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Abstract—Rank modulation is a scheme that uses the relative Then (aq,...,as) = (2,6,3,8,7,1,4,5), and
order of cell levels to represent data. Its applications include
flash memories, phase-change memories, etc. An extension offay, - -+, fag) = (2.2, 2.1, 1.56, 1.38, 1.35, 0.8, 0.21, 0.2);
rank modulation is studied in this paper, where multiple cells

can have the same rank. We focus on the rewriting of data based SO the Cellscz, cs have rank 1¢s, cs, c; have rank 2¢; has

on this new scheme, and study its basic properties. rank 3, andcy, cs have rank 4. (We may further bound the
maximum difference between the levels of the cells of the
|. INTRODUCTION same rank.) Here the paramet&rensures the cell levels for

Rank modulation is a scheme that uses the relative orderd(gfpferent ranks are _sufficiently apart so that they can tolerate
cell levels to represent data [3]. Its applications include flagiPise better, and is chosen appropriately so that the cell
memories, phase-change memories (PCMs), etc. The cell Id@¥elS for the same rank can be programmed successfully
corresponds to the cell's charge level for flash memories a#éfh high probability. Allowing cells to have the same rank
the cell's electrical resistance for PCMs, and is a real numbg#n help achieve higher storage capacity. And since the gap
Considerm cellscy, co, . .., c, whose levels aréy, (s, ..., 0p, betwg_en the_ cell levels pf dlﬁgrent r_al_"nks does not have a
respectively, where; # ¢; wheni # j. Let (1,02, ..., a,) specific required vglue — in particular it is _not upper boundgd
be a permutation of the sdfl,2,...,n}, such thatf,, > ~ the cells can still _be programmed easily without the risk
lay > -+ > L,,. Then forl < i < n, the cellc,, has thei-th pf f:harge overshooting (as long as the cell levels of each
highest level and is said to havank i. The rank modulation individual rank are programmed well.) We can use the same
scheme uses the ranks of cells (instead of the real valuesQ¥f-rank-to-high-rank method to program cells as in [3]. Note
the cell levels) to represent data; namely, the information bifsat whens = A = 0, as no two cells can practically have
are mapped to the permutatiény, ay, . .., a,) [3]. exactly the same level, the scheme is reduced to the original

Rank modulation can make it simpler and more robust {§Nk modulation where every cell has a distinct rank [3].
program flash memory cells, where the cell levels are onIyLet Sno= {(s1,52,...,5) | 1 S k < 71; si C
allowed to monotonically increase during the programmingl: 2 --- 7y and [s;| > 1for1l < i < k Ui;s;i =
process. For PCMs, if the cells are programmed only througft,---/7}; siNs; = Dfori 7 j}. Every element
crystallization without the reset operation (which can happéfilS2-- -~ Sk) in Su is a partition of the se{1,2,...,n}.
for multi-level cells or rewriting codes), the same benefit calye Us€(s1,s2, ..., si) to denote the cells’ ranks, where for
be obtained. It is also robust against asymmetric noise in cll = ¢ = k the cells with indices ins; have the rank
levels, such as the charge-leakage noise of flash memofie$FOr the previous example, we havey,sy, ..., sc) =
and the long-term cell crystallization noise of PCMs. Thergl2 6}, {3,7,8}, {1}, {4,5}).) The data are represented by
has been a number of works studying rank modulation[3], [51¢ €lements of5,. Note that the difficulty of programming
[7], [8] and its error-correcting codes [1], [2], [4], [6]. cells varies for the dlff_erent _elements S, It_ is simple

In this paper, we study an extension of rank modulatiof? Program two cells into different ranks since we only
where multiple cells can have the same rank. The general idiggd the gap between their levels to be sufficiently large;
is that we see cells of similar levels as having the same rafilt it is more challenging to program cells into the same
and see cells of sufficiently different levels as having differefgnk Pecause their levels need to be similar. The more cells
ranks. There are naturally various ways to define the similarﬁf)?are the same rank, the more difficult it is to program
of cell levels, including the following one. Lex ands be two 1€ In the following, we consider only the elementsShf
parameters, wherd > § > 0. For  cells whose levels can where every rank accommodateg at mastells; that is, let
be ordered ad,, > ¢;, > --- > {,,, we require that for ©nA — {(s1,82,...,8¢) € Sn | Vi, [si] <A}, and we use
1<i<mn, eitherly, — Lo, < &0r by — Lo, > A. Then only the glements ofS, » to represent data. The parameter
for 1 <i < n,if by —Ls,, <6 we say the cells, and A determines the tradeoff between the complexity of cell

Ca;,, have the sameank if {, — £, , > A, we say they programming and the storage capacity. We call the scheme

have differentanks For example, assume= 0.2, A — 0.5, 'ank modulation with multipliciA.
n — 8 and In this paper, we focus on the rewriting of data based on the

new rank modulation scheme. We study its basic properties,
(f1,...,03) = (0.8, 2.2, 1.56, 0.21, 0.2, 2.1, 1.35, 1.38). including the rewriting cost, optimal ways to change rank-



" there are fewer thai cells of that rank), or push the cell to
the top so that it has a higher rank than all the other 1
cells. More specifically, les = (s1,s2,...,5¢) € Sy 2 be a
rank-modulation state. For any;j such thatl <i < j <k
and |s;] < A, if |s;| > 1, with a push operation, we can
changes to

(s1,---,siU{p}, - 5i \{p}, -+ k)
for somep € s;; if |s;| = 1, we can changs to

1S, 5l

(sl,...,siU{p},...,sj_l,s]-H,...,sk)

with p being the only element irs;. And for anyi &
{1,2,...,k} such thats;| > 1, we can changs to

é 4‘1 5 é 7 é 5 16 1‘1 1‘2 1‘3 1;1 1‘5 16 ({p}rslr"'/si\{P}/'“/Sk)
for somep € s;. For anyi € {2,3,...,k} such thats;| =1,

Fig. 1. The value ofS, »| for A =1,2,3,4. we can Change to

({p}/sl/ e /Sifl/SH*l/ LI /Sk)

modulation states, and the expansion of rank-modulation stafdl! 7 b€ing the only element is;. (Note that ifA = 1, the
given the rewriting cost. push operation here is reduced to the “push-to-top” operation

for the original rank modulation scheme [3].)
I[I. RANK MODULATION WITH MULTIPLICITY A For rewriting data, it is desirable to increase the cell levels
In this section, we define the concepts on rank modulatiés little as possible with each rewrite, so that more revyrites
with multiplicity A — in particular those related to rewriting —C@n be performed before the cell levels reach the maximum
and study some basic properties. limit. (After that, the block erasure or RESET (_)p_eratlon will
be needed to lower the cell levels back to the minimum value.)
A. Basic Concepts So in this section, we consider the cost of changing the rank-

The rank modulation with multiplicityd uses the elements modulation state frons to s’ as the rpinimym number of push
in 8,1, calledrank-modulation statesto represent data. LetOperations needed to changeto s', which we denote by
£=1{0,1,...,L —1} denote the alphabet of the stored datd(s,s’). We calld(s,s’) the unweighted rewriting cost(A
Then there is a surjective map : S, — £, such that the weighted version of the rewriting cost will be studied in the
rank-modulation state = (s1,s,...,5;) € Sy represents Next section.) Itis not hard to see that
the dataD(s) € L. The number of stored information bits, max d(s,s') =n— 1.
log, L, can be maximized by lettinf = |S,, »|; and by letting 5,5'€8\

L <[Sy,l, the cost of rewriting data can be reduced. An example of ands’ that achieve this maximum unweighted

rewriting cost,d(s,s’) = n—1,iss = ({1},...,{i —
Example 1 Letn = 3,A = 2. ThenS, » = {({1}, {2}, {3}), 1}, {i}, {i+1},...,{n}) ands’ = ({1},...,{i— 1}, {i+
({1}, {3}, {2}), ({2}, {1},{3}), ({2}, {3}, {1}), ({3}, {1}, 1},...,{n}, {i}) for somel < i < n. (Every cell except;
{2}), ({3} {2}, {1}), ({1}, {2,3}), ({2}, {1, 3}), needs to be pushed once to chasge s’.)
({3}, {1,2}), ({1,2},{3}), ({1,3},{2}), ({2, 3}, {1})}. . "
S0|83,| = 12. Up tolog, 12 information bits can be stored. B- Unweighted Rewriting Cost
Given two rank-modulation statess’ € S, 5, we consider

The gene(al{ v«::\ll}ue 0fSy,2| can be computed by recursionihow to compute the unweighted rewriting CcoKts,s’), and
min{n,

1Sual = 3oy (1) |Sn—ial for n > 0; and [Spa| = 1. how to changes to s’ with this minimum number of push op-
We show|S,, 5| for2 <n <16 andA =1,2,3,4 in Fig. 1. erations. For the special cade= 1, the answer is known [3]:
For the rewriting of data, we consider the memory modegiven s = (si,s2,...,s,) ands’ = (s],s},...,s},), let

where the cell levels can only increase, not decrease [3).: {1,2,...,n} — {1,2,...,n} be a bijective map such
For flash memories, this is the way cells are programmeéat fori = 1,2,...,n, we haves, = Se(i)s let r be the
via charge injection (without the expensive block erasurainimum integer in{1,2,...,n} such that

operation). For PCMs, when the cells are programmed to

only become more and more crystallized (without the RESET ¢(r+1) <Pp(r+2) <--- < (n);
operation), the same model can be applied. Let us define then we havei(s,s’) = r, and the way to change the rank-
basic operation we can use to change the rank-modulatimodulation state frons to s’ with » push operations is to se-
state, in order to rewrite data. The basic operation is a “pughentially pushed the cells with their indicessins’_;,...,s}
operation”, where we either push a cell to a higher rank (6 the top.



For the casel > 2, we use a tool calledirtual levels than any virtual level inv. For convenience, we shall denote
AasA = {al,az,...,a|A|} such that
Definition 2.  Given a“ rapk-moglulat{on states = M <ay < <ap,
(s1,52,...,5¢) € Sya, @ “realization” ofs is a vector
and denoteB asB = (by, by, ..., bp) such that
(v1,v2,...,04) € N B
o » b1>b2>'°'>b‘3‘.

that satisfies two conditions: ()1 < i < k andjy, j» € s;, ] .
we havev;, = vj,; (V1 < iy < ip <k j1 € s; and We change the rank-modulation state freto s as follows.
the cellc;, fori =1,2,...,n. v;. We will push the cells to higher virtual levels, and the rank-

modulation state — which is determined by the virtual levels
Definition 3. Let v = (v1,v2,...,v,) be a realization of of the n cells — will change accordingly. We push the cells

s € Sy, and letv' = (v),v),...,7},) be a realization of using the .following two steps: _
s' € S, ). The Hamming distance betweerandv’, denoted 1) Fori =1,2,...,|A], push the cells in

o
byH(v,v'), is {ej11<j<n7;=a;}
H(v,v')=|{i|1<i<n, v #v}|. to the virtual levels;.
And we say ¢’ dominatesr” if two conditions are satisfied: (1) 2) Fori=1,2,...,|B|, push the cells in
fori=1,2,...,n, we havev, > v;; (2) we have {ejl1<j<nu;< v;' =b;}
{v]1<i<n, < max vj} C{ov1,02,..., 00} to the virtual levelb;.
<< . . .
J=n During the above two steps, we will use the following method
We denote ¥’ dominatess” by v/ > v. to make sure that for=1,2,...,|B|, there is always at least

one cell of the virtual leveb;:
Lemmad. LetA > 2. Lets, s’ € S, ) be two rank-modulation ~« When we are to push a cedl from the virtual level

states, let = (vq,vy,...,v,) be a realization of, and letx j1 € Bto j, > jp, if ¢; is the only cell of virtual level
be a non-negative integer. Thangan be changed in& by at j1 at that moment, then before pushing we first push
mostx push operations if and only if there exists a realization a cell in{c; | 1 <z < n,v] = j;} to the virtual level
v = (v},v),...,v)) of s’ suchthat’ > v andH(v,v') < x. j1- (Note that ifthat cell is also the only cell of its own
virtual level at that moment, then the same rule applies.
Proof: First, assume thas can be changed inte’ by So there can be a chain reaction of cell pushing of this
y < x push operations. We will construct a corresponding  type. But this chain reaction will stop somewhere because
realizationv’ of s' as follows. Initially, fori = 1,2,...,n, the virtual level of the concerned cell keeps decreasing.)

e e . ;
let v; = v;. Then fori = 1,2,...,y, if the ith push |, 48 apove process, we push every cell at most once.

operation pushes a cel), to the same rank as another agll,  \yhen the above process ends, the cells have virtual lev-
then assign tw;, the value ofv,. Otherwise, the-th push Is (vllvlzp_.,vln), which is a realization of’. A cell ¢;

operation pushels a celj to a rank that is higher than all the(l < i < n) is pushed if and only ify; # ©/; and if it is
< i

othern — 1 cells; in this case, let = maxq<y<y v}, andlwe pushed, it is pushed directly to the virtual level So the
assign too] the valuez + 1. Then, letv’ = (v,v,...,9,)-  number of push operations equat&(v,v'). We now show
It is simple to see that’ is a realization ofs’ and v’ > v.  that these (v, v/) push operations are all valid operations for
Since at mosy cells are pushed, at least— y cells have the the rank-modulation states. Stép consists of the “push-to-
same virtual levels iv andv’; so we haveH (v, v') <y < x. top” operations, and we sequentially push the cells to higher
Now consider the other direction. Assume that there exiifid higher ranks; clearly, the number of cells at the virtual
a realizationv’ = (v},v;,...,v;) of s’ such thatv’ > v |evel 4; (for 1 < i < |A|) is never more tham at any
and H(v, v') < x. We will show how to changs to s’ with  moment. Stef2) consists of the operations that push a cell

H(v,v') push operations. We first partitiofv,vj,...,v,}  to a higher and existing rank; and since we process the virtual

into two subsetsA and B as follows: levels by, by, ..., byp sequentially (from high to low), when
we process the virtual levéd; (for 1 < i < |B|), all the cells
— 1<i< >
= {ui <> 1mf<xn v]} that are originally at leveb; have already been pushed up; so
as we push cells from below into the levg| there will be no
B={v}|1<i<nv< 112?<Xn i} more thanA cells in that level. So we have changedhto s’
with H(v,v’) < x valid push operations. ]

Sincev’ > v, we know thatB C {v1,vy,...,v,}. HereB is
the set of virtual levels that are retained when we changeTheorem5. Let A > 2. Lets = (s1,52,...,5¢) € Sy and
into s, and A is the set of virtual levels i’ that are higher s’ = (s{,s),...,s},) € S, be two rank-modulation states,



virtual

letv = (v1,vs,...,v,) be a realization of, and definé/ as fea:izatiog (I)ft' ot level
. . . rank—modulation state
V = {u | uis a realization 0o§’, u > v}. Then we have (3) ----7

({2.31{7}{4.5}{1.8}.{6})
d(s,s') = min H(v,u).
ueV

virtual
level

Furthermore, define’ = (v},v},...,v}) as follows: 5 ---- s
1) Lethy = max;cy v;. . .
' L L
Vie S;(,, Ietv; = hk"
2) Foriy =k -1,k -2,...,1, do: 3 - L,

jes, Ui

if max]-Eslg1 vj < hj11 < maxi<j<, v, then let
hil = min{v]- | 1 <j <o, (I hiﬁ-l}; if
maxjesl{ vj < hil+1 andhl'1+1 > maxi<j<n Vj,
then Ietllzi1 =hj+1+1.
e Vip € S;I, Ietv§2 =h;,.
Then we have’ € V andH(v,v') = mingcy H(v, u). and define theball of unweighted radius centered ats as
B(s,r) £ {u € Sy, | d(s,u) < r}. Clearly, |B(s,r)| =
Proof: Lemma 4 leads tai(s,s’) = minyey H(v,u). ¥7_,|6(s,7)|. Knowing the sizes of spheres and balls is useful

When we assign values 1@}, ), ..., ;) (which are virtual for analyzing the performance of rewriting. For example, when
levels for then cells corresponding to the rank-modulationhe states inS, , are used to represent data of the alphabet
states’), we are sequentially assigning virtual levels to thg, if the rank-modulation state is currentlyc S,, 5, for the
cells with indices ins},, s}, ;,...,s]; and fori = k’,k' — next rewrite, the unweighted rewriting cost in the worst case
1,...,1, we give the cells with indices is; a virtual level is at leastmin{r | » > 0,|B(s,7)| > |L|}.
that is as small as possible, as long as the condiioa V We show how to computéd(s,r)| for s € S, and0 <
is satisfied. A proof by induction can show that compared f0< n — 1. If A = 1, we have|6(s,r)| = (n”f'r), — (n+‘+1),
all the realizations 08’ in V, here eacth; (1 <i <k')-and for1 <y <n—1 and 16(s,0)| = 1 [3]. So in the following,
therefore each virtual level; (1 < i < n) —is individually e considert > 2. Fix a realizationv = (vy, s, ...,0v,) for
minimized, and a cell is pushed only when necessary. (Singe_ (s1,5,...,5;) — say the realization where thecells have
the cells are pushed only upward, minimizihgis a greedy yirtyal levels from 1 tok — and we see that for anyf € S, 1,
and optimal approach for minimizin; 1,1 5, ..., 1 and  Theorem 5 finds a unique realizatiori = (¢},), ..., 7))
for minimizing the number of cells that need to be pushedgy ' sych thatv’ > v, H(v,v') = d(s,s') and every virtual
So H(v, V') = minyey H(v, u). B jevel o/ (1 <i < n) is minimized. So to comput§d(s, )|,

Theorem 5 shows how to find the realizatiohfor s” such  the number of states in the sphé¥@, r), we can equivalently
that v/ dominatesv (the realization ofs) and H(v,v') = compute the number of such unique realizations (of the states

d(s, s'). The proof of Lemma 4 shows given such a realizatiop g(s, r)), because they have a one to one correspondence.
v, how to change the rank-modulation state frento s’ Let 01,07,...,0¢ and X be k + 1 mutually disjoint sets

with d(s,s") push operations. By combining them, we cagf cells, wherel < loj] <Afor1<i<kand|X|=xc¢€
not only computei(s, s’), but also transforns to s’ with the 19 1 .. 4 —1}. Fori = 1,...,«, we assign the virtual level

minimum unweighted rewriting cost. For simplicity, we skin. 1 —j to the cells in the set;. Let 5 € {0,1,...,n —1},
the presentation of the algorithm. We show an example below: {1,2,..., A}, y € {x,x+1,...,n—1} andtag € {0,1}

be given parameters. L& denote the set of realizations (that
Example 6. Suppose\ = 2, n = 8,s = ({2,3},{7},{4,5}, s, assignments of virtual levels to the}- S5, |oi| cells) that

{1,8},{6}), s' = ({2,3},{4},{1},{7,8},{5,6}). We \ye can change this current realization into, given the following
let v.= (2,5,53,3,1,4,2) be a realization ofs. (See .gnstraints:

Fig. 2.) Then by Theorenb, we get the realization' =
(5,7,7,6,3,3,4,4) of s'. (It can be seen that > v.) So we
getd(s,s’) = H(v,v') = 6. Then by the steps specified in the
proof of Lemmad4, we get the 6 push operations that change
s intos’. (See Fig2, where the push operations are shown as
arrows, and the numbers beside arrows represent their order.) 2)

o If max]-esl/_1 vj > hi 41, then leth;, = max

realization of
rank—-modulation state

({2,3}.{41.{11.{7.8}.{5.6})

Fig. 2. Change rank-modulation state frento s’ with d(s,s’) pushes.

1) We obtain a realization iR by pushingy — x cells
in UX_;0; to higher virtual levels, and by assigning the
x cells in X to the virtual levels between 1 and+ 6.
Every cell is pushed or assigned at most once. For the
realization inR, every virtual level has at most cells.
For a realization inR, the maximum virtual level that
has a cell is levek + 6, and exactlyt cells are in that
virtual level k + 6.

For a rank-modulation state € S, and an unweighted 3) For a realization iR, if a cell in UY_, o; is pushed to a
rewriting costr > 0, we define thesphere of unweighted level j € {2,3,...,k+ &}, orif a cell in X is assigned
radius r centered ak asf(s,r) = {u € S, | d(s,u) =r}, to alevelj € {2,3,...,k+ &}, then for this realization

C. Sizes of Spheres



in R, either some cell is in the virtual levgl— 1, or
2 < j <« and some cell im,(ﬂ,j is in the levelj.

1. WEIGHTED REWRITING COST
We have studied the unweighted rewriting cost, where every

4) If tag =1, then no cell inX can be assigned to thepysh operation is considered to have cost one. In practice,

virtual level 1 unless for this realization iR, some cell
in o, is in the virtual level 1.
We use f(|o1]|,|oa|,...,|ok|;x;6;t;v;tag) to denote the
cardinality of R. We can see that the sphere size

roA
0(s,r)| =5 > fllsal,ls2l, .-, [sk|;0;8;¢;7;0).

8=01=1
We show how to use recursion to compute the value

however, the operations can have different cost values: a push
operation that increases the cell level less is more preferable
than a push operation that increases the cell level more. So in
this section, we present the definition weighted rewriting
cost which measures the cost of push operations based on
how much they increase the cell levels.
As a combinatorial definition, we use the help of virtual

Rlvels. Lets = (s1,52,...,5¢) € Sy ands’ € S, be two

f(o1l, oz, ..., lok|;x;8;t v; tag). For simplicity, we only yank-modulation states. Let— (v1,02,...,0,) be the unique

introduce the main recursion, and skip introducing the vglaalization ofs such that{ oy,

ues of f(|oy |, 02|, ..., |ok|;x;6;t; v; tag) for the boundary
cases. (The boundary values can be obtained easily.)

To change the given realization to a realizationRnp say
that we pusthy; cells inoy to the maximum virtual levet + 5,
pushy, cells in o« to the virtual levels2,3, ..., k+ 6 —1,

vy, ..., 00} =41,2,...,k}. Let

V 2 {u | uis a realization o%’,u > v}. By the previous
analysis, we know that a sequence of push operations that
changes the rank-modulation state franto s’ also changes
the realization fronv to someu € V (and vice versa). Virtual
levels are a reasonable simplification of real cell levels. So we

and assigrys cells in X to the virtual level 1. Note that once yefine the weighted rewriting cost of changisgnto s’ as

y1,Y2,y3 are fixed, the number of cells in level 1 becomes
fixed, and we do not need to consider it furthermore. So we

get the recursion:

o If tag = 0, then letP; £ {(y1,y2,¥3) € Z3 | 0 <
1 < 50 < yp < okl;0 < y3 < min{x, A — |ox| +
v1+yo}; eitheryr +yo < Jok|"or“y1 +y2 =
|O‘,<| andyz > 0”}, let P, £ {(]/1/]/2/y3> WA | 0<
y1 < min{t — 1, |ox[};y2 = |ok| —y1;y3 = 0}, let
Py = {(y1,y2,y3) € Z° | y1 = 50 < y3 < |ox];0 <
y3 < min{x, A — |ox| + y1 + y2}; either “y; +1y» <
lo|” or “y1 + y2 = |ok| andy; > 0"}, and letPy =
{Eylryzfl/s) €L’ |y =ty = o/ —t > 0y3
0}.

If tag = 1, then letP; £ {(y1,y2,¥3) € Z3 | 0 <
y1 < 50 < yp < |o] —y1;0 < y3 < min{x, A —
o] +y1+y2}}, let P £ {(y1,y2,93) € Z° | 0 <
y1 < min{t — 1, |ox[}; y2 = |ok| —y1;y3 = 0}, let
Py 2 {(y1,y2,93) € Z° | y1 = 0 < yo < |oie| —
t;0 < y3 < min{x, A — |ox| + y1 + y2}}, and letP, =
{(v1,y2,93) €Z° | y1 = Ly2 = [0 =t > O3 =

0},
« We have f(|oi|,|on|,...,|ok;x;6t;y;tag) =
S anmer, (G GO f (ol ool -+ ol ;
x + y2 — yu&t — yuy — y1 — y3;0)
+ 5 aamen (SN E GO f(lonlloal -

lok-1];x  + - yuy — yul) +

2,0, t
S (y1.4293)Ps <;:V><"K'y;yl><y'§> Si<z<af(lo] o], oo,
low_1l;x + y2 — y3;6 — Lz;y — y1 — y3,0) +
2 (y1,y2,y3) €Py (‘;ﬁ')(m;yl)(;) Y1<z<a f(lon],foaf, -+,
lox-1l;x+y2;8 — Lz —y1;1).
Given anys € S,y andr < n — 1, the time complexity of

computing the sphere si2é(s, r)| using the above recursion[6]
is O(n*A%). Due to the space limitation, we skip the proof 0[7

the following theorem.

Theorem 7. The above recursion correctly compuféés, r)|.

n
/ .
w\s,s ) = min u; —10;).
( ) (ul,uz,...,un)evizl( ! Z)
Letv' = (v},v5,...,v)) be the unique realization ef that is
generated by Theorem 5. It has been shown thaninimizes
the virtual level of every cell; so we have

n

2

i=1

= min
(u1,.stin)EV

w(s,s') =Y (vl—v;) = (u; — ;).

M=

1

And it is not hard to see thahaxggcs, , w(s,s’) = n(n —
1).
Given a states € S, 5 and an integer > 0, we can define
the sphere of weighted radius centered ats as O(s, r)
{ue S, | w(s,u) =r}. The sphere sizg@(s,r)|, can be
computed with a similar recursion as the one in the previous
section. For simplicity we skip the details.
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