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Abstract—Rank modulation is a scheme that uses the relative
order of cell levels to represent data. Its applications include
flash memories, phase-change memories, etc. An extension of
rank modulation is studied in this paper, where multiple cells
can have the same rank. We focus on the rewriting of data based
on this new scheme, and study its basic properties.

I. I NTRODUCTION

Rank modulation is a scheme that uses the relative order of
cell levels to represent data [3]. Its applications include flash
memories, phase-change memories (PCMs), etc. The cell level
corresponds to the cell’s charge level for flash memories and
the cell’s electrical resistance for PCMs, and is a real number.
Considern cells c1, c2, . . . , cn whose levels arè1, `2, . . . , `n,
respectively, wherè i 6= ` j when i 6= j. Let (a1, a2, . . . , an)
be a permutation of the set{1, 2, . . . , n}, such that`a1 >
`a2 > · · · > `an . Then for1 ≤ i ≤ n, the cellcai has thei-th
highest level and is said to haverank i. The rank modulation
scheme uses the ranks of cells (instead of the real values of
the cell levels) to represent data; namely, the information bits
are mapped to the permutation(a1, a2, . . . , an) [3].

Rank modulation can make it simpler and more robust to
program flash memory cells, where the cell levels are only
allowed to monotonically increase during the programming
process. For PCMs, if the cells are programmed only through
crystallization without the reset operation (which can happen
for multi-level cells or rewriting codes), the same benefit can
be obtained. It is also robust against asymmetric noise in cell
levels, such as the charge-leakage noise of flash memories
and the long-term cell crystallization noise of PCMs. There
has been a number of works studying rank modulation[3], [5],
[7], [8] and its error-correcting codes [1], [2], [4], [6].

In this paper, we study an extension of rank modulation,
where multiple cells can have the same rank. The general idea
is that we see cells of similar levels as having the same rank,
and see cells of sufficiently different levels as having different
ranks. There are naturally various ways to define the similarity
of cell levels, including the following one. Let∆ andδ be two
parameters, where∆ ≥ δ ≥ 0. For n cells whose levels can
be ordered as̀ a1 ≥ `a2 ≥ · · · ≥ `an , we require that for
1 ≤ i < n, either `ai − `ai+1 ≤ δ or `ai − `ai+1 > ∆. Then
for 1 ≤ i < n, if `ai − `ai+1 ≤ δ, we say the cellscai and
cai+1 have the samerank; if `ai − `ai+1 > ∆, we say they
have differentranks. For example, assumeδ = 0.2, ∆ = 0.5,
n = 8 and

(`1, . . . , `8) = (0.8, 2.2, 1.56, 0.21, 0.2, 2.1, 1.35, 1.38).

Then (a1, . . . , a8) = (2, 6, 3, 8, 7, 1, 4, 5), and

(`a1 , . . . , `a8) = (2.2, 2.1, 1.56, 1.38, 1.35, 0.8, 0.21, 0.2);

so the cellsc2, c6 have rank 1,c3, c8, c7 have rank 2,c1 has
rank 3, andc4, c5 have rank 4. (We may further bound the
maximum difference between the levels of the cells of the
same rank.) Here the parameter∆ ensures the cell levels for
different ranks are sufficiently apart so that they can tolerate
noise better, andδ is chosen appropriately so that the cell
levels for the same rank can be programmed successfully
with high probability. Allowing cells to have the same rank
can help achieve higher storage capacity. And since the gap
between the cell levels of different ranks does not have a
specific required value – in particular it is not upper bounded
– the cells can still be programmed easily without the risk
of charge overshooting (as long as the cell levels of each
individual rank are programmed well.) We can use the same
low-rank-to-high-rank method to program cells as in [3]. Note
that whenδ = ∆ = 0, as no two cells can practically have
exactly the same level, the scheme is reduced to the original
rank modulation where every cell has a distinct rank [3].

Let Sn = {(s1, s2, . . . , sk) | 1 ≤ k ≤ n; si ⊆
{1, 2, . . . , n} and |si| ≥ 1 for 1 ≤ i ≤ k; ∪k

i=1 si =
{1, . . . , n}; si ∩ s j = ∅ for i 6= j}. Every element
(s1, s2, . . . , sk) in Sn is a partition of the set{1, 2, . . . , n}.
We use(s1, s2, . . . , sk) to denote the cells’ ranks, where for
1 ≤ i ≤ k, the cells with indices insi have the rank
i. (For the previous example, we have(s1, s2, . . . , sk) =
({2, 6}, {3, 7, 8}, {1}, {4, 5}).) The data are represented by
the elements ofSn. Note that the difficulty of programming
cells varies for the different elements ofSn. It is simple
to program two cells into different ranks since we only
need the gap between their levels to be sufficiently large;
but it is more challenging to program cells into the same
rank because their levels need to be similar. The more cells
share the same rank, the more difficult it is to program
them. In the following, we consider only the elements ofSn
where every rank accommodates at mostλ cells; that is, let
Sn,λ = {(s1, s2, . . . , sk) ∈ Sn | ∀ i, |si| ≤ λ}, and we use
only the elements ofSn,λ to represent data. The parameter
λ determines the tradeoff between the complexity of cell
programming and the storage capacity. We call the scheme
rank modulation with multiplicityλ.

In this paper, we focus on the rewriting of data based on the
new rank modulation scheme. We study its basic properties,
including the rewriting cost, optimal ways to change rank-
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Fig. 1. The value of|Sn,λ | for λ = 1, 2, 3, 4.

modulation states, and the expansion of rank-modulation states
given the rewriting cost.

II. RANK MODULATION WITH MULTIPLICITY λ

In this section, we define the concepts on rank modulation
with multiplicity λ – in particular those related to rewriting –
and study some basic properties.

A. Basic Concepts

The rank modulation with multiplicityλ uses the elements
in Sn,λ, called rank-modulation states, to represent data. Let
L = {0, 1, . . . , L− 1} denote the alphabet of the stored data.
Then there is a surjective mapD : Sn,λ → L, such that the
rank-modulation states = (s1, s2, . . . , sk) ∈ Sn,λ represents
the dataD(s) ∈ L. The number of stored information bits,
log2 L, can be maximized by lettingL = |Sn,λ|; and by letting
L < |Sn,λ|, the cost of rewriting data can be reduced.

Example 1. Let n = 3, λ = 2. ThenSn,λ = {({1}, {2}, {3}),
({1}, {3}, {2}), ({2}, {1}, {3}), ({2}, {3}, {1}), ({3}, {1},
{2}), ({3}, {2}, {1}), ({1}, {2, 3}), ({2}, {1, 3}),
({3}, {1, 2}), ({1, 2}, {3}), ({1, 3}, {2}), ({2, 3}, {1})}.
So |S3,2| = 12. Up to log2 12 information bits can be stored.

The general value of|Sn,λ| can be computed by recursion:

|Sn,λ| = ∑min{n,λ}
i=1 (n

i ) |Sn−i,λ| for n > 0; and |S0,λ| = 1.
We show|Sn,λ| for 2 ≤ n ≤ 16 andλ = 1, 2, 3, 4 in Fig. 1.

For the rewriting of data, we consider the memory model
where the cell levels can only increase, not decrease [3].
For flash memories, this is the way cells are programmed
via charge injection (without the expensive block erasure
operation). For PCMs, when the cells are programmed to
only become more and more crystallized (without the RESET
operation), the same model can be applied. Let us define the
basic operation we can use to change the rank-modulation
state, in order to rewrite data. The basic operation is a “push
operation”, where we either push a cell to a higher rank (if

there are fewer thanλ cells of that rank), or push the cell to
the top so that it has a higher rank than all the othern− 1
cells. More specifically, lets = (s1, s2, . . . , sk) ∈ Sn,λ be a
rank-modulation state. For anyi, j such that1 ≤ i < j ≤ k
and |si| < λ, if

∣∣s j
∣∣ > 1, with a push operation, we can

changes to

(s1, . . . , si ∪ {p}, . . . , s j \ {p}, . . . , sk)

for somep ∈ s j; if
∣∣s j

∣∣ = 1, we can changes to

(s1, . . . , si ∪ {p}, . . . , s j−1, s j+1, . . . , sk)

with p being the only element ins j. And for any i ∈
{1, 2, . . . , k} such that|si| > 1, we can changes to

({p}, s1, . . . , si \ {p}, . . . , sk)

for somep ∈ si. For anyi ∈ {2, 3, . . . , k} such that|si| = 1,
we can changes to

({p}, s1, . . . , si−1, si+1, . . . , sk)

with p being the only element insi. (Note that ifλ = 1, the
push operation here is reduced to the “push-to-top” operation
for the original rank modulation scheme [3].)

For rewriting data, it is desirable to increase the cell levels
as little as possible with each rewrite, so that more rewrites
can be performed before the cell levels reach the maximum
limit. (After that, the block erasure or RESET operation will
be needed to lower the cell levels back to the minimum value.)
So in this section, we consider the cost of changing the rank-
modulation state froms to s′ as the minimum number of push
operations needed to changes to s′, which we denote by
d(s, s′). We call d(s, s′) the unweighted rewriting cost. (A
weighted version of the rewriting cost will be studied in the
next section.) It is not hard to see that

max
s,s′∈Sn,λ

d(s, s′) = n− 1.

An example ofs ands′ that achieve this maximum unweighted
rewriting cost, d(s, s′) = n − 1, is s = ({1}, . . . , {i −
1}, {i}, {i + 1}, . . . , {n}) and s′ = ({1}, . . . , {i − 1}, {i +
1}, . . . , {n}, {i}) for some1 ≤ i < n. (Every cell exceptci
needs to be pushed once to changes to s′.)

B. Unweighted Rewriting Cost

Given two rank-modulation statess, s′ ∈ Sn,λ, we consider
how to compute the unweighted rewriting costd(s, s′), and
how to changes to s′ with this minimum number of push op-
erations. For the special caseλ = 1, the answer is known [3]:
given s = (s1, s2, . . . , sn) and s′ = (s′1, s′2, . . . , s′n), let
φ : {1, 2, . . . , n} → {1, 2, . . . , n} be a bijective map such
that for i = 1, 2, . . . , n, we haves′i = sφ(i); let r be the
minimum integer in{1, 2, . . . , n} such that

φ(r + 1) < φ(r + 2) < · · · < φ(n);

then we haved(s, s′) = r, and the way to change the rank-
modulation state froms to s′ with r push operations is to se-
quentially pushed the cells with their indices ins′r, s′r−1, . . . , s′1
to the top.



For the caseλ ≥ 2, we use a tool calledvirtual levels.

Definition 2. Given a rank-modulation states =
(s1, s2, . . . , sk) ∈ Sn,λ, a “realization” ofs is a vector

(v1, v2, . . . , vn) ∈ Nn

that satisfies two conditions: (1)∀ 1 ≤ i ≤ k and j1, j2 ∈ si,
we havev j1 = v j2 ; (2) ∀ 1 ≤ i1 < i2 ≤ k, j1 ∈ si1 and
j2 ∈ si2 , we havev j1 > v j2 . We callvi the “virtual level” of
the cellci, for i = 1, 2, . . . , n.

Definition 3. Let v = (v1, v2, . . . , vn) be a realization of
s ∈ Sn,λ, and letv′ = (v′1, v′2, . . . , v′n) be a realization of
s′ ∈ Sn,λ. The Hamming distance betweenv andv′, denoted
by H(v, v′), is

H(v, v′) =
∣∣{i | 1 ≤ i ≤ n, vi 6= v′i}

∣∣ .

And we say “v′ dominatesv” if two conditions are satisfied: (1)
for i = 1, 2, . . . , n, we havev′i ≥ vi; (2) we have

{v′i | 1 ≤ i ≤ n, v′i ≤ max
1≤ j≤n

v j} ⊆ {v1, v2, . . . , vn}.

We denote “v′ dominatesv” by v′ ≥ v.

Lemma 4. Let λ ≥ 2. Let s, s′ ∈ Sn,λ be two rank-modulation
states, letv = (v1, v2, . . . , vn) be a realization ofs, and letx
be a non-negative integer. Then,s can be changed intos′ by at
mostx push operations if and only if there exists a realization
v′ = (v′1, v′2, . . . , v′n) of s′ such thatv′ ≥ v andH(v, v′) ≤ x.

Proof: First, assume thats can be changed intos′ by
y ≤ x push operations. We will construct a corresponding
realizationv′ of s′ as follows. Initially, for i = 1, 2, . . . , n,
let v′i = vi. Then for i = 1, 2, . . . , y, if the i-th push
operation pushes a cellc j1 to the same rank as another cellc j2 ,
then assign tov j′1

the value ofv j′2
. Otherwise, thei-th push

operation pushes a cellc j to a rank that is higher than all the
other n− 1 cells; in this case, letz = max1≤b≤n v′b, and we
assign tov′j the valuez + 1. Then, letv′ = (v′1, v′2, . . . , v′n).
It is simple to see thatv′ is a realization ofs′ and v′ ≥ v.
Since at mosty cells are pushed, at leastn− y cells have the
same virtual levels inv andv′; so we haveH(v, v′) ≤ y ≤ x.

Now consider the other direction. Assume that there exists
a realizationv′ = (v′1, v′2, . . . , v′n) of s′ such thatv′ ≥ v
and H(v, v′) ≤ x. We will show how to changes to s′ with
H(v, v′) push operations. We first partition{v′1, v′2, . . . , v′n}
into two subsetsA and B as follows:

A = {v′i | 1 ≤ i ≤ n, v′i > max
1≤ j≤n

v j};

B = {v′i | 1 ≤ i ≤ n, v′i ≤ max
1≤ j≤n

v j}.

Sincev′ ≥ v, we know thatB ⊆ {v1, v2, . . . , vn}. HereB is
the set of virtual levels that are retained when we changes
into s′, and A is the set of virtual levels inv′ that are higher

than any virtual level inv. For convenience, we shall denote
A as A = {a1, a2, . . . , a|A|} such that

a1 < a2 < · · · < a|A|,

and denoteB as B = (b1, b2, . . . , b|B|) such that

b1 > b2 > · · · > b|B|.

We change the rank-modulation state froms to s′ as follows.
Initially, for i = 1, 2, . . . , n, let the cellci have the virtual level
vi. We will push the cells to higher virtual levels, and the rank-
modulation state – which is determined by the virtual levels
of the n cells – will change accordingly. We push the cells
using the following two steps:

1) For i = 1, 2, . . . , |A|, push the cells in

{c j | 1 ≤ j ≤ n, v′j = ai}
to the virtual levelai.

2) For i = 1, 2, . . . , |B|, push the cells in

{c j | 1 ≤ j ≤ n, v j < v′j = bi}
to the virtual levelbi.

During the above two steps, we will use the following method
to make sure that fori = 1, 2, . . . , |B|, there is always at least
one cell of the virtual levelbi:
• When we are to push a cellci from the virtual level

j1 ∈ B to j2 > j1, if ci is the only cell of virtual level
j1 at that moment, then before pushingci, we first push
a cell in {cz | 1 ≤ z ≤ n, v′z = j1} to the virtual level
j1. (Note that if that cell is also the only cell of its own
virtual level at that moment, then the same rule applies.
So there can be a chain reaction of cell pushing of this
type. But this chain reaction will stop somewhere because
the virtual level of the concerned cell keeps decreasing.)

In the above process, we push every cell at most once.
When the above process ends, the cells have virtual lev-

els (v′1, v′2, . . . , v′n), which is a realization ofs′. A cell ci
(1 ≤ i ≤ n) is pushed if and only ifvi 6= v′i; and if it is
pushed, it is pushed directly to the virtual levelv′i. So the
number of push operations equalsH(v, v′). We now show
that theseH(v, v′) push operations are all valid operations for
the rank-modulation states. Step1) consists of the “push-to-
top” operations, and we sequentially push the cells to higher
and higher ranks; clearly, the number of cells at the virtual
level ai (for 1 ≤ i ≤ |A|) is never more thanλ at any
moment. Step2) consists of the operations that push a cell
to a higher and existing rank; and since we process the virtual
levels b1, b2, . . . , b|B| sequentially (from high to low), when
we process the virtual levelbi (for 1 ≤ i ≤ |B|), all the cells
that are originally at levelbi have already been pushed up; so
as we push cells from below into the levelbi, there will be no
more thanλ cells in that level. So we have changeds into s′
with H(v, v′) ≤ x valid push operations.

Theorem 5. Let λ ≥ 2. Let s = (s1, s2, . . . , sk) ∈ Sn,λ and
s′ = (s′1, s′2, . . . , s′k′) ∈ Sn,λ be two rank-modulation states,



let v = (v1, v2, . . . , vn) be a realization ofs, and defineV as
V = {u | u is a realization ofs′, u ≥ v}. Then we have

d(s, s′) = min
u∈V

H(v, u).

Furthermore, definev′ = (v′1, v′2, . . . , v′n) as follows:
1) Let hk′ = max j∈s′

k′
v j.

∀ i ∈ s′k′ , let v′i = hk′ .
2) For i1 = k′ − 1, k′ − 2, . . . , 1, do:

• If max j∈s′i1
v j > hi1+1, then lethi1 = max j∈s′i1

v j;

if max j∈s′i1
v j ≤ hi1+1 < max1≤ j≤n v j, then let

hi1 = min{v j | 1 ≤ j ≤ n, v j > hi1+1}; if
max j∈s′i1

v j ≤ hi1+1 and hi1+1 ≥ max1≤ j≤n v j,

then lethi1 = hi1+1 + 1.
• ∀ i2 ∈ s′i1 , let v′i2 = hi1 .

Then we havev′ ∈ V andH(v, v′) = minu∈V H(v, u).

Proof: Lemma 4 leads tod(s, s′) = minu∈V H(v, u).
When we assign values to(v′1, v′2, . . . , v′n) (which are virtual
levels for then cells corresponding to the rank-modulation
state s′), we are sequentially assigning virtual levels to the
cells with indices ins′k′ , s′k′−1, . . . , s′1; and for i = k′, k′ −
1, . . . , 1, we give the cells with indices ins′i a virtual level
that is as small as possible, as long as the conditionv′ ∈ V
is satisfied. A proof by induction can show that compared to
all the realizations ofs′ in V, here eachhi (1 ≤ i ≤ k′) – and
therefore each virtual levelv′i (1 ≤ i ≤ n) – is individually
minimized, and a cell is pushed only when necessary. (Since
the cells are pushed only upward, minimizinghi is a greedy
and optimal approach for minimizinghi−1, hi−2, . . . , h1 and
for minimizing the number of cells that need to be pushed.)
So H(v, v′) = minu∈V H(v, u).

Theorem 5 shows how to find the realizationv′ for s′ such
that v′ dominatesv (the realization ofs) and H(v, v′) =
d(s, s′). The proof of Lemma 4 shows given such a realization
v, how to change the rank-modulation state froms to s′
with d(s, s′) push operations. By combining them, we can
not only computed(s, s′), but also transforms to s′ with the
minimum unweighted rewriting cost. For simplicity, we skip
the presentation of the algorithm. We show an example below.

Example 6. Supposeλ = 2, n = 8, s = ({2, 3}, {7}, {4, 5},
{1, 8}, {6}), s′ = ({2, 3}, {4}, {1}, {7, 8}, {5, 6}). We
let v = (2, 5, 5, 3, 3, 1, 4, 2) be a realization ofs. (See
Fig. 2.) Then by Theorem5, we get the realizationv′ =
(5, 7, 7, 6, 3, 3, 4, 4) of s′. (It can be seen thatv′ ≥ v.) So we
getd(s, s′) = H(v, v′) = 6. Then by the steps specified in the
proof of Lemma4, we get the 6 push operations that change
s into s′. (See Fig.2, where the push operations are shown as
arrows, and the numbers beside arrows represent their order.)

C. Sizes of Spheres

For a rank-modulation states ∈ Sn,λ and an unweighted
rewriting cost r ≥ 0, we define thesphere of unweighted
radius r centered ats asθ(s, r) , {u ∈ Sn,λ | d(s, u) = r},
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Fig. 2. Change rank-modulation state froms to s′ with d(s, s′) pushes.

and define theball of unweighted radiusr centered ats as
β(s, r) , {u ∈ Sn,λ | d(s, u) ≤ r}. Clearly, |β(s, r)| =
∑r

i=0 |θ(s, i)|. Knowing the sizes of spheres and balls is useful
for analyzing the performance of rewriting. For example, when
the states inSn,λ are used to represent data of the alphabet
L, if the rank-modulation state is currentlys ∈ Sn,λ, for the
next rewrite, the unweighted rewriting cost in the worst case
is at leastmin{r | r ≥ 0, |β(s, r)| ≥ |L|}.

We show how to compute|θ(s, r)| for s ∈ Sn,λ and 0 ≤
r ≤ n− 1. If λ = 1, we have|θ(s, r)| = n!

(n−r)! − n!
(n−r+1)!

for 1 ≤ r ≤ n− 1 and |θ(s, 0)| = 1 [3]. So in the following,
we considerλ ≥ 2. Fix a realizationv = (v1, v2, . . . , vn) for
s = (s1, s2, . . . , sk) – say the realization where then cells have
virtual levels from 1 tok – and we see that for anys′ ∈ Sn,λ,
Theorem 5 finds a unique realizationv′ = (v′1, v′2, . . . , v′n)
for s′ such thatv′ ≥ v, H(v, v′) = d(s, s′) and every virtual
level v′i (1 ≤ i ≤ n) is minimized. So to compute|θ(s, r)|,
the number of states in the sphereθ(s, r), we can equivalently
compute the number of such unique realizations (of the states
in θ(s, r)), because they have a one to one correspondence.

Let σ1,σ2, . . . ,σκ and X be κ + 1 mutually disjoint sets
of cells, where1 ≤ |σi| ≤ λ for 1 ≤ i ≤ κ and |X| = x ∈
{0, 1, . . . , n− 1}. For i = 1, . . . ,κ, we assign the virtual level
κ + 1− i to the cells in the setσi. Let δ ∈ {0, 1, . . . , n− 1},
t ∈ {1, 2, . . . , λ}, γ ∈ {x, x + 1, . . . , n− 1} andtag ∈ {0, 1}
be given parameters. LetR denote the set of realizations (that
is, assignments of virtual levels to thex + ∑κ

i=1 |σi| cells) that
we can change this current realization into, given the following
constraints:

1) We obtain a realization inR by pushingγ − x cells
in ∪κ

i=1σi to higher virtual levels, and by assigning the
x cells in X to the virtual levels between 1 andκ + δ.
Every cell is pushed or assigned at most once. For the
realization inR, every virtual level has at mostλ cells.

2) For a realization inR, the maximum virtual level that
has a cell is levelκ + δ, and exactlyt cells are in that
virtual levelκ + δ.

3) For a realization inR, if a cell in ∪κ
i=1σi is pushed to a

level j ∈ {2, 3, . . . ,κ + δ}, or if a cell in X is assigned
to a level j ∈ {2, 3, . . . ,κ + δ}, then for this realization



in R, either some cell is in the virtual levelj− 1, or
2 ≤ j ≤ κ and some cell inσκ+1− j is in the level j.

4) If tag = 1, then no cell inX can be assigned to the
virtual level 1 unless for this realization inR, some cell
in σκ is in the virtual level 1.

We use f (|σ1| , |σ2| , . . . , |σκ | ; x; δ; t; γ; tag) to denote the
cardinality ofR. We can see that the sphere size

|θ(s, r)| =
r

∑
δ=0

λ

∑
t=1

f (|s1| , |s2| , . . . , |sk| ; 0; δ; t; r; 0).

We show how to use recursion to compute the value of
f (|σ1| , |σ2| , . . . , |σκ | ; x; δ; t; γ; tag). For simplicity, we only
introduce the main recursion, and skip introducing the val-
ues of f (|σ1| , |σ2| , . . . , |σκ | ; x; δ; t; γ; tag) for the boundary
cases. (The boundary values can be obtained easily.)

To change the given realization to a realization inR, say
that we pushy1 cells inσκ to the maximum virtual levelk +δ,
push y2 cells in σκ to the virtual levels2, 3, . . . , k + δ − 1,
and assigny3 cells in X to the virtual level 1. Note that once
y1, y2, y3 are fixed, the number of cells in level 1 becomes
fixed, and we do not need to consider it furthermore. So we
get the recursion:
• If tag = 0, then let P1 , {(y1, y2, y3) ∈ Z3 | 0 ≤

y1 < t; 0 ≤ y2 ≤ |σκ | ; 0 ≤ y3 ≤ min{x, λ − |σκ |+
y1 + y2}; either “y1 + y2 < |σκ | ” or “ y1 + y2 =
|σκ | and y3 > 0”}, let P2 , {(y1, y2, y3) ∈ Z3 | 0 ≤
y1 ≤ min{t − 1, |σκ |}; y2 = |σκ | − y1; y3 = 0}, let
P3 , {(y1, y2, y3) ∈ Z3 | y1 = t; 0 ≤ y2 ≤ |σκ | ; 0 ≤
y3 ≤ min{x, λ − |σκ | + y1 + y2}; either “y1 + y2 <
|σκ | ” or “ y1 + y2 = |σκ | and y3 > 0”}, and letP4 ,
{(y1, y2, y3) ∈ Z3 | y1 = t; y2 = |σκ | − t ≥ 0; y3 =
0}.
If tag = 1, then let P1 , {(y1, y2, y3) ∈ Z3 | 0 ≤
y1 < t; 0 ≤ y2 < |σκ | − y1; 0 ≤ y3 ≤ min{x, λ −
|σκ | + y1 + y2}}, let P2 , {(y1, y2, y3) ∈ Z3 | 0 ≤
y1 ≤ min{t − 1, |σκ |}; y2 = |σκ | − y1; y3 = 0}, let
P3 , {(y1, y2, y3) ∈ Z3 | y1 = t; 0 ≤ y2 < |σκ | −
t; 0 ≤ y3 ≤ min{x, λ− |σκ |+ y1 + y2}}, and letP4 ,
{(y1, y2, y3) ∈ Z3 | y1 = t; y2 = |σκ | − t ≥ 0; y3 =
0}.

• We have f (|σ1| , |σ2| , . . . , |σκ | ; x; δ; t; γ; tag) =
∑(y1 ,y2 ,y3)∈P1

(|σκ |
y1

)(|σκ |−y1
y2

)( x
y3

) f (|σ1| , |σ2| , · · · , |σκ−1| ;
x + y2 − y3; δ; t − y1; γ − y1 − y3; 0)
+ ∑(y1 ,y2 ,y3)∈P2

(|σκ |
y1

)(|σκ |−y1
y2

)( x
y3

) f (|σ1| , |σ2| , · · · ,
|σκ−1| ; x + y2; δ; t − y1; γ − y1; 1) +
∑(y1 ,y2 ,y3)∈P3

(|σκ |
y1

)(|σκ |−y1
y2

)( x
y3

) ∑1≤z≤λ f (|σ1| , |σ2| , · · · ,
|σκ−1| ; x + y2 − y3; δ − 1; z; γ − y1 − y3; 0) +
∑(y1 ,y2 ,y3)∈P4

(|σκ |
y1

)(|σκ |−y1
y2

)( x
y3

) ∑1≤z≤λ f (|σ1| , |σ2| , · · · ,
|σκ−1| ; x + y2; δ− 1; z; γ − y1; 1).

Given anys ∈ Sn,λ andr ≤ n− 1, the time complexity of
computing the sphere size|θ(s, r)| using the above recursion
is O(n4λ5). Due to the space limitation, we skip the proof of
the following theorem.

Theorem 7. The above recursion correctly computes|θ(s, r)|.

III. W EIGHTED REWRITING COST

We have studied the unweighted rewriting cost, where every
push operation is considered to have cost one. In practice,
however, the operations can have different cost values: a push
operation that increases the cell level less is more preferable
than a push operation that increases the cell level more. So in
this section, we present the definition ofweighted rewriting
cost, which measures the cost of push operations based on
how much they increase the cell levels.

As a combinatorial definition, we use the help of virtual
levels. Lets = (s1, s2, . . . , sk) ∈ Sn,λ and s′ ∈ Sn,λ be two
rank-modulation states. Letv = (v1, v2, . . . , vn) be the unique
realization ofs such that{v1, v2, . . . , vn} = {1, 2, . . . , k}. Let
V , {u | u is a realization ofs′, u ≥ v}. By the previous
analysis, we know that a sequence of push operations that
changes the rank-modulation state froms to s′ also changes
the realization fromv to someu ∈ V (and vice versa). Virtual
levels are a reasonable simplification of real cell levels. So we
define the weighted rewriting cost of changings into s′ as

w(s, s′) = min
(u1 ,u2 ,...,un)∈V

n

∑
i=1

(ui − vi).

Let v′ = (v′1, v′2, . . . , v′n) be the unique realization ofs′ that is
generated by Theorem 5. It has been shown thatv′ minimizes
the virtual level of every cell; so we have

w(s, s′) =
n

∑
i=1

(v′i − vi) =
n

∑
i=1

min
(u1 ,...,un)∈V

(ui − vi).

And it is not hard to see thatmaxs,s′∈Sn,λ
w(s, s′) = n(n−

1).
Given a states ∈ Sn,λ and an integerr ≥ 0, we can define

the sphere of weighted radiusr centered ats as Θ(s, r) ,
{u ∈ Sn,λ | w(s, u) = r}. The sphere size,|Θ(s, r)|, can be
computed with a similar recursion as the one in the previous
section. For simplicity we skip the details.
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