wireless networks. However, the under-

standing of the properties of general quasi-UDGs has been

very limited, which is impeding the designs of key network

protocols and algorithms. In this paper, we present results

on two important properties of quasi-UDGs: separability

and the existence of power efficient spanners. Network

separability is a fundamental property leading to efficient

network algorithms and fast parallel computation. We prove

that every quasi-UDG has a corresponding grid graph with

small balanced separators that captures its connectivity

properties. We also study the problem of constructing an

energy-efficient backbone for a quasi-UDG. We present a

distributed local algorithm that, given a quasi-UDG, con-

structs a nearly planar backbone with a constant stretch

factor and a bounded degree. We demonstrate the excellent

performance of these auxiliary graphs through simulations

and show their applications in efficient routing.

Keywords Quasi unit disk graphs � Separability �
Topology control � Spanners

1 Introduction

The connectivity structures of wireless networks exhibit

strong correlations with the physical environment due to

the signal transmission model of wireless nodes. A deep

understanding of the structural properties of wireless net-

works is critical for evaluating the performance of network

protocols and improving their designs. So far, many pro-

tocols have been based on the idealized unit-disk graph

(UDG) network model, where two wireless nodes can

directly communicate if and only if their physical distance

is within a fixed parameter R. Examples of these protocols

include routing [3, 10], topology control [1], distributed

information storage/retrieval [5] and a great variety of

other applications. In practice, however, the UDG model

significantly deviates from many real wireless networks,
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due to many reasons including: multi-path fading [7, 16],

antenna design issues, inaccurate node position estimation,

etc. The significant deviation of the UDG model from the

real/practical models is substantially limiting the applica-

bility of protocols which are based on UDGs. To combat

this problem, a more general network model, the quasi

unit-disk graph (quasi-UDG) model, has been recently

proposed to capture the nonuniform characteristics of

(most) wireless networks [2, 14]. Formally, this model is

defined as follows.

Definition 1 A quasi-UDG with parameters r and R (r and

R are positive numbers) over a set of points in the plane is

defined as follows. The points in the set are the vertices of the

graph. For any two points u and v in the set with Euclidean

distance |uv|: if |uv| B r then uv is an edge in the graph; if

|uv| [ R then uv is not an edge in the graph; and if r \ |uv|

B R then uv may or may not be an edge in the graph.

In the power model, each edge of the quasi-UDG (or

UDG) is associated with a power or energy cost (usually

this is the cost required to transmit across the corre-

sponding link in the network), which is commonly assumed

to be the Euclidian distance between the endpoints of

the edge raised to some power constant b [ [2, 5]. In the

geometric model, the cost of an edge is simply the

Euclidean distance between its endpoints.

In sharp contrast to the UDG model whose properties

have been well understood ([1, 10]), the understanding of

the properties of quasi-UDGs has been very limited, and

has been confined mainly to the case when the parameters

of the quasi-EDG satisfy r=R�
ffiffiffi

2
p

[2, 14]. Among the

limited results about quasi-UDG, is a notable result about

the ‘‘link-crossing’’ property for quasi-UDGs satisfying

r=R�
ffiffiffi

2
p

[2]. In general, the serious lack of understanding

of the properties of quasi-UDGs is impeding the design of

key network protocols and algorithms for this model.

In this paper, we present results on two important

properties of quasi-UDGs: separability and the existence of

efficient power spanners of quasi-UDGs.

Network separability is a fundamental property that

leads to efficient network algorithms and fast parallel

computation [13]. A (vertex) separator of a graph G is a set

of vertices whose removal splits the graph into two non-

adjacent parts of similar sizes. We call a graph G well

separable if any subgraph of G has relatively small sepa-

rators. A well separable graph has strong local properties.

As a result, the performance of protocols for routing,

information retrieval, network monitoring, etc., can be

significantly improved for such graphs. We first construct a

grid graph, which is an abstraction of the given quasi-UDG

G, and show that the grid graph is well separable.

The separator we obtain for the grid graph is of size

O
ffiffiffiffi

N
p� �

; and can split the graph into two parts, each of size

roughly N
2
; where N is the number of nodes of the grid

graph. In addition, both the degree of the grid nodes and the

number of edges crossing any given edge, are upper

bounded by constants. Among many applications of the

separators, we present, as an example, a compact routing

protocol based on the grid graph construction and the

distance labeling technique. We prove that the routing table

size of each node in our protocol is bounded by

O
ffiffiffiffi

N
p

log N
� �

; which is much better than the tight bound

proved for general graphs and close to the lower bound of

X
ffiffiffiffi

N
p� �

for bounded-degree graphs in [8]. The ratio of the

routing path length to the shortest path length is upper

bounded by 2 ? [, where [ is a small constant. Extensions

of these results are also included.

In the second part of the paper we study the existence

and the construction of energy efficient spanners for quasi-

UDGs. A subgraph H of a quasi-UDG G is said to be a

spanner of G if there exists a constant q such that: for every

two nodes X, Y [ G, the weight of a shortest path between

X and Y in H is at most q times the weight of a shortest path

between X and Y in G. The constant q is called the stretch

factor of H (with respect to G). A spanner, in general, is

useful for efficient communication (e.g., unicasting): By

using only those edges in the spanner for communication,

signal interference, routing table size and power usage can

be substantially reduced.

In terms of the previous work done on the construction

of spanners of quasi-UDGs, Kuhn et al. [14] gave a dis-

tributed algorithm that constructs a geometric spanner with

stretch factor O lg 1
d

� �

; where d = r/R. Damian et al. [4]

gave a distributed algorithm that constructs a spanner of

a quasi-UDG in any ‘-dimensional Euclidean space of

bounded degree and arbitrarily small stretch factor.

The distributed algorithm in [4] runs in poly-logarithmic

number of rounds. Moreover, the constant in the upper

bound on the spanner weight is unspecified. Very recently,

Lillis et al. [12] gave a local, i.e., runs in a constant number

of communication rounds [17], distributed algorithm that

constructs a geometric spanner of a quasi-UDG with con-

stant stretch factor, when the quasi-UDG parameters satisfy

r=R�
ffiffiffi

2
p

=2:

Whereas local distributed algorithms for the construc-

tion of geometric backbones have recently been developed

[12], these algorithms only work when the parameters of

the quasi-UDG satisfy r=R�
ffiffiffi

2
p

=2:

In this paper, we present a local distributed algorithm

that constructs a power spanner B for an arbitrary con-

nected quasi-UDG G, i.e., with no restrictions on the

parameters R and r. The node degree of the spanner B is

upper bounded by a constant. In addition, even though it is

impossible in general to construct planar spanners of quasi-

UDGs with constant stretch factors, we show that B is

nearly planar. More specifically, we show that B has a
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constant upper bound on the average number of edges

crossing any given edge. The latter property is useful for

geographic routing algorithms based on cross link detec-

tion [11]. In general, plane spanners of quasi-UDGs (and

UDGs), when they exist, can then be used to design effi-

cient routing schemes with guaranteed delivery, such as

perimeter routing (face routing) [3, 10, 15].

We evaluate the performance of the separators, the

routing protocol, and the spanner construction, through

extensive simulations. Their performance is much better

compared to the theoretical analysis of the worst cases.

This shows that, although the quasi-UDG model is quite

different from the UDG model, efficient algorithms can

still be developed by exploiting the locality of the model.

The rest of the paper is organized as follows. In Sect. 2

we present the grid graph construction and prove its sep-

arability properties. In Sect. 3, we present the backbone

construction. In Sect. 4, we present the compact routing

protocol based on the grid graph and the distance labeling

technique, as well as the simulation results. We conclude

the paper in Sect. 5.

2 Grid graph of quasi-UDGs

In this section we present a distributed algorithm for con-

structing a grid graph for any given quasi-UDG. We prove

that the grid graph is well separable, and that it has

bounded node and edge density. We first start with the

following definitions and notations.

A (vertex) separator in a graph G is a set of vertices S

such that GnS is disconnected. A separator is said to be

balanced if it separates the graph into two parts, each of

which has O(n) vertices, where n is the number of vertices

in the graph. We will always use the term separator to

denote a balanced separator. We say that a separator is

small, if the number of vertices in the separator is o(n).

A graph G is said to be well separable if all subgraphs of G

have small separators.

A graph G is said to be planar if it can be embedded in

the plane without edge crossing. Planar graphs are known

to have O
ffiffiffi

n
p
ð Þ-size separators [13]. For quasi-UDGs with

r=R�
ffiffiffi

2
p

=2; the network can be planarized with the help

of virtual edges, as shown in [2]. Thus, protocols that rely

on the planarity of the underlying structure of the network

can still be applied to quasi-UDGs with r=R�
ffiffiffi

2
p

:

A quasi-UDG may have highly variable node and edge

density, which prevents it from having small separators.

The grid graph that we construct will serve as an abstrac-

tion of the quasi-UDG that retains some properties of the

quasi-UDG, such as connectivity and distance information,

and represents well the deployment region of the quasi-

UDG. An example of a quasi-UDG and its corresponding

grid graph is shown in parts (a) and (b) of Fig. 1,

respectively.

2.1 Construction of the grid graph

Given a quasi-UDG G, we construct a grid graph H for G

as follows. First, we impose a grid on the plane. The

dimension of the grid cell is chosen so that all the nodes of

G residing in the same cell are fully connected. Then, for

every non-empty cell of the grid, we create a new vertex u

in H, and map all nodes of G residing in that grid cell to u.

We add an edge between two vertices u and v of H if and

only if there are two nodes in the corresponding grid cells

of u and v that are adjacent in G. This completes the

construction of the grid graph H. The formal algorithm

GridGraph is given in Fig. 2.

(b)(a)

(d)(c)

Fig. 1 a A quasi-UDG G with 100 vertices and r/R = 0.5; b the grid

graph corresponding to G; c the auxiliary graph used to find the top

level separator of G; d The backbone of G

Fig. 2 Constructing the grid graph for a quasi-UDG
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The algorithm GridGraph can be implemented in a

distributed environment as follows. First, each node in G

obtains the smallest x-coordinate and y-coordinate of all the

nodes in the network. Initially each node v sets two local

variables xmin, ymin to its own coordinates. If a node u is the

leftmost (or topmost node) among its neighbors, it sends a

message(s) (XMIN, xu) (YMIN, yu) to its neighbors notify-

ing them of this fact. Once a node v receives a message of

the form (XMIN, xu) from w, it compares xu with its xmin.

If xu is smaller, v replaces its xmin with xu, and forwards the

message to all its neighbors except w. If xu is greater or

equal to xmin, v simply discards the message. A similar thing

happens when v receives a message of the form (YMIN, yu).

In the algorithm GridGraph, we place the grid so that

its top left corner is at point (xmin, ymin). Each node in G

knows the position of the grid, and the value of the small

radius r of the quasi-UDG. With this information in hand,

each node in G determines the grid cell it belongs to and all

its neighbors (in G) within this grid cell. Therefore, all

nodes in G residing in the same cell can identify them-

selves as a single vertex of H. Identifying the edges of H

can now be performed by local operations.

The flooding part in the algorithm can be implemented

efficiently. In particular, the same message will not travel

through any edge more than once, and the only nodes in G

which will initiate the flooding process are those nodes

which are local minima among their neighbors. Moreover,

very few messages will travel throughout the whole net-

work; those are the messages containing the smallest

coordinates in the network.

The following theorem proves constant upper bounds on

the node density, the edge density, and the number of edges

crossing any given edge in the grid graph H.

Theorem 1 The grid graph H constructed by the algo-

rithm GridGraph has the following properties:

1. inside any disk of radius y, there are O y2

r2

� �

vertices

of H;

2. the degree of each vertex in H is O R2

r2

� �

;

3. the number of edges crossing any given edge in H is

O R4

r4

� �

; and

4. H retains the connectivity and the distance information

of G.

Proof To prove part 1, note that the Euclidean distance

between any two vertices of H is at least r
ffiffi

2
p : Hence, if we

place an open disk of radius r
2
ffiffi

2
p centered at every vertex in H,

then no two disks will intersect. Therefore, given any disk of

radius y, the number of such open disks intersecting it is

O y2

r2

� �

; and so is the number of vertices of H inside that disk.

To prove part 2, consider a vertex u of H and denote by

V(u) the set of nodes of G inside the cell corresponding

to u. By part 1 above, the number of vertices of H within

distance R ? r from u is O R2

r2

� �

: Note that for any other

vertex v in H, if the distance between u and v is larger than

R ? r, then no node in V(u) can be adjacent to any node in

V(v). It follows that the degree of u is O R2

r2

� �

:

To prove part 3, note that for an edge {u, v} in H, the

number of vertices in H within distance R ? r from any point

on the line segment connecting u and v in H is O R2

r2

� �

: (This

statement can be easily verified by the reader.) Therefore, the

total number of edges crossing {u, v} is O R4

r4

� �

:

Part 4 follows from the fact that any two vertices u and v

of H are d hops away if and only if two nodes of G in the

two corresponding cells to u and v are at most 2d ? 1 hops

away. h

2.2 Separability of the grid graph

Network separability is a fundamental property that leads

to efficient network algorithms (for example, those algo-

rithms based on the divide and conquer paradigms that will

lead to fast parallel implementations). In particular, many

applications in wireless ad hoc networks (routing, infor-

mation retrieval, etc.), have more efficient solutions if the

underlying graph is well separable. For example, shortest

path routing can be realized with small routing tables when

the graph is well separable, as in the case of planar graphs

or graphs with bounded tree width [8].

In this subsection, we study the separability of the grid

graph H described in the previous section. We begin with

the following definition.

Definition 2 Given a graph H of n vertices, a b-separator

of H is a set of vertices whose removal splits H into two

subgraphs H1 and H2 such that no vertex in H1 is adjacent

to a vertex in H2, and such that each of H1 and H2 contains

at most b �n vertices. We call a graph H (f(n0), b)-sepa-

rable, if every subgraph H0 of G on n0 vertices has a

b-separator of O(f(n0)) vertices, where f(n0) is a function of n0.

In order to compute a small separator for the grid graph

H, we use an auxiliary graph T. Similar to the construction

of the grid graph, we first impose a grid GT of larger cell

size on the plane. Each non-empty cell (i.e., there is at least

one vertex of H in that cell) of the grid is then mapped to a

vertex of the auxiliary graph T placed at the center of that

cell. Two vertices of T are adjacent if and only if there are

two adjacent vertices of H in the two corresponding cells of

the larger grid. We choose the cell dimension of GT so that

each vertex u of T at the center of cell C is adjacent only to

the vertices at the centers of the neighboring cells of C.

Therefore each edge of T is either horizontal, vertical,
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diagonal or anti-diagonal. It is clear that an edge-crossing

can only involve a diagonal edge and an anti-diagonal

edge. Each of these diagonal edges and anti-diagonal edges

can cross at most one other edge. Finally, we planarize T by

adding a virtual vertex V at each edge-crossing (placed at

the crossing point) and replace the two crossing edges e1,e2

with four short edges incident to V and the four endpoints

of e1 and e2, thus eliminating all edge-crossings. Note that

we consider all the edges to be straight line segments. The

detailed construction of the auxiliary graph T is presented

in Fig. 3. All the virtual vertices in T are red (circled)

vertices, and the remaining vertices, which are at the

centers of the grid cells in T, are black vertices. We assign

each red vertex weight zero, and we assign each black

vertex u a weight equals to the number of vertices of H in

the cell corresponding to u.

Figure 1(c) shows an example of the auxiliary graph.

The longest edge in the auxiliary graph has length Rþ
ffiffi

2
p

r
2
;

and red vertices are either of degree 2 or 4. Since the cell

dimension in the grid we apply is large enough (of side

length Rþ r
ffiffi

2
p ) and all black vertices are placed at the

centers of their corresponding cells, any black vertex may

only connect to the eight black vertices around it before the

red vertices were added. Therefore, around each black

vertex, there can be at most four red vertices, and no two

red vertices are adjacent to each other. Formally, we have

the following lemma:

Lemma 1 Let NT,b be the number of black vertices in the

auxiliary graph T. Then T is a planar graph of at most

2NT,b vertices, and no two red vertices in T are adjacent.

Lipton and Tarjan proved in their celebrated Separation

Theorem [13] that for any vertex-weighted planar graph of

n vertices, there exists a set of O
ffiffiffi

n
p
ð Þ vertices that sepa-

rates the graph into two non-adjacent subgraphs, each of

which weighs at most 2
3

of the total weight of the graph.

The separator algorithm presented in [13], however, is

relatively complex. For the planar auxiliary graph T, which

has a constrained structure, we present a simpler and more

practical algorithm for finding such a small separator.

Based on that, the algorithm also finds a small separator for

the grid graph H.

Note that T is actually a plane graph, i.e., it is an

embedded planar graph. To find a separator for T, the idea

is to ‘‘peel off’’ the outer face of T repeatedly to find a thin

cut. To accomplish this, we build a BFS tree rooted at a

vertex on the outer face of T. When a vertex u is discovered

in the process, we mark all undiscovered vertices that share

faces with u (denoted by F(u)) so that they will be placed

into a level that is no later than the next level of the BFS

tree. This can be done by adding edges from u to all ver-

tices in F(u). After we have constructed this BFS tree, one

of the fundamental cycles (a cycle formed by exactly one

non-tree edge and some tree edges) will contain the desired

separator, i.e., a separator that separates T in a balanced

way. The details of the algorithm are presented in Fig. 4.

We now prove that the algorithm Separator constructs

small balanced separators for H and T. We start with the

following lemma:

Fig. 3 AuxiliaryGraph(H) Fig. 4 The Algorithm Separator
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Lemma 2 Let T̂ be any subgraph of the auxiliary graph

T. If its outer face has k vertices, then the number of inner

vertices (the vertices not on the outer face) is at most k2

2p

j k

:

Proof The outer face of the plane graph T0 is a closed

curve (or closed curves if T̂ is disconnected) on the plane.

Let x ¼ Rþ r=
ffiffiffi

2
p

be the side-length of the cells in the

construction of the auxiliary graph T. For each inner vertex

of T̂ ; we place a
ffiffi

2
p

x
2
�

ffiffi

2
p

x
2

square centered at it, then rotate

the square by 45 degrees. It is easy to see that now these

(diamond shaped) squares centered at the inner vertices do

not overlap each other. The area of each square is x2

2
:

First consider the case when the outer face is connected,

i.e. T̂ is connected. The outer face of T̂ consists of several

(at least one) simple cycles. Suppose there are i such

simple cycles of lengths k1, k2, ..., ki in the outer face. Note

that the value
Pi

j¼1 kj can be greater than k—the number of

vertices in the outer face—because a vertex may have been

counted more than once. The simple cycles form the outer

face of a planar graph, so the number of times vertices are

over-counted is exactly i - 1. Thus
Pi

j¼1 kj ¼ k þ i� 1:

We have:

k2 ¼
X

i

j¼1

kj

 !

� iþ 1

" #2

¼
X

i

j¼1

k2
j þ

X

i

j¼1

kj

X

i

l6¼j

kl

 !

�
X

i

j¼1

2ði� 1Þkj þ ði� 1Þ2

�
X

i

j¼1

k2
j þ

X

i

j¼1

kj

X

i

l 6¼j

kl � 2ði� 1Þ
 !" #

�
X

i

j¼1

k2
j :

The last inequality holds because kj C 2 and
P

l=jkl con-

tains exactly i - 1 terms. The equality holds when i = 1.

Each simple cycle of kj vertices has kj edges; thus the

perimeter of the cycle is at most kjx. Therefore the area of

the region inside the cycle of length kj is at most
k2

j x2

4p

j k

; and

the total area of the regions inside the outer face is bounded

by
Pi

j¼1

k2
j x2

4p

j k

� k2x2

4p

j k

:

Now if there are several disconnected cycles in the outer

face, each connected part, say of k0 vertices, surrounds a

region of area no more than k02x2

4p

j k

: Since
P

k02�
P

k0ð Þ2¼ k2; the total area of the regions surrounded by

the outer face is also bounded by k2x2

4p

j k

: Thus, in all cases,

the total number of inner vertices is bounded by
k2x2

4p

j k

= x2

2

� �

¼ k2

2p

j k

. h

Define the depth of a tree to be the maximum number of

edges on any root-leaf path in the tree. We have the fol-

lowing lemma:

Lemma 3 Let NT be the number of vertices in the aux-

iliary graph T. The BFS tree constructed in Step 2 of the

algorithm Separator is of depth at most
ffiffiffiffiffiffi

NT

p
:

Proof Let d be the depth of the BFS tree. Because of the

triangulation operation enforced on the graph T0 during the

BFS process, for i = 1, 2, ..., d - 1, level i (if i = 1,

include the root as well) of the BFS tree contains all the

vertices on the outer face of the subgraph induced by the

vertices at levels i, i ? 1, ..., d. So it suffices to show that

if we ‘‘peel off’’ one outer face from T0 at each step, T0

becomes an empty graph after t�
ffiffiffiffiffiffi

NT

p
steps.

Let nx be the number of vertices remaining in the graph

T0 after x steps, and define n0 = NT. By Lemma 2, we know

that in the xth step we have ‘‘peeled off’’ at least
ffiffiffiffiffiffiffiffiffiffi

2pNx

p� �

vertices. Hence, nt-1 C 1, and ni� niþ1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2pniþ1

p
d e for

i = t - 2, t - 3, ..., 0. Now let us prove that nt-j C j2 by

induction. When j = 1, we have nt-1 C 1, and when j = 2,

we have nt-2 C 4. Suppose our claim is true for 2 B j B i,

and consider the case j = i ? 1. Then

nt�ðiþ1Þ � nt�i þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2pnt�i

p

l m

� i2 þ
ffiffiffiffiffiffi

2p
pl m

i� i2 þ 2iþ 1

¼ ðiþ 1Þ2:

We have NT = n0 = nt-t C t2. So t�
ffiffiffiffiffiffi

NT

p
. h

By Lemma 2 in [13], if a vertex-weighted planar graph

has a spanning tree of depth h, then there exists a funda-

mental cycle of size at most 2h ? 1 that separates the

graph into two non-adjacent subgraphs, each of which

weighs no more than 2/3 of the total weight of the graph.

As the BFS tree obtained in Step 2 of Algorithm Separator

is of depth at most
ffiffiffiffiffiffi

NT

p
; we have the following theorem:

Theorem 2 Let NT be the number of vertices in the

auxiliary graph T, and let NH be the number of vertices in

H. Then the total weight of the vertices of T is NH. More-

over, the set ST obtained in Algorithm Separator contains

at most 2
ffiffiffiffiffiffi

NT

p
þ 1 vertices and separates T into two non-

adjacent subgraphs, each of which weighs no more than
2NH

3
:

We now prove that the algorithm Separator also finds a

small balanced separator for the grid graph H.

Theorem 3 Let NH be the number of vertices in the grid

graph H. Then the algorithm Separator constructs a sep-

arator SH of size O
ffiffiffiffiffiffiffi

NH

p� �

that separates H into two non-

adjacent subgraphs each of which has no more than 2NH

3

vertices. Moreover, the grid graph H is
ffiffiffiffi

n0
p

; 2
3

� �

-separable

when the weights of all the vertices of H are set to 1.

Proof Let N0 be the number of black vertices in T. Clearly

N0 B NH; and it is straightforward that each cell corre-

sponding to a black vertex of T contains at most
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d2 Rþ
ffiffi

2
p

r=2ð Þ2
r2 e vertices of H. Hence we have N 0 ¼ H NHð Þ:

From Lemma 1 we know that the number of red vertices is

no more than N0, and the total weight of vertices in T is NH.

Hence, the separator ST of T contains no more than

2
ffiffiffiffiffiffiffiffi

2N 0
p

þ 1 vertices, whose weights sum up to O
ffiffiffiffiffiffiffi

NH

p� �

;

that separates T into two parts each of which weighs no

more than 2NH

3
:

Now we show that after Step 4 of Algorithm Separator,

S0T is still a separator for T of size Oð
ffiffiffiffiffi

N 0
p
Þ; and A1 and B1

are still of weights no more than 2NH

3
: Consider any red

vertex u 2 S0T in Step 4. In the case when all of u’s

neighbors are either in ST or in A1 (resp. B1), S0T n fug
separates T into A1 [{u} and B1 (resp. A1 and B1 [{u}).

Note that u has weight 0, so moving u from S0T to A1 (or B1)

does not change their weights. In the other case, the

algorithm moves all of u’s neighbors into S0T ; and moves u

into A1; clearly S0T still separates A1 and B1, and by doing

that, we decrease the weights of both A1 and B1. The size of

S0T increases by at most 3 for each red vertex.

Hence, after Step 4, we have replaced all red vertices in

S0T by black ones, increasing the size of S0T by at most three

times, and not increasing the weights of A1 and B1. Most

importantly, S0T still separates A1 and B1. Therefore, S0T is

still of size O
ffiffiffiffiffi

N 0
p
� �

¼ O
ffiffiffiffiffiffiffi

NH

p� �

; and the weights of A1 and

B1 are no more than 2NH

3
: Each cell corresponding to a

black vertex of T contains a bounded number of vertices of

H, so SH is of size O
ffiffiffiffiffiffiffi

NH

p� �

: Also, the number of vertices

in A2 (resp. B2) equals the weight of A1 (resp. B1), which is

at most 2NH

3
:

By the construction of the auxiliary graph T, if no two

black vertices in T are joined by an edge or by two edges

with a red vertex in the middle, then there is no edge

connecting vertices of H in those two corresponding cells.

A1 and B1 are not adjacent in T, and S0T has no red vertex.

So A2 and B2 obtained in Step 5 are not adjacent in H, and

SH separates A2 and B2 in H.

It is easy to see that any subgraph of H can be used as

the input to Algorithm Separator, and the above argu-

ments will still hold. It follows that H is
ffiffiffiffi

n0
p

; 2
3

� �

-separable.

h

In some applications, a perfectly balanced separator is

desirable. By using the same technique described in [13],

we can construct a separator of size O
ffiffiffiffiffiffiffi

NH

p� �

that separates

H into two parts, each of which has no more than NH

2
ver-

tices. The idea is to separate the larger part in the outcome

of the algorithm recursively. Therefore, we have:

Corollary 1 Let NH be the number of vertices in the grid

graph H. Then H is
ffiffiffiffi

n0
p

; 1
2

� �

-separable.

For the grid graph, we can develop a shortest-path

routing scheme based on its separability, using the idea of

distance labeling [8]. We can then transform it into a

compact routing scheme, with a small stretch factor, for the

underlying quasi-UDG G. The following theorem sum-

marizes the result. We defer the details of the routing

algorithm, the proof of Theorem 4, and the extended results

to Sect. 4.

Theorem 4 For any quasi-UDG G of NG vertices, and

any two vertices u and v in G, let h(u, v) be the minimum

hop distance between vertices u and v. There is a routing

protocol that, for any two vertices u and v in G, guarantees

a routing path from u to v of at most 2h(u,v) ? 1 hops.

Moreover, the size of the routing table at each node and the

message overhead are both O
ffiffiffiffiffiffi

NG

p
log NGð Þ:

2.3 Separability for degree/edge crossing bounded

graphs

The technique described in the previous section can be

used to find balanced separator for any graph G deployed in

the plane, whose degree is bounded by a constant, and in

which the number of edges crossing any given edge is also

bounded by a constant. The algorithm is outlined in Fig. 5.

The following theorem proves that the above algorithm

finds a balanced separator for graph G of size O
ffiffiffi

n
p
ð Þ:

Theorem 5 Let G be a graph whose degree is bounded by

a constant D, and in which the number of edges crossing

any given edge is bounded by a constant C. Then the

algorithm Separator-Gen constructs a
ffiffiffi

n
p

;Oð1Þð Þ-sepa-

rator for G.

Proof It is easy to see that the auxiliary graph T has at

most D�n/2 edges, and C�D
4
þ 1

� �

n vertices. Hence,

the separator S found in step 2 by the Lipton–Tarjan’s

algorithm has size O
ffiffiffi

n
p
ð Þ; and separates the graph T

into two equal parts, each of size N, such that

n=2� O
ffiffiffi

n
p
ð Þ�N � C�D

4
þ 1

� �

n=2: The third step adjusts

the separator so that the separator does not contain any

virtual nodes. Let T0 be the resulting graph after step 3 of

the algorithm. The separator obtained separates T0 and has

size O
ffiffiffi

n
p
ð Þ: The graph T0 also has O(n) nodes, and the

Fig. 5 Separator-Gen(G
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separator returned separates T0 into two parts T1, T2 (each of

size N � O
ffiffiffi

n
p
ð Þð Þ: More importantly, every virtual vertex in

T1 and T2 is surrounded by real (original) nodes. Since each

original node can create at most C �D many virtual vertices,

each of T1 and T2 must contain at least N � O
ffiffiffi

n
p
ð Þð½ �=

ðC � Dþ 1Þ[ n
2ðC�Dþ1Þ many real nodes. Clearly S also

separates G into two parts, each of size at least n
2ðC�Dþ1Þ

(at most
n½2ðC�Dþ1Þ�1�

2ðC�Dþ1Þ ¼ OðnÞ). Hence, this separator is a
ffiffiffi

n
p

;Oð1Þð Þ-separator for G. h

Applying the same technique described in [13], we can

obtain a perfectly balanced separator for graphs with

bounded degree and edge-crossings.

Corollary 2 A graph G of n nodes, whose degree is O(1)

and in which the number of edges crossing any given edge

is O(1), is
ffiffiffi

n
p

; 1
2

� �

-separable.

3 Backbone with constant stretch factor (spanners)

We denote by a backbone of a given graph any spanning

subgraph. Examples of backbones are spanning trees.

Backbones, particularly those with small stretch factors

(also called spanners) and node degrees, have very

important applications in wireless communication because

they help reduce signal interferences and simplify algo-

rithms (such as routing algorithms).

A distributed algorithm is said to be k-local [17], if it

runs in k communication rounds. A distributed algorithm is

local if it is k-local for some constant k. Local distributed

algorithms, in general, tend to be more scalable and more

robust to topological changes.

In this section, we present a distributed local construc-

tion of a backbone for a quasi-UDG with constant stretch

factor, constant node degree, and a small number of edge

crossings. We will show in Sect. 4 how these backbones

can help reduce the routing table size in routing schemes.

3.1 Backbone construction

Energy is a major limitation in wireless networks.

Accordingly, the stretch factor of a backbone is often

defined based on energy consumption. We start with the

formal definition.

Definition 3 Denote by |uv|G the Euclidian distance

between any two nodes u and v in G. Let (u = u1,

u2, ..., uk = v) be a path from u to v in the graph G. The

communication cost between u and v along the above path

is defined as:

cGðu; vÞ ¼
X

k�1

i¼1

ajuiuiþ1jbG;

where b is the power exponent satisfying 2 B b B 5, and a is

a scaling factor that is linear in the number of bits sent. If there

is no path from u to v then cG(u, v) is defined to be ??.

Definition 4 Given a graph G = (V, E) and a backbone B

of G, the stretch factor of B is defined as:

max
u;v2V

cB;minðu; vÞ
cG;minðu; vÞ

	 


;

where cB,min(u, v) and cG,min(u, v) denote the minimum

communication cost (over all paths) between u, v in the

graph B and G, respectively.

The stretch factor defined above is also called the power

stretch factor. We say that a backbone is energy efficient if

its power stretch factor is bounded by a constant.

We next present a distributed local algorithm that, given

a quasi-UDG G, constructs a backbone B whose maximum

degree is O R2

r2

� �

; the average number of edges crossing a

given edge is O R4

r4

� �

; and the power stretch factor is

bounded by 3 ? [, for any constant [[ 0.

We classify the edges in the quasi-UDG G into two

types: short edges whose length is not greater than r, and

long edges whose length is strictly larger than r.

Let Eshort the set of short edges. Then the graph induced

by Eshort is a UDG of unit length r. Denote this graph by

Ushort, and note that Ushort may not be connected.

The results in [9] describe a distributed local algorithm

that, given a UDG U and a positive integer k C 9 as a

parameter, constructs a planar power spanner of the graph

with degree at most k ? 5 and stretch factor 1þ
ð2sinðp=kÞÞb; where b is the power exponent. The algo-

rithm described in [9] is very simple and is easy to

implement. It consists of two phases: a sparsification phase

and an edge-selection phase. In the sparsification phase a

sparse (having a linear number of edges) spanning sub-

graph of U is constructed. This subgraph is the Gabriel

subgraph of U [6]. In addition to its sparseness, the Gabriel

subgraph is planar and has power stretch factor equals to 1.

Moreover, the Gabriel subgraph can be constructed by a

distributed local algorithm very efficiently. However, the

Gabriel subgraph may have unbounded degree. To bound

the degree, a subgraph of the Gabriel graph is then con-

structed by dropping edges from the Gabriel subgraph,

while not hurting the stretch factor by much; this consti-

tutes the edge-selection phase. To do that, a variant of the

Yao construction [18] is applied in which the area around a

point of U is divided into cones, and then edges are

selected from these cones based on some appropriate cri-

teria. As shown in [9], the resulting spanner satisfies all the

required properties, and can be easily and efficiently con-

structed by a local distributed algorithm. The results in [9]

cannot be applied directly to G since G is not a UDG.
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However, since each component in Ushort is a UDG, we

can apply the algorithm in [9] to each component of Ushort

to construct a plane power spanner of the component

of degree bounded by k ? 5 and stretch factor 1þ
ð2sinðp=kÞÞb: Let B be the set of edges in the spanners of

all these components.

Now impose a grid of cell-size r
ffiffi

2
p � r

ffiffi

2
p on the plane.

Note that any two points in the same cell are connected in

G, and that any long edge must connect points in two

different cells. For each pair of cells, add to B the shortest

edge between those two cells (i.e., the shortest edge having

one endpoint in one of the two cells and the other endpoint

in the other cell). Observe that determining the shortest

edge between two cells can be done in a local fashion since

the points in a cell form a clique. This completes the

construction of B. Note that after adding the long edges to

B, G0 may no longer be planar. However, as we will show

below, the average number of edges crossing a given edge

will be bounded by a constant. The algorithm is summa-

rized in Fig. 6.

Call two grid-cells adjacent if there is an edge between a

node in the first cell and another node in the second cell.

Lemma 4 The number of cells that are adjacent to a

given cell is O(R2/r2).

Proof Fix a cell C and let C0 be an adjacent cell to C.

Let O be the center of C, i.e., the point located at the

intersection of the diagonals of C. Since C and C0 are

adjacent, there exists a point M in C that is adjacent to a

point M0 in C0, and hence, |MM0| B R. It is easy to verify

that any point in C0 is at a distance of at most O(R ? r)

from O. Therefore, all cells adjacent to C must be com-

pletely contained within a disk D of center O and radius

O(R ? r). Since the disk D has area O((R ? r)2) and each

cell has area O(r2), the number of such cells that com-

pletely reside within D is O(R2/r2). It follows that the

number of cells adjacent to C is O(R2/r2). h

Lemma 5 The backbone B constructed by the algorithm

QuasiUDG-Backbone is a spanning subgraph of G.

Proof Since the algorithm in [9] constructs a backbone

for each component in Ushort, B contains a spanning sub-

graph for each component in Ushort. Since all the vertices in

a given grid-cell form a clique, and hence belong to the

same component in Ushort, all the vertices in a given cell

remain connected in B. From step 4 of the algorithm, every

two adjacent cells that were adjacent in G, remain adjacent

in B by virtue of adding the shortest edge between the two

cells to B. It follows from the above, and from the con-

nectivity of G, that B is a spanning subgraph of G. h

Lemma 6 The number of long edges crossing a given

short edge in B is O(R2/r2).

Proof Let eshort be a short edge in B. Then eshort must join

two nodes in the same grid-cell C. Any long edge in B that

crosses eshort must join two nodes, each located in an

adjacent cell to C. By Lemma 4, cell C has O(R2/r2)

adjacent cells. Therefore, C has O(R4/r4) pairs of adjacent

cells. Since exactly one edge between any two adjacent

cells is kept in B, the total number of long edges crossing

eshort is O(R4/r4). h

Lemma 7 The number of edges crossing a given long

edge in B is O(R4/r4).

Proof Let elong be a long edge. Suppose that the endpoints

of elong reside in the two cells C and C0. Any long edge

crossing elong must join a node in a cell that is adjacent to

either C or C0 to another node in a cell adjacent to C or C0.
Since there are O(R4/r4) pairs of cells that are adjacent to

either C or C0, and since exactly one edge between any two

adjacent cells is kept in B, the total number of long edges

crossing elong is O(R4/r4). h

Theorem 6 For any integer parameter k C 9, the algo-

rithm QuasiUDG-Backbone constructs a backbone of the

given quasi-UDG G whose maximum degree is O R2

r2

� �

;

average number of edges crossing a given edge is O R4

r4

� �

;

and power stretch factor is 3þ 2bþ1 sinbðp=kÞ (which, for

any [[ 0, is bounded by 3 ? [ for large enough k).

Moreover, the algorithm is local and exchanges O(m)

messages, where m is the number of edges in G.

Proof To prove the bound on the degree, note that since

each node in the spanner of Ushort constructed by the

algorithm in [9] has degree bounded by k ? 5, each node in

B has at most k ? 5 short edges incident on it in B. By

Lemma 4, for any node in B the number of cells adjacent to

the cell containing the node is O(R2/r2). Therefore, any

node in B can have at most O(R2/r2) long edges incident onFig. 6 Construction of a backbone for a given quasi-UDG
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it in B. It follows that every node has O(R2/r2) incident

edges in B.

To prove the bound on the number of edge-crossings, note

that since the algorithm in [9] constructs planar spanners of

the components of Ushort, no two short edges in B cross.

Therefore, the number of edge-crossings is the number of

crossings between short edges and long edges, plus the

number of crossings between long edges. By Lemma 6, the

number of edges crossing a given short edge is O(R4/r4).

Therefore, the total number of edge-crossings involving

short edges is O(m�R4/r4). By Lemma 7, the number of long

edges crossing a given long edge is O(R4/r4). Therefore, the

total number of edge-crossings involving long edges is

O(m�R4/r4). It follows that the total number of edge-

crossings is O(m �R4/r4), and hence the average number of

edges crossing a given edge is O(R4/r4).

To prove the bound on the stretch factor, first note that

by Lemma 5, the backbone B is a spanning subgraph of G.

We now show that every edge in G is stretched by no more

that 3þ 2bþ1 sinbðp=kÞ in B. Let e = (u, v) be an edge in

G. If e [ B then the statement follows directly. Suppose

now that e 62B: If e is a short edge, then since B contains

a power spanner of Ushort with stretch factor 1þ
2b sinbðp=kÞ; the result follows. If e is a long edge, let Cu

and Cv be the two cells containing u and v, respectively.

Let emin = (u0, v0) be the shortest edge between Cu and Cv

that was included in B, where u0 [ Cu and v0 [ Cv. Since B

contains a power spanner of Cu of stretch factor 1þ
2b sinbðp=kÞ; there is a path Puu0 in B from u to u0 of cost at

most 1þ 2b sinbðp=kÞ uu0j jb: Similarly, there is a path Pv0v

in B from v0 to v of cost at most 1þ 2b sinbðp=kÞ vv0j jb:
It follows that the path from u to v in B consisting of the

concatenation of Puu0 ; emin, and Pv0v; has cost bounded by

1þ 2b sinbðp=kÞ uu0j jbþ1þ 2b sinbðp=kÞ vv0j jbþ u0v0j jb:
Since (u, u0 ) and (v, v0) are both short edges, and hence,

are shorter than the long edge e = (u, v), and since emin is

not longer than e, it follows that there is a path in B of cost

at most 3þ 2bþ1 sinbðp=kÞjuvj: Noting that 2bþ1 sinbðp=kÞ
can be made arbitrarily small by choosing a sufficiently

large parameter k, the the stretch factor can be bounded by

3 ? [ for any [[ 0.

Finally, to analyze the number of messages exchanged

by the algorithm, note first that algorithm in [9] exchanges

O(m) messages. To compute the shortest edge between two

adjacent cells, each node in the cell computes the shortest

edge incident on it and whose other point is in the other

cell. Then vertices in one cell elect the shortest among all

these edges. Since all the vertices in one cell form a clique,

and since the number of adjacent cells to a given cell is

O(R2/r2), the total number of messages exchanged for

computing the shortest edges between adjacent cells is

O(m). Moreover, all the computation can be done locally:

every node only communicates with its neighbors. It

follows that the total number of messages exchanged by the

algorithm is O(m). h

The following theorem is then straightforward by

Corollary 2.

Theorem 7 The backbone constructed by the algorithm

QuasiUDG-Backbone is ð
ffiffiffi

n
p

; 0:5Þ-separable where n is

the number of nodes in the network.

4 Applications and performance evaluation

In this section, we first present a routing algorithm based on

the separators and prove upper bounds on the stretch factor

of the routing algorithm. In the second part of this section,

we show the simulation results of the backbone construc-

tions, and the routing performance of the routing algorithm.

4.1 A routing scheme based on the separators

As one of the applications of the small separators of the

grid graphs, we present a routing scheme for quasi-UDG

based on the grid graph and analyze its performance. Our

routing scheme is suitable for systems in which the size of

the messages itself is relatively large. We will give the

simulation results later in this section.

Our routing scheme is based on the distance labeling

scheme described in [8]. The basic idea of distance labeling

is to assign each vertex a label such that the distance

between two vertices can be computed using only their

labels. A straightforward labeling scheme would be to store

in each node a full table of the distances to all the other

nodes. The goal of the distance labeling scheme in [8] is to

find the labels of minimum length. The separability of the

underlying graph is a key factor of how good a distance

labeling scheme is. In [8], the authors proved that, for a

graph which has a separator of size k, there is a distance

labeling scheme of label size O(klog n ? log2n), and such

that the distance between two nodes can be computed in

time O(logn), where n is the number of nodes in the

network.

Although a quasi-UDG G may not possess a small

separator, we have proved that the grid graph H with n

vertices, constructed for G, does have a balanced separator

of size O
ffiffiffi

n
p
ð Þ: Conceptually, our routing protocol utilizes

two-level routing: virtually, the message is sent in the grid

graph from the cell containing the source to the cell con-

taining the destination, via a shortest path in the grid graph;

in reality, the routing is implemented in the underlying

quasi-UDG to route from cell to cell. (Note that in each

cell, the quasi-UDG vertices are fully connected, so routing

from one cell to an adjacent one takes at most two hops.)

The basic idea behind achieving shortest-path routing in
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the grid graph, is to split H into two non-adjacent parts

using the small separator S. Each vertex of H remembers

the distance to all vertices in S. Thus, two vertices in the

two parts (or S) can compute their shortest-path distance

using that information, because any shortest path between

them must go through some vertices in S. We recursively

apply the same process to partition each part into small

parts, to enable any two vertices to compute their shortest-

path distance using their stored information (their labels).

We stop partitioning a part when its size is below a certain

constant. (We call such a part a basic block.) Since we use

balanced separators, the process ends after O(logn) levels

of partitioning.

For a vertex W of H, let v(W) be the set of quasi-UDG

nodes of G that reside in the cell corresponding to W.

The following list contains the information that each node

u [ v(W) in G stores:

• The distances (in H) from u to all the separator vertices

of H that are on the boundaries of all the partitions that

W is in.

• If W is in a separator S, u also stores the distances in H

from W to all other vertices in S.

• The neighboring quasi-UDG nodes through which it

can get to other cells adjacent to W in H.

• A shortest-path routing table for the vertices of H in the

basic block where W resides.

Part (1) and part (2) of the above list are then considered

as the label L(W) of the vertex W in H. The label of u is the

triplet (u, W, L(W)).

The routing protocol assumes that the source knows the

label of the destination. This piece of information can be

obtained from location service. Since location service is

not directly related to our topic, we skip the details here.

If the destination is not in the same cell as the source,

the message will follow a shortest path in H from the

source cell to the destination cell. By utilizing the second

part of the list, a node can send a message to any of its

neighboring cells in two hops. Within a basic block, the

third part of the routing table points out the shortest path

between cells directly. Once the message reaches the basic

block containing the destination, it can be relayed through

the shortest path to the destination.

The routing protocol compares favorably with shortest-

path routing algorithms and compact routing algorithms,

for general networks, for its significantly-smaller routing

table size and constant stretch factor.

In practice, there are two slightly different realization of

this scheme: probing and non-probing. The one we

described above is the probing case: each node will talk to

node in its neighboring cells to find out which one of them

is closer to the destination. Since the probing messages is

of size O(logn) (only the destination cell ID and the node

ID are required), and can be ignored by comparison to the

size of the real message. The probing case, on the other

hand, requires a little bit more space, but can avoid the

probing messages. The node can also remember all the

labels of the neighboring cells. Since there are constant

many (at most O R2

r2

� �

) such cells, the order of the routing

table will stay unchanged.

Now we present the proof of Theorem 4.

Proof (Theorem 4) In the routing protocol described

above, the first part of a node’s routing table is of size

O
ffiffiffiffi

N
p

log N
� �

: The second and third parts of the routing

table both consist of a constant number of entries, because

the number of neighboring cells, and the number of cells in

each basic block, are both constants. The size of the routing

table is then O
ffiffiffiffi

N
p

log N
� �

: Inside each message we need

only to carry the label of the destination vertex; therefore,

the overhead in the message size is also bounded by

O
ffiffiffiffi

N
p

log N
� �

:

Given a path p from u to v, let d(p) denote its number of

hops, and let c(p) denote the number of times the path p

travels from one cell to another. Let popt be the shortest

path from u to v, and let p0 be the routing path of our

protocol. Clearly, c(popt) B d(popt), and c(p0) B c(popt)

because our protocol uses shortest path routing in the grid

graph. The path p0 travels from one cell to the next in at

most two hops, so d(p0) B 2c(p0) ? 1. It follows that

d(p0) B 2d(popt) ? 1. h

Sometimes we are more concerned about the energy

consumption than the hop distance if the wireless nodes are

able to adjust their communication range to save power.

Let the communication cost be as defined before.

In reality, it is infeasible for a node to reduce its com-

munication range to an arbitrarily-small number. There

is always a constant range d below which the wireless

node cannot reduce its communication range. With this

assumption, we prove the following theorem.

Theorem 8 Assume that the minimum communication

range is d. (Therefore, the communication cost of an edge

of Euclidean length d is a�(max{d, d})b.) Then the com-

munication cost of a routing path from a node u to a node v

generated by the above routing protocol is upper bounded

by a constant times the minimum communication cost from

u to v.

Proof Let popt be the optimal path from u to v with

the minimum communication cost Copt, and let p0 be the

routing path of our algorithm with cost C0. If u, v are in the

same cell of the grid graph H, then Copt C a� db, and

C0 B a�rb, since vertices in the same cell form a clique.

Therefore, C0 B (rb/db) �a� db B (rb/db)�Copt = Copt �O(1).
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Now assume that u, v are in different cells of H. Let lopt

and l0 denote, respectively, the number of hops in popt and

p0. By Theorem 4, l0 B 2lopt ? 1. So C0 � l0 � a � Rb�
ð2lopt þ 1Þ � a � Rb� 2loptþ1

lopt
� Rb

db � lopt � a � db� 3 � Rb

db � Copt ¼
Copt � Oð1Þ:

4.2 Simulations

We conduct extensive simulations based on the following

quasi-UDG model: when the distance x between two nodes

u and v is such that r B x B R, then with probability

1� x� r

R� r

there will be a direct link between u and v.

The performance of our backbone construction algo-

rithm and routing protocol are evaluated for sensor net-

works based on different configurations of the quasi-UDG

model.

The performance has been stable and consistent. In the

following experiment, we randomly deploy N quasi-UDG

nodes in a 2-D space of size 15,000 9 15,000. We increase

the number of nodes, N, in the system from 1,000, 1,500 to

2,000 to verify the effects of density change on the per-

formance. We range the value of R/r from 1, 2, 3, ..., 10 to

see the performance of our algorithms for different wireless

connectivity models. To mimic nontrivial network topol-

ogies, we randomly generate holes of radius randomly

picked in the range [R, 2R] in the sensor field. The number

of holes ranges from 0, 1, 2, 4. The average degree of our

networks ranges from 6, 7, ..., 10. For a given value of R/r,

we adjust the absolute values of R and r to achieve the

expected average degree. For each configuration, we run

the simulation 50 times and take the average of the per-

formance metrics.

We would like to point out that the performances of our

routing algorithm and backbone construction are relatively

independent of the size of the network. Both our theoretical

bounds and the simulation results show that the quality of

the backbone constructed and the stretch of the routing

paths are closely related to the ratio of r to R.

4.2.1 Backbone construction

In the backbone construction simulations, we measure the

power stretch factor, maximum degree, the average degree,

and the average number of edge-crossings in the backbone

constructed, and compare them to those of the original graph.

The results are shown in Fig. 7, and are for backbones

constructed by only performing the first step and the last

step in Algorithm Backbone on sensor networks with four

holes.

Our results show that, for all configurations, the back-

bones have very small power stretch factors, and much

smaller maximum degree than the original network (in

most cases, we can bring the average degree to below 6,

which is the upper bound of the average degree for planar

graphs). Even when R/r = 10, the average degree of

our backbones is no more than 5. As for the number of
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edge-crossings, our algorithm reduced it by at least 80% in

all cases.

Figure 7(a) shows the maximum node degree for the

backbones compared to that of the original networks. In all

cases, the maximum node degree is below 10, which is

much smaller than that of the original network. Similarly,

Fig. 7(b) shows that the average degrees of the backbones

are all below 5. In Fig. 7(c), we see that the average

number of edge-crossings in the backbone is very close to

0: the backbones we constructed are very close to planar

graphs. Figure 7(d) shows the power stretch factor of our

backbones. We notice that when R/r gets larger, the power

stretch factor becomes smaller. This is because in our

backbone constructions, we tend to remove less edges if

R is much larger than r, hence causing less distortion to the

stretch factors.
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4.2.2 Routing performance

We apply our routing protocol not only to the original

quasi-UDGs, but also to the backbones we obtain. To study

the performance, we measure the average label size and the

stretch factor of routing path. The length of the routing path

in the original graphs is defined as the hop distance

between two nodes, while in the backbones, we use the

communication cost with b = 2 as the length of the path.

In both cases we randomly pick 1,000 source-destination

pairs in the graph, simulate the routing process, and com-

pare the length of the path with the shortest.

Figure 8(a) shows the average values of the average

label size (with a node ID as a unit), along with their

standard deviations, over the experiments for two cases.

Figure 8(b) shows the statistics for the label sizes on

routing base on the backbones. We observe that the label

sizes, with the algorithm applied to the backbones, are

smaller than those of the original graphs. This is mainly

because the backbones are sparser than the original quasi-

UDGs, and hence the grid graphs we get are also sparser

and have smaller separators. We will see later that this

advantage comes at a cost of slightly power larger stretch

factors.

Figure 8(c) shows the average hop distance stretch

factors of the routing path for the routing algorithm applied

to the original graphs directly. In all cases, the path stretch

factor is not larger than 1.3.

Figure 8(d) shows the hop distance stretch factors of the

routing paths when the algorithm is applied to the back-

bones. The hop stretch factors shown in Fig. 8(d) are

moderately larger than the ones shown in Fig. 8(c). It is the

price we paid for the reduction in the size of the routing

tables.

From Fig. 8(c) and (d), it looks interesting that when R/r

is large (10), the algorithm generally gets better. This is

because to maintain the same average node degree of the

graphs we have to decrease the value of r. In that case a

grid graph actually describes the original graph more

accurately, and with more details. Hence, the sizes of the

labels are larger [see Fig. 8(a), (b)], but the paths we dis-

covered are closer to the shortest paths.

Figure 8(e) shows the power stretch factors of the

routing paths when applying our routing algorithm directly

on the original network, while Fig. 8(f) shows the power

stretch factors of the routing paths when applying the

routing algorithm on the backbones.

We have also implemented the well-known greedy-

forwarding plus local-flooding routing algorithm, and per-

formed the same number of experiments on the same set of

graphs. The average stretch factors are shown in Fig. 8(g)

and (h). Our results indicate that, when compared to that

algorithm, the routing protocol based on separators has a

much better stretch factor because of its robustness to the

existence of holes.

5 Conclusion

In this paper, we have studied two structural properties of

quasi-UDGs: separability and the existence of power effi-

cient spanners. These results lead to a deeper understanding

of the local properties of quasi-UDG networks, and to an

improvement in the development of networking protocols.
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