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Abstract—Flash memories are a very widely used type of non-
volatile memory. Like magnetic recording and optical recording,
flash memories have their own distinct properties. These distinct
properties introduce very interesting information-representation
and coding problems, which address many aspects of a successful
storage system. In this paper, we survey recent results in this area.
A focus is placed on rewriting codes and rank modulation.

I. INTRODUCTION

In this paper, we survey the recent results on information
representation and coding for flash memories. Flash memo-
ries are a milestone in the development of the data storage
technology. The applications of flash memories have expanded
widely in recent years, and flash memories have become the
dominating member in the family of non-volatile memories.
Compared to magnetic recording and optical recording, flash
memories are more suitable for many mobile-, embedded-
and mass-storage applications. The reasons include their high
speed, physical robustness, and easy integration with circuits.

The representation of data plays a key role in storage
systems. Like magnetic recording and optical recording,
flash memories have their own distinct properties, including
block erasure, iterative cell programming, etc. [3] These
distinct properties introduce very interesting information-
representation and coding problems that address many aspects
of a successful storage system, such as efficient data modifica-
tion, error correction, etc. In this paper, we first introduce the
flash memory model, then study some newly developed codes,
including codes for rewriting data and the rank modulation
scheme. We also survey the results on related topics in this
area. A main theme for many of the topics is understanding
how to store information in a medium that has asymmetric
properties when it transits between different states.

II. MODELLING FLASH MEMORIES

The basic storage unit in a flash memory is a floating-gate
transistor [3]. We also call it a cell. Charge (e.g., electrons)
can be injected into the cell using the hot-electron injection
mechanism or the Fowler-Nordheim tunnelling mechanism,
and the injected charge is trapped in the cell. (Specifically, the
charge is stored in the floating-gate layer of the transistor.) The
charge can also be removed from the cell using the Fowler-
Nordheim tunnelling mechanism. The amount of charge in a

cell determines its threshold voltage, which can be measured.
The operation of injecting charge into a cell is called writing
(or programming), removing charge is called erasing, and
measuring the charge level is called reading. If we use two
discrete charge levels to store data, the cell is called single-
level cell (SLC) and can store one bit. If we use q > 2 discrete
charge levels to store data, the cell is called multi-level cell
(MLC) and can store log2 q bits.

A prominent property of flash memories is block erasure. In
a flash memory, cells are organized as blocks, each containing
about 105 cells. While it is relatively easy to inject charge
into a cell, to remove charge from any cell, the whole block
containing it must be erased to the ground level (and then
reprogrammed). This is called block erasure. The block erasure
operation not only significantly reduces speed, but also reduces
the lifetime of the flash memory [3]. This is because a block
can only endure about 104 ∼ 106 erasures, after which
the block may break down. Since the breaking down of a
single block can make the whole memory stop working, it
is important to balance the erasures performed to different
blocks. This is called wear leveling. A commonly used wear-
leveling technique is to balance erasures by moving data
among the blocks, especially when the data are revised [10].

There are two main types of flash memories: NOR flash and
NAND flash. A NOR flash memory allows random access to
its cells. A NAND flash partitions every block into multiple
sections called pages, and a page is the unit of a read or write
operation. Compared to NOR flash, NAND flash may be much
more restrictive on how its pages can be programmed, such
as allowing a page to be programmed only a few times before
erasure [10]. However, NAND flash enjoys the advantage of
higher cell density.

The programming of cells is a noisy process. When charge is
injected into a cell, the actual amount of injection is randomly
distributed around the aimed value. An important thing to
avoid during programming is overshooting, because to lower
a cell’s level, erasure is needed. A commonly used approach
to avoid overshooting is to program a cell using multiple
rounds of charge injection. In each round, a conservative
amount of charge is injected into the cell. Then the cell’s
charge level (which we shall call cell level) is measured before
the next round begins. With this approach, the charge level
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can gradually approach the target value and the programming
precision is improved. The corresponding cost is the slowing
down in the writing speed.

After cells are programmed, the data are not necessarily
error-proof, because the cell levels can be changed by vari-
ous errors over time. Some important error sources include
write disturb and read disturb (disturbs caused by writing or
reading), as well as leakage of charge from the cells (called
the retention problem) [3]. The changes in the cell levels
often have an asymmetric distribution in the up and the down
directions, and the errors in different cells can be correlated.

In summary, flash memory is a storage medium with asym-
metric properties. It is easy to increase a cell’s level, but very
costly to decrease it due to block erasure. The NAND flash
may have more restrictions on reading and writing compared
to NOR flash. The cell programming uses multiple rounds
of charge injection to shift the cell level monotonically up
toward the target value, to avoid overshooting and improve the
precision. The cell levels can change over time due to various
disturb mechanisms and the retention problem, and the errors
can be asymmetric or correlated.

III. CODES FOR REWRITING DATA

In this section, we discuss coding schemes for rewriting data
in flash memories. The interest in this problem comes from the
fact that if data are stored in the straightforward way, even to
change one bit in the data, we may need to lower some cell’s
level, which would lead to the costly block erasure operation.
It is interesting to see if there exist codes that allow data to be
rewritten many times without block erasure. The flash memory
model we use in this section is the Write Asymmetric Memory
(WAM) model [15].

Definition 1. WRITE ASYMMETRIC MEMORY (WAM)
In a write asymmetric memory, there are n cells. Every cell

has q ≥ 2 levels: levels 0, 1, · · · , q− 1. The level of a cell can
only increase, not decrease.

The Write Asymmetric Memory models the monotonic
change of flash memory cells before the erasure operation. It is
a special case of the generalized write-once memory (WOM)
model, which allows the state transitions of cells to be any
acyclic directed graph [6], [8], [27].

A. Floating Codes

Floating code generalizes the definition of WOM code by
jointly storing multiple variables. The study of WOM code was
started by Rivest and Shamir in their celebrated paper [27],
where a single variable is stored. Jointly storing multiple
variables can increase the number of supported rewrites, when
each rewrite updates only one variable (or, not all variables).
Let us first present the definition of floating codes [15].

Definition 2. FLOATING CODE

We store k variables of alphabet size � in a write asymmetric
memory (WAM) with n cells of q levels. Every rewrite changes
one of the k variables. Let (c1, · · · , cn) ∈ {0, 1, · · · , q− 1}n

denote the state of the memory (i.e., the levels of the n
cells). Let (v1, · · · , vk) ∈ {0, 1, · · · , � − 1}k denote the
data (i.e., the values of the k variables). For any two memory
states (c1, · · · , cn) and (c′1, · · · , c′n), we say (c1, · · · , cn) ≥
(c′1, · · · , c′n) if ci ≥ c′i for i = 1, · · · , n.

A floating code has a decoding function Fd and an update
function Fu. The decoding function Fd : {0, 1, · · · , q− 1}n →
{0, 1, · · · , � − 1}k maps a memory state s ∈ {0, 1, · · · , q −
1}n to the stored data Fd(s) ∈ {0, 1, · · · , � − 1}k. The
update function (which represents a rewrite operation), Fu :
{0, 1, · · · , q − 1}n × {1, 2, · · · , k} × {0, 1, · · · , � − 1} →
{0, 1, · · · , q− 1}n, is defined as follows: “if the current mem-
ory state is s and the rewrite changes the i-th variable to
value j ∈ {0, 1, · · · , � − 1}, then the rewrite operation will
change the memory state to Fu(s, i, j) such that Fd(Fu(s, i, j))
is the new data with the i-th variable changed to the value j.”
Naturally, since the memory is a write asymmetric memory, we
require that Fu(s, i, j) ≥ s.

Let t denote the number of rewrites (including the first write)
guaranteed by the code. A floating code that maximizes t is
called optimal.

Example 3.[15] Here is a floating-code example for two binary
variables. We store two binary variables in a WAM with n = 3
cells of q levels. Every rewrite changes the value of one vari-
able. The floating code is shown in Fig. 1. In the figure, the
numbers in a circle represent the memory state, the numbers
beside a circle represent the two variables, and the arrows
represent the transitions of the memory state.

With every rewrite, the memory state moves up by one layer
in the figure. For example, if q ≥ 3 and a sequence of rewrites
change the data as (0, 0) → (1, 0) → (1, 1) → (0, 1) →
(1, 1) → · · · , the memory state changes as (0, 0, 0) →
(1, 0, 0) → (1, 0, 1) → (1, 0, 2) → (1, 1, 2) → · · · . The
code in the figure has a periodic structure, where every period
contains 2n − 1 = 5 layers (as shown in the figure) and has
the same topological structure. From one period to the next, the
only difference is that the data (0, 0) is switched with (1, 0),
and the data (1, 1) is switched with (0, 1). Given the finite value
of q, we just need to truncate the graph up to the cell level q− 1.

2,2,21,2,22,1,22,2,1

3,2,2 2,3,2

one
period

0,0,0

1,0,0 0,1,0

0,1,11,0,11,1,0

2,0,11,2,02,1,0 1,0,2 0,2,1 0,1,2

2,2,0 2,0,2 0,2,2 2,1,1 1,2,1 1,1,2

(0,0)

(1,0) (0,1)

(0,0) (1,1) (1,1)

(1,0) (0,1) (1,0) (0,1) (1,0) (0,1)

(0,0) (0,0) (0,0) (1,1) (1,1) (1,1)

(1,0) (1,0) (1,0) (0,1)

(0,0) (1,1)

Fig. 1. An optimal floating code for k = � = 2, n = 3 and arbitrary q.
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The floating code in the above example is generalized
in [15] for any value of n and q (but still with k = � = 2),
which is shown to guarantee t = (n − 1)(q − 1) + � q−1

2 �
rewrites. It is optimal because it matches the following upper
bound for t, which was proved in [15].

Theorem 4. For any floating code, if n ≥ k(l − 1) − 1, then
t ≤ [n− k(l − 1) + 1] · (q− 1) + � [k(l−1)−1]·(q−1)

2 �; if n <

k(l − 1)− 1, then t ≤ � n(q−1)
2 �.

B. Generalized Rewriting Codes

We now extend floating codes to a more general definition
of rewriting codes. We use a directed graph to represent how
rewrites may change the stored data [18]. The other concepts
– decoding function, update function, number of rewrites
guaranteed by the rewriting code – are similar as before.

Definition 5.[18] GENERALIZED REWRITING

The stored data is represented by a directed graph D =
(VD , ED). The vertices VD represent all the values that the
data can take. There is a directed edge (u, v) from u ∈ VD
to v ∈ VD , v 
= u, iff a rewrite may change the data from value
u to value v. The graph D is called the “data graph” and the
number of its vertices, corresponding to the input-alphabet size,
is denoted by L = |VD|. Without loss of generality (w.l.o.g.),
we assume the data graph to be strongly connected.

It is simple to see that when the above notion is applied to
floating codes, the alphabet size L = �k, and the data graph
D has constant in-degree and out-degree k(�− 1). The out-
degree of D shows by how much a rewrite can change data.
It is an important parameter. In the following, we show a
rewriting code for this generalized rewriting model. The code,
called Trajectory Code, was proposed in [18].

Let (c1, · · · , cn) ∈ {0, 1, · · · , q− 1}n denote the memory
state. Let VD = {0, 1, · · · , L − 1} denote the alphabet of
the stored data. Let’s present the trajectory code step by step,
starting with its basic building blocks.

1) Linear Code and Extended Linear Code: We first look
at a “Linear Code” for the case n = L− 1 and q = 2 [27].

Construction 6. [27] LINEAR CODE FOR n = L− 1, q = 2
The memory state (c1, · · · , cn) represents the data ∑n

i=1 ici
mod (n + 1). For every rewrite, change as few cells from level
0 to level 1 as possible to get the new data.

Example 7. Let n = 7, q = 2 and L = 8. Using
the linear code, the data represented by the memory state
(c1, · · · , c7) is ∑7

i=1 ici mod 8. If the rewrites change the
data as 0 → 3 → 5 → 2 → 4, the memory state
can change as (0, 0, 0, 0, 0, 0, 0) → (0, 0, 1, 0, 0, 0, 0) →
(0, 1, 1, 0, 0, 0, 0) → (0, 1, 1, 0, 1, 0, 0) → (0, 1, 1, 1, 1, 1, 0).

When n ≥ L and q ≥ 2, we can generalize the Linear Code
in the following way [18]. First, suppose n = L and q ≥ 2.

We first use level 0 and level 1 to encode (as the Linear Code
does), and let the memory state represent the data ∑n

i=1 ici
mod n. (Note that rewrites here will not change cn.) When
the code can no longer support rewriting, we increase all cell
levels (including cn) from 0 to 1, and start using cell levels 1
and 2 to store data in the same way as above, except that now,
the data represented by the memory state (c1, · · · , cn) uses
the formula ∑n

i=1 i(ci − 1) mod n. This process is repeated
q− 1 times in total. The general decoding function is therefore
∑n

i=1 i(ci − cn) mod n.
Now we extend the above code to n ≥ L cells. We divide

the n cells into b = �n/L� groups of size L (some cells may
remain unused), and sequentially apply the above code to the
first group of L cells, then to the second group, and so on. We
call this code the Extended Linear Code. It has been shown
that the Linear Code guarantees n+1

4 + 1 rewrites [27], while
the Extended Linear Code guarantees n(q − 1)/8 = Θ(nq)
rewrites [18]. Both are asymptotically optimal in n.

2) Code for Large Alphabet Size L: We now consider the
case where L is larger than n. The rewriting code we present
here will reduce it to the case n = L studied above.

Construction 8. [18] REWRITING CODE FOR n < L ≤ 2
√

n

Let b be the smallest positive integer value that satisfies
�n/b�b ≥ L. For i = 1, 2, . . . , b, let vi be a symbol from an
alphabet of size �n/b� ≥ L1/b. We may represent any symbol
v ∈ {0, 1, · · · , L− 1} as a vector of symbols (v1, v2, . . . , vb).
Partition the n flash cells into b groups, each with �n/b�
cells (some cells may remain unused). Encoding the symbol
v into n cells is equivalent to the encoding of each vi into the
corresponding group of �n/b� cells. As the alphabet size of
each vi equals the number of cells it is to be encoded into, we
can use the Extended Linear Code to store vi.

The above code construction guarantees n(q−1) log n
16 log L =

Θ( nq log n
log L ) rewrites when 16 ≤ n ≤ L ≤ 2

√
n [18]. It is

asymptotically optimal in the sense that when n < L− 1 and
the data graph D is a complete graph, a rewriting code can
guarantee at most O( nq log n

log L ) rewrites. It should be noted that
the above three codes –linear code, extended linear code, and
Construction 8 – do not specify any constraint for the data
graph D, so D can be a complete graph.

3) Full Construction of Trajectory Code: Let’s now con-
sider more restricted rewrite operations. In many applications,
a rewrite often changes only a (small) part of the data. So let’s
consider the case where a rewrite can change the data to at
most Δ new values. This is the same as saying that in the data
graph D, the maximum out-degree is Δ. We call such graph
D a “Bounded Out-degree Data Graph.”

The code to be shown is given the name Trajectory Code
in [18]. Its idea is to record the path in D along which the data
changes, up to a certain length. When Δ is small, this approach
is particularly helpful, because recording which outgoing edge
a rewrite takes (one of Δ choices) is more efficient than
recording the new data value (one of L > Δ choices).
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We first outline the construction of the Trajectory Code. Its
parameters will be specified soon.

Construction 9.[18] (OUTLINE OF TRAJECTORY CODE)
Let n0, n1, n2, . . . , nd be d + 1 positive integers such that

∑d
i=0 ni = n is the number of cells. We partition the n cells

into d + 1 groups, each with n0, n1, . . . , nd cells, respectively.
We call them registers S0, S1, . . . , Sd.

The encoding uses the following basic scheme: we start by
using register S0, called the anchor, to record the value of the
initial data v0 ∈ {0, 1, · · · , L − 1}. For the next d rewrite
operations we use a differential scheme: denote by v1, . . . , vd ∈
{0, 1, · · · , L− 1} the next d values of the rewritten data. In the
i-th rewrite, 1 ≤ i ≤ d, we store in register Si the identity
of the edge (vi−1, vi) ∈ ED . (ED and VD are the edge set
and vertex set of the data graph D, respectively.) We do not
require a unique label for all edges globally, but rather require
that locally, for each vertex in VD , its out-going edges have
unique labels from {1, · · · , Δ}, where Δ denotes the maximal
out-degree in the data graph D.

Intuitively, the first d rewrites are achieved by encoding the
trajectory taken by the input data sequence starting with the
anchor data. After d such rewrites, we repeat the process by
rewriting the next input from {0, 1, · · · , L− 1} in the anchor
S0, and then continuing with d edge labels in S1, · · · , Sd.

Let us assume a sequence of s rewrites have been stored thus
far. To decode the last stored value all we need to know is s
mod (d + 1). This is easily achieved by using �t/q more
cells (not specified in the previous d + 1 registers), where t is
the total number of rewrites to be guaranteed. For these �t/q
cells we employ a simple encoding scheme: in every rewrite
operation we arbitrarily choose one of those cells and raise its
level by one. Thus, the total level in these cells equals s.

The decoding process takes the value of the anchor S0 and
then follows (s − 1) mod (d + 1) edges which are read
consecutively from S1, S2, · · · . Notice that this scheme is
appealing in cases where the maximum out-degree of D is
significantly lower than the alphabet size L.

Note that each register Si, for i = 0, . . . , d, can be seen as a
smaller rewriting code whose data graph is a complete graph of
either L vertices (for S0) or Δ vertices (for S1, . . . , Sd). We use
either the Extended Linear Code or the code of Construction 8
for rewriting in the d + 1 registers.

The parameters of the Trajectory Code are shown by the
following construction. We assume that n ≤ L ≤ 2

√
n.

Construction 10. TRAJECTORY CODE FOR n ≤ L ≤ 2
√

n

If Δ ≤ � n log n
2 log L �, let d = �log L/ log n� =

Θ(log L/ log n). If � n log n
2 log L � ≤ Δ ≤ L, let d =

�log L/ log Δ� = Θ(log L/ log Δ). In both cases, set the reg-
ister sizes to n0 = �n/2� and ni = �n/(2d)� for i = 1, . . . d.

If Δ ≤ � n log n
2 log L �, apply the code of Construction 8 to

register S0, and apply the Extended Linear Code to registers
S1, · · · , Sd. If � n log n

2 log L � ≤ Δ ≤ L, apply the code of Construc-
tion 8 to the d + 1 registers S0, · · · , Sd.

It is shown in [18] that when Δ ≤ � n log n
2 log L �, the trajectory

code guarantees Θ(nq) rewrites; when � n log n
2 log L � ≤ Δ ≤ L,

the trajectory code guarantees Θ
(

nq log n
log Δ

)
rewrites. Both are

asymptotically optimal.

IV. RANK MODULATION

Rank modulation is a new data representation scheme. It
was proposed in [20], [23] for two objectives: to eliminate the
risk of over-injection of charge when programming cells, and
to tolerate asymmetric errors better. Rank modulation uses the
relative order of the cell levels, instead the absolute values of
cell levels, to represent data. Let’s look at a simple example.
Let [n] denote the set of integers {1, 2, · · · , n}.

Example 11. We partition the cells into groups of three cells
each. Denote the three cells in a group by cell 1, cell 2, and cell
3. We use a permutation of {1, 2, 3} – [a1, a2, a3] – to represent
the relative order of the three cell levels as follows: cell a1 has
the highest level, and cell a3 has the lowest level. (The cell
levels considered in this section are real numbers. So no two
cells can practically have the same level.)

The three cells in a group can introduce six possible permuta-
tions: [1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]. So
they can store up to log2 6 bits of information. To write a
permutation, we program the cells from the lowest level to
the highest level. For example, if the permutation to write is
[2, 3, 1], we first program cell 3 to make its level higher than
that of cell 1, then program cell 2 to make its level higher than
that of cell 3. This way, there is no risk of overshooting.

We use n to denote the number of cells in a group. As in
the example, we use a permutation of [n] – [a1, a2, · · · , an] –
to denote the relative order of the cell levels such that cell a1
has the highest level and cell an has the lowest level.

A. Rewriting Codes for Rank Modulation

Assume that the only operation we allow for rewriting data
is the “push-to-top” operation: injecting charge into a cell to
make its level higher than all the other cell levels in the same
cell group. (The operation has no risk of overshooting.) Then,
how to design good rewriting codes for rank modulation?

Let � denote the alphabet size of the data symbol stored
in a group of n cells. (Here � ≤ n!.) Let the alphabet of the
data symbol be [�] = {1, 2, · · · , �}. Assume that a rewrite
can change the data to any value in [�]. A rewriting code
decodes every permutation [a1, a2, · · · , an] as a symbol in [�].
We define the cost of a rewrite as the number of “push-to-top”
operations needed to change the permutation. It is observed
that this rewrite cost is closely related to the “prefixes” of
permutations [20]. Let’s see an example.

Example 12. Let n = 4, � = 5. For i = 1, · · · , n, we
say [a1, · · · , ai] is a prefix of [a1, · · · , an]. (For example,
[1, 2, 3, 4] and [1, 2, 4, 3] have the same prefix [1, 2].) Let
P([a1, · · · , ai]) denote all the permutations of [n] with prefix
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[a1, · · · , ai]. By P([a1, · · · , ai]) �→ j, we mean that the rewrit-
ing code decodes all the permutations with prefix [a1, · · · , ai]
as symbol j ∈ [�]. Then, let’s define a rewriting code as follows:
“P([1]) �→ 1, P([2]) �→ 2, P([3]) �→ 3, P([4, 1]) �→ 4,
P([4, 2]) �→ 5.” Since the maximum prefix length used in the
code is two, the cost of rewriting is at most two.

Let ρn,� denote the smallest integer such that n!
(n−ρn,�)! ≥ �.

It is shown in [20] that regardless of the current cell state,
there is a always a “next rewrite” of cost at least ρn,�. It is
also shown that there is a prefix-free code (like the one in the
above example) of maximum prefix length ρn,� [20]. (So it is
worst-case optimal.) Prefix-free codes for minimum average
rewriting cost were also studied in [20].

B. Error-correcting Codes for Rank Modulation

An error-correcting rank-modulation code is a subset of
permutations that are far from each other based on some
distance measure. In [23], the distance between two per-
mutations A and B, d(A, B), is defined as the minimum
number of adjacent transpositions needed to change A into
B (or B into A). Note that given a permutation, an adjacent
transposition is the local exchange of two adjacent elements
in the permutation: [a1, . . . , ai−1, ai , ai+1, ai+2, . . . , an] is
changed to [a1, . . . , ai−1, ai+1, ai , ai+2, . . . , an]. (For example,
d([2, 1, 3, 4], [2, 3, 4, 1]) = 2 because we have adjacent trans-
positions: [2, 1, 3, 4] → [2, 3, 1, 4] → [2, 3, 4, 1].)

Define the adjacency graph of permutations, G = (V, E), as
follows. The graph G has |V| = n! vertices, which represent
the n! permutations. Two vertices u, v ∈ V are adjacent if
and only if d(u, v) = 1. G is a regular undirected graph with
degree n− 1 and diameter n(n−1)

2 . It is shown in [23] that G
is a subgraph of the 2× 3× · · · × n linear array. Examples
for n = 3, 4 are shown in Fig. 2. The following construction
shows how to embed the permutation [a1, a2, · · · , an] as the
vertex of coordinate (x1, x2, · · · , xn−1) in the 2× 3× · · · × n
linear array (here 0 ≤ xi ≤ i): “For i = 1, · · · , n− 1, in the
permutation [a1, a2, · · · , an], the element i + 1 is in front of
xi elements of the set {1, 2, · · · , i}.” [23]

From the above embedding result, it immediately follows
that if we construct an error-correcting code in the 2× 3×
· · · × n linear array of minimum L1-distance d, we also get an
error-correcting code of rank modulation of minimum distance
at least d. An one-error-correcting rank-modulation code was
constructed using this method in [23], whose cardinality was
proved to be at least half of optimal.

V. EXTENDED INFORMATION THEORETIC RESULTS

Flash memory is a type of constrained memory. There has
been a history of distinguished theoretical study on constrained
memories. It includes the original work by Kuznetsov and
Tsybakov on coding for defective memories [24]. Further
developments on defective memories include [11], [13]. The
write once memory (WOM) [27], write unidirectional memory
(WUM) [26], [28], [30], and write efficient memory [1], [9] are
also special instances of constrained memories. Among them,

WOM is the most related to the Write-Asymmetric Memory
model studied in this paper.

Write once memory (WOM) was defined by Rivest and
Shamir in their original work [27]. In a WOM, a cell’s state can
change from 0 to 1 but not from 1 to 0. This model was later
generalized with more cell states in [6], [8]. The objective of
WOM codes is to maximize the number of times that the stored
data can be rewritten. A number of very interesting WOM code
constructions have been presented over the years, including the
tabular codes, linear codes, etc. in [27], the linear codes in [6],
the codes constructed using projective geometries [25], and
the coset coding in [5]. Fine results on the capacity of WOM
have been presented in [8], [12], [27], [31]. Furthermore, error-
correcting WOM codes have been studied in [33]. In all the
above works, the rewriting model assumes no constraints on
the data, namely, the data graph D is a complete graph.

With the increasing importance of flash memories, new
topics on coding for flash memories have been studied in
recent years. For efficient data rewriting, floating codes and
buffer codes were proposed in [15] and [2]. A floating code
jointly encodes multiple variables, and every rewrite changes
one variable. A buffer code, on the other hand, records the
most recent data of a data stream. More results on floating
codes that optimize the worst-case rewriting performance were
presented in [16], [32]. Floating codes that also correct errors
were studied in [14]. In [18], the rewriting problem was gen-
eralized based on the data graph model, and trajectory codes
for complete data graphs and bounded-degree data graphs
were presented. The paper [18] also contains a summary and
comparison of previous results on rewriting codes.

Optimizing rewriting codes for expected performance is also
an interesting topic. In [7], floating codes of this type were de-
signed based on Gray code constructions. In [18], randomized
WOM codes of robust performance were proposed.

The rank modulation scheme was proposed and studied
in [20], [21], [23]. In addition to rewriting [20] and error
correction [23], a family of Gray codes for rank modulation
were also presented [20], [21]. One application of the Gray
codes is to map rank modulation to the conventional multi-
level cells. A type of convolutional rank modulation codes,
called Bounded Rank Modulation, was studied in [29].

To study the storage capacity of flash memories, it is
necessary to understand how accruately flash cells can be
programmed using the iterative and monotonic programming
method. This was studied in [17] based on an abstract
programming-error model.

The errors in flash cell levels often have an asymmetric
property. In [4], error-correcting codes that correct asymmetric
errors of limited magnitude were designed for flash memories.

In a storage system, to avoid the accumulation of errors,
a common practice is to write the correct data back into
the storage system once the errors accumulated in the data
reach a certain threshold. This is called memory scrubbing. In
flash memories, however, memory scrubbing is more difficult
because to write one correct codeword back into the system,
the whole block needs to be erased. A new type of error-
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Fig. 2. Coordinates of permutations, and embedding the adjacency graph of permutations, G, in the 2× 3× · · · × n array, Ln. In the two arrays, the solid
lines are the edges in both G and Ln, and the dotted lines are the edges only in Ln. (a) Coordinates of permutations for n = 3. (b) Embedding G in Ln for
n = 3. (c) Coordinates of permutations for n = 4. (d) Embedding G in Ln for n = 4.

correcting codes, called Error-Scurbbing Codes, were defined
in [19] for multi-level cells. It is shown that even if the only
allowed operation is to increase cell levels, a higher rate of
ECC can still be achieved by actively scrubbing errors.

The block erasure property of flash memories affects not
only rewriting and cell programming, but also data movement.
In [22], it is shown that by appropriately using coding, the
number of erasures needed for moving data among n NAND
flash blocks can be reduced by a factor of O(log n).
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