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Rank Modulation

3 / 133



1. Motivation and definition

Parallel cell programming for MLC
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Challenges of parallel cell programming for MLC

Muti-level cell (MLC): Parallel programming, common thresholds, heterogeneous cells, random process

of charge injection, over-injection of charge, disturbs and inter-cell interference, block erasure, difficulty in adjusting

threshold voltages, very careful repeated charge injection and measuring.
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Challenges of parallel cell programming for MLC

Dilemma among:

Capacity

Speed

Reliability and endurance

Due to: Inflexibility in adjusting cell levels.
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Definition (Rank Modulation)

Use the relative order of cell levels to represent data.

A. Jiang, R. Mateescu, M. Schwartz and J. Bruck, “Rank modulation for flash

memories,” in ISIT 2008.
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Some advantages of rank modulation:

1 Flexibility in adjusting relative cells levels,
even though we can only increase cell levels;

2 Tolerance for charge leakage / cell level drifting;

3 Enable memory scrubbing without block erasure.
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2. Extended models of rank modulation
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Extension: Rank modulation with multiple permutations

Some advantages: (1) Enable the building of long codes; (2) Cells in

different permutations can have very close cell levels.

F. Zhang, H. Pfister and A. Jiang, “LDPC codes for rank modulation in flash

memories,” in ISIT 2010.
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Extension: Rank modulation with multi-set permutation

Example: A group of n = 6 cells

Some advantages: Similar to multiple permutations, but more suitable if

cells can be programmed accurately.
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Example: Every rank has one cell
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Example: Every rank has two cells
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Example: Every rank has three cells
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Extension: Bounded rank modulation
Z. Wang, A. Jiang and J. Bruck, “On the capacity of bounded rank modulation for flash memories,” in

ISIT 2009.

Extension: Local rank modulation
M. Schwartz, “Constant-weight Gray codes for local rank modulation,” in ISIT 2010.

Extension: Partial rank modulation:
Z. Wang and J. Bruck, “Partial rank modulation for flash memories,” in ISIT 2010.

Some advantages: Faster read, and/or enabling long codewords.

15 / 133



3. Coding for rank modulation
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Coding with single permutation
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Single permutation: rewrite
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Definition (Rewrite)

Change data by changing the permutation – by moving cell levels
up.
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Virtual levels to help us estimate rewriting cost (increase in cell levels).
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Get the permutation right from low to high.
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Get the permutation right from low to high.
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Get the permutation right from low to high.
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Rewriting cost: 1.
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Can we know rewriting cost directly from the two permutations,
without running the previous rewriting algorithm?

Yes.

Theorem (Rewriting cost)

The rewriting cost equals the maximal increase in cells’ ranks.

E. En Gad, A. Jiang and J. Bruck, Compressed encoding for rank modulation,

ISIT 2011.
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Theorem (Rewriting cost)

The rewriting cost equals the maximal increase in cells’ ranks.

Rewriting cost: 1.
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Code construction for rewriting

Consider: Store data of k values in n cells.
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Every subset of permutations represents one value of the data.
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Consider one such subset, which represents one particular data
value.
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Say the red dot is the current state of the n cells. We want to
change the data to the value represented by the green subset · · ·
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Bound the rewriting cost by r .
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The green subset needs to be a dominating set of incoming
covering radius r .
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We show an optimal code as an example.
Parameters: n = 4 cells, k = 6 data values, rewriting cost r = 1.

E. En Gad, A. Jiang and J. Bruck, “Compressed encoding for rank modulation,” in ISIT 2011.
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Every permutation has r !(r + 1)n−r permutations within radius
(rewriting cost) r , including itself.
So a permutation has 2n−1 − 1 = 7 neighboring nodes within
radius r = 1.
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Every row (subgroup) is a dominating set of radius 1.

So we can map the 6 cosets to 6 data values. The code has a
bounded rewriting cost of 1.
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Every row (subgroup) is a dominating set of radius 1.

So we can map the 6 cosets to 6 data values. The code has a
bounded rewriting cost of 1.
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Single permutation: error correction
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1 Model errors: Noise modeling, and error quantization.

2 Design ECC.

39 / 133



Kendall-τ distance
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Definition (Kendall-tau distance)

The number of adjacent transpositions to change one permutation
into another. (The distance is symmetric.)

Example

For permutations α = [2, 1, 3, 4] and β = [2, 3, 4, 1], the Kendall-τ
distance dτ (α, β) = 2 because
[2, 1, 3, 4]→ [2, 3, 1, 4]]→ [2, 3, 4, 1].
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We can define an adjacency graph for permutations based on
Kendall-τ distance.

Example

Permutations Sn with n = 4.

1234 

2134 

3124 

4123 

3214 

4213 

1324 

2314 

4312 

1423 

2413 

3412 

4321 

3421 

4132 4231 

1432 

2431 2143 

3142 

1243 

3241 

1342 

2341 
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An technique for ECC construction: Embedding

Other techniques: Interleaving (product of sub-codes), modular (for

limited-magnitude errors), etc.
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Theorem

The adjacency graph for permutations is a subgraph of an
(n − 1)-dimensional array, whose size is 2× 3× · · · × n.

1234 

2134 

3124 

4123 

3214 

4213 

1324 

2314 

4312 

1423 

2413 

3412 

4321 

3421 

4132 4231 

1432 

2431 2143 

3142 

1243 

3241 

1342 

2341 

A. Jiang, M. Schwartz and J. Bruck, Error-correcting codes for rank modulation, in ISIT 2009.
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Construction (One-Error-Correcting Rank Modulation Code)

Let C1,C2 ⊆ Sn denote two rank modulation codes constructed as
follows. Let A ∈ Sn be a general permutation whose inversion vector is
(x1, x2, · · · , xn−1). Then A is a codeword in C1 iff the following equation
is satisfied:

n−1∑

i=1

ixi ≡ 0 (mod 2n − 1)

A is a codeword in C2 iff the following equation is satisfied:

n−2∑

i=1

ixi + (n − 1) · (−xn−1) ≡ 0 (mod 2n − 1)

Between C1 and C2, choose the code with more codewords as the final
output.
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For the above code, it can be proved that:

The code can correct one Kendall error.

The size of the code is at least (n−1)!
2 .

The size of the code is at least half of optimal.
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Codes correcting more Kendall errors are constructed based on
embedding.

First, consider codes of the following form:

Let m ≥ n− 1 and let h1, · · · , hn−1 be a set of integers, where
0 < hi < m for i = 1, · · · , n − 1. Define the code as follows:

C = {(x1, x2, · · · , xn−1) |
n−1∑

i=1

hixi ≡ 0 mod m}

[1] A. Barg and A. Mazumdar, “Codes in Permutations and Error Correction for Rank Modulation,” in Proc. IEEE

International Symposium on Information Theory (ISIT), pp. 854–858, June 2010.
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Fact: The above code can correct t Kendall errors if all the
syndromes caused by up to t errors are all distinct.

How to find such integers h1, · · · , hn−1?

Theorem (Bose-Chowla)

Let q be a power of a prime, and let m = qt+1−1
q−1 . Then there exist

q + 1 integers j0 = 0, j1, · · · , jq in Zm such that the sums

ji1 + ji2 + · · ·+ jit (0 ≤ i1 ≤ i2 ≤ · · · ≤ it ≤ q)

are all different modulo m.
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The Bose-Chowla theorem is useful when all the errors in the embedded
(n − 1)-dimensional L1 space are positive errors.

To also handle negative errors, we can “enlarge” the coefficients:

Theorem

For 1 ≤ i ≤ q + 1 let

hi =

{
ji−1 + t−1

2 m for odd t

ji−1 + t
2 m for even t

where the numbers ji are given by the Bose-Chowla theorem. Let
mt = t(t + 1)m if t is odd and mt = t(t + 2)m if t is even. For all

e ∈ Zq+1 such that ||e|| ≤ t the sums (i.e., syndromes)
∑q+1

i=1 eihi are all
distinct and nonzero modulo mt .
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More ideas (example): Map each dimension of the
(n − 1)-dimensional space to bits using Gray code. Then binary
ECC can be turned into ECC for permutations.

Theorem

There is a code of length n = q − 1 and size at least qlogp(n−2t−1).
It corrects all patterns of up to t Kendall errors in the rank
modulation scheme under a decoding algorithm of complexity
polynomial in n.

Theorem

Let A be a binary code of length

m = (n + 1)blog nc − 2blog nc+1 + 2,

cardinality M and Hamming distance d. Then there is a rank
modulation code on n elements of cardinality M with distance at
least d in the Kendall space.

[1] A. Mazumdar, A. Barg and G. Zemor, “Constructions of Rank Modulation Codes,” in Proc. IEEE International

Symposium on Information Theory (ISIT), 2011.
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Systematic ECC for Rank Modulation

51 / 133



Systematic ECC for Rank Modulation
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Theorem (systematic one-error-correcting code)

For k ≥ 3, there is a (k + 2, k) systematic code for correcting one
Kendall-τ error. (And the code has an optimal size unless a perfect
(k + 1, k) code exists.)

Theorem (systematic multiple-error-correcting code)

For any 2 ≤ k < n, there exists an (n, k) systematic code of minimum
distance n − k.

Theorem (capacity of systematic ECC)

When n→∞, systematic ECCs achieve the same capacity as general
ECCs.

H. Zhou, A. Jiang and J. Bruck, “Systematic error-correcting codes for rank modulation,” in ISIT 2012.
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Single permutation: capacity with Kendall-τ distance

Let the number of cells n→∞. Consider capacity.

Theorem (Capacity of Rank Modulation ECC with n→∞)

Let A(n, d) be the maximum number of permutations in Sn with
minimum Kendall-tau distance d. We call

C (d) = lim
n→∞

ln A(n, d)

ln n!

the capacity of rank modulation ECC of Kendall-tau distance d. Then,

C (d) =





1 if d = O(n)

1− ε if d = Θ(n1+ε), 0 < ε < 1

0 if d = Θ(n2)

[1] A. Barg and A. Mazumdar, “Codes in Permutations and Error Correction for Rank Modulation,” in Proc. IEEE

International Symposium on Information Theory (ISIT), pp. 854–858, June 2010.
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Now, consider finite n.

Theorem (Ball-packing Bound)

For an ECC of M codewords for n cells and minimum Kendall-τ distance
d,

M ≤ n!

|Bb(d−1)/2c|
.

The ball size can be computed:

A. Jiang, M. Schwartz and J. Bruck, “Correcting charge-constrained errors in the rank modulation scheme,”

in IEEE Trans. Information Theory, May 2010.
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Theorem (Gilbert-Varshamov-like bound)

Let n, M and d be positive integers such that

M ≤ n!

|Bd−1|
,

then there exists an (n,M, d) ECC.

Theorem (Singleton-like bound)

Let C be an (n,M, d) ECC. Then,

1 Let t be the largest integer such that M > n!
(n−t)! . If 0 ≤ t ≤ n − 2,

then d ≤
(
n−t

2

)
.

2 If M = n!
(n−t)! for some integer 2 ≤ t ≤ n − 2, then d ≤

(
n−t

2

)
+ 1.
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Let P(n, d) be the largest value of M such that there exists an (n,M, d)
ECC.
The following are recursive bounds.

Theorem (Monotonicity)

P(n + 1, d) ≥ P(n, d),

P(n, d) ≥ P(n, d + 1).

Theorem (Code shortening)

P(n + 1, d) ≤ (n + 1) · P(n, d).

Theorem (Code puncturing)

P(n + 1, d + n) ≤ d n + 1

d + n
e · P(n, d).
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Theorem (Code lengthening)

P(n + 1, d) ≥ dn + 1

d
e · P(n, d).

Theorem (Code extending)

P(n + 1, 2δ) ≥ d n

2δ
e · P(n, 2δ − 1).

Furthermore, if there exists an (n, 2δ − 1) code of size P(n, 2δ − 1) with
Me even codewords (i.e., permutations that can be described as a product
of an even number of transpositions) and Mo odd codewords, then

P(n + 1, 2δ) ≥ dn + 1

2δ
eMe + d n

2δ
eMo .

Theorem

P(n, 2δ) ≥ 1

2
P(n, 2δ − 1).
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Translocation distance (Ulam metric)
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Definition (Translocation distance)

Given two permutations π, σ ∈ Sn, their translocation distance
do(π, σ) is defined as the minimum number of translocations it
takes to change π to σ (or from σ to π).

Definition (Ulam distance)

Given two permutations π, σ ∈ Sn, let L(π, σ) denote the length of
their long common subsequence. Then, the Ulam distance is
defined as n − L(π, σ).

Theorem (Translocation distance equals Ulam distance)

do(π, σ) = n − L(π, σ).

Farzad Farnoud (Hassanzadeh), Vitaly Skachek, and Olgica Milenkovic, “Error-correction in flash memories via
codes in the Ulam metric,” in IEEE Trans. Information Theory, May 2013.
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Different metrics are related:
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Theorem (Levenshtein and Ulam)

Levenshtein’s insertion/deletion distance is twice the Ulam
distance.

Theorem (Ulam and Kendall)

Ulam distance is no greater than Kendall-τ distance, and is at least
the Kendall-τ distance divided by n − 1 (where n is the length of
the permutation).

Theorem (Ulam and Hamming)

Ulam distance is no greater than Hamming distance, and is at least
the Hamming distance divided by n.
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Theorem (Ulam and Caylay)

Ulam distance is at most twice the Caylay distance, and is at least
the Caylay distance divided by n − 1.

Theorem (Caylay and Hamming)

Caylay distance is at most Hamming distance, and is at least half
of Hamming distance.
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Let Ao(n, d) be the maximum size of a code of length n and
minimum Ulam distance d .

Theorem (Maximum code size)

(n − d + 1)!( n
d−1

) ≤ Ao(n, d) ≤ (n − d + 1)!

Let Co(d) denote the asymptotic capacity of codes with minimum
Ulam distance d = d(n), namely,

Co(d) = lim
n→∞

ln Ao(n, d)

ln n!
.

Theorem (Capacity)

Co(d) = 1− lim
n→∞

d(n)

n
.
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In comparison,

Theorem (Capacity of Hamming distance)

CH = 1− lim
n→∞

d(n)

n
.

Theorem (Capacity of Caylay distance)

1− 2 lim
n→∞

d(n)

n
≤ CT ≤ 1− lim

n→∞

d(n)

n
.

Theorem (Capacity of Kendall-τ distance)

CK = 1− ε, for d = Θ(n1+ε).
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Ideas on code construction: Interleaving, and metric embedding

Theorem (Single right-translocation error-correcting code)

There is a single right-translocation error-correcting code of length
n whose cardinality is 1

4 (dn2e!)2.

Theorem (Single translocation error-correcting code)

When n is a multiple of 3, there is a single translocation
error-correcting code of length n whose cardinality is 1

8 (n3 !)3.

Multiple translocation ECC: There exists a family of codes with
Ulam distance 2t + 1, length n = s(2t + 1) for some integer
s ≥ 4t + 1, and cardinality M = (AH(s, 4t + 1))2t+1.
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Infinity Norm
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Note: Here the permutation is the ranks of n cells, not the cell
indexes of n ranks. (It is the right case below.)
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Theorem

For a code of length n and minimum infinity-norm distance d, its
cardinality is at most

n!(bd+r
2 c − r)!(dd+r

2 e − r)!

(d!)b
n
d
c−1(d − r)!bd+r

2 c!dd+r
2 e!

where r = n mod d.

Itzhak Tamo and Moshe Schwartz, “Correcting limited-magnitude errors in the

rank-modulation scheme,” in IEEE Trans. Information Theory, June 2010.
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Coding with multiple permutations

Fan Zhang, Henry Pfister, and A. Jiang, “LDPC codes for rank

modulation in flash memories,” in ISIT 2010.

Reolyn Heymann, Jos H. Weber, Theo G. Swart, and Hendrik C. Ferreira,

“Concatenated permutation block codes based on set partitioning for

substitution and deletion error-control,” in ITW 2013.
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Coding with multiset permutation

For cells of the same rank,

1 Their analog levels’ relative order does not matter.

2 In practice, we would like their analog levels to be close to
each other, for better fault tolerance.
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Rank modulation with multiset permutation: an intermediate form
between single-permutation rank modulation and SLC/MLC.

[1] Hongchao Zhou, A. Jiang and J. Bruck, “Error-correcting schemes with

dynamic thresholds in nonvolatile memories,” in ISIT 2011.

[2] Eyal En Gad, A. Jiang and J. Bruck, “Trade-offs between instantaneous and

total capacity in multi-cell flash memories,” in ISIT 2012.

[3] Qing Li, “Compressed rank modulation,” in Allerton 2012.
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Multiset permutation: error correction

The study of ECC for rank modulation with different metrics can
be extended from single permutation to multiset permutation.

[1] Frederic Sala, Ryan Gabrys, and Lara Dolecek, “Dynamic threshold schemes

for multi-level non-volatile memories,” in IEEE Trans. Communications, July

2013. (Decomposability distance, Kendall-τ distance)

[2] Sarit Buzaglo, Eitan Yaakobi, Jehoshua Bruck, and Tuvi Etzion,

“Error-correcting codes for multipermutations,” in ISIT 2013. (Kendall-τ

distance)

[3] Farzad Farnoud and Olgica Milenkovic, “Multipermutation codes in the

Ulam Metric for nonvolatile memories,” in JSAC special issue on

Communication Methodologies for the Next-generation Storage Systems, May

2014. (Ulam distance, Hamming distance)
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Multiset permutation: rewrite

High-rate rewriting code based on polar codes.

Eyal En Gad, Eitan Yaakobi, Anxiao (Andrew) Jiang and Jehoshua Bruck,

“Rank-modulation rewriting codes for flash memories,” in ISIT 2013.
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Duality between error correction and rewriting

States of cells (for both SLC/MLC and rank modulation):
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ECC codewords:
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ECC decoding:
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Now consider rewriting.
States of cells:
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Each color represents a data value:
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Say “red” is the data value we want to (re)write:
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Rewriting:
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Duality between error correction and rewriting

Decoding of ECC ⇔ Encoding of rewriting code.

Encoding of ECC ⇔ Decoding of rewriting code.

Decoding of ECC is hard ⇔ Encoding of rewriting is hard.

Random coding can achieve capacity for ECC ⇔ Random
coding can achieve capacity for rewriting.

Encoding of rewriting should be EXACT (i.e., no error) ⇒
block decoding of ECC (not allowing any bit error after
decoding)

Additional constraint for WOM/Flash: Cell levels can only go
up for rewriting.

Additional constraint for rewriting code in general: There are
multiple rewrites, so the code has multiple stages.
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Now consider: Combining error correction and rewriting.

States of cells:
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ECC codewords:
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Each color represents a data value:
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Say “blue” is the data value we want to (re)write:

88 / 133



Rewriting (for error-correcting rewriting code):

For error-correcting rewriting code:

Encoding (rewriting) ⇔ ECC decoding.
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ECC decoding (for error-correcting rewriting code):

For error-correcting rewriting code:

Encoding (rewriting) ⇔ ECC decoding.
Decoding ⇔ ECC decoding.
Both encoding and decoding are hard.
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Error correction and rewriting:

Is there an ECC with these properties:

Decoding is efficient (for random channels, asymptotically).

Focus on block decoding (that is, decoding the whole
codeword correctly).

POLAR CODE.
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Polar code:

Decoding (and encoding) complexity:

O(N log N).

Additional feature (important for constructing rewriting
codes): The separation between frozen bits and non-frozen
bits.

Erdal Arikan, “Channel polarization: A method for constructing

capacity-achieving codes for symmetric binary-input memoryless channels,” in

ISIT 2008.
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Duality between channel coding (ECC) and source coding (data
compression).

S. B. Korada and R. Urbanke, “Polar codes are optimal for lossy source

coding,” in IEEE Trans. Information Theory, April 2010.
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Polar code is used to construct capacity-achieving WOM codes.

David Burshtein and Alona Strugatski, “Polar write once memory codes,” in

ISIT 2012.
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Polar WOM code’s process of a rewrite: Encode

Polar 
Encoder

WOM channelInput Bits
Polar Codeword
(cell values after

the write) Cell level and value 
before the write

frozen set
for WOM
channel
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Polar 
Encoder

WOM channelInput Bits
Polar Codeword
(cell values after

the write) Cell level and value 
before the write

frozen set
for WOM
channel

Known
Data
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Polar 
Encoder

WOM channelInput Bits
Polar Codeword
(cell values after

the write) Cell level and value 
before the write

frozen set
for WOM
channel

Known
Data

Computed
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Polar 
Encoder

WOM channelInput Bits
Polar Codeword
(cell values after

the write) Cell level and value 
before the write

frozen set
for WOM
channel

Known
Data

Computed Computed
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Polar WOM code’s process of a rewrite: Decode

Polar 
Encoder

WOM channelInput Bits
Polar Codeword
(cell values after

the write) Cell level and value 
before the write

frozen set
for WOM
channel

Known
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Polar 
Encoder

WOM channelInput Bits
Polar Codeword
(cell values after

the write) Cell level and value 
before the write

frozen set
for WOM
channel

Known

Recovered
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For Rewriting to be used in flash memories, it is CRITICAL to
combine it with Error-Correcting Codes.
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A joint coding scheme for rewriting and error correction, which can
correct a substantial number of errors and supports any number of
rewrites.

A. Jiang, Yue Li, Eyal En Gad, Michael Langberg, and Jehoshua Bruck, “Joint

rewriting and error correction in write-once memories,” in ISIT 2013.
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Model of rewriting and noise:

1st 
write BSC(p) 2nd 

write BSC(p) t-th
write BSC(p)
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Polar 
Encoder

WOM channelInput Bits
Polar Codeword
(cell values after

the write)frozen set
for WOM
channel

frozen set
for BSC
channel
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Polar 
Encoder

WOM channelInput Bits
Polar Codeword
(cell values after

the write)frozen set
for WOM
channel

frozen set
for BSC
channel

Data

0's

Use additional
cells to store 

its value
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Lower bound to achievable sum-rate (for WOM):

is

Mj =|FWOM(αj−1,�j)
| − |FWOM(αj−1,�j)

∩ FBSC(p)|
=Nαj−1 H(�j) − xj|FBSC(p)|
=N(αj−1 H(�j) − xj H(p))

and the number of additional cells we use to store the bits in
FBSC(p) − FWOM(αj−1,�j)

is

Nadditional,j =
N H(p)(1 − xj)

1 − H(p)

Therefore, the sum-rate is Rsum � ∑t
j=1 Mj

N+∑t
j=1 Nadditional,j

=
∑t

j=1 αj−1 H(�j) − H(p) ∑t
j=1 xj

1 + H(p)
1−H(p) ∑t

j=1(1 − xj)

=
(1 − H(p)) ∑t

j=1 αj−1 H(�j) − H(p)(1 − H(p)) ∑t
j=1 xj

(1 − H(p) + H(p)t) − H(p) ∑t
j=1 xj

=(1 − H(p)) ·
1

H(p) ∑t
j=1 αj−1 H(�j) − ∑t

j=1 xj

1−H(p)+H(p)t
H(p)

− ∑t
j=1 xj

.

Let γj � max

�
αj−1 H(

p
αj−1

)

H(p)
,

αj−1 H(�j)+H(p)−H(αj−1�j)

H(p)

�
.

Lemma 5. Let 0 < p ≤ αj−1�j. Then xj ≥ γj.

Proof: By Lemma 3, we have

xj =
|FWOM(αj−1,�j)

∩ FBSC(p)|
|FBSC(p)|

≥
|FWOM(αj−1, p

αj−1
)|

|FBSC(p)|
=

αj−1 H( p
αj−1

)

H(p)
.

By Lemma 4, we also have

xj =
|FWOM(αj−1,�j)

∩ FBSC(p)|
|FBSC(p)|

≥
|FWOM(αj−1,�j)

| + |FBSC(p)| − |FBSC(αj−1�j)
|

|FBSC(p)|

=
αj−1 H(�j) + H(p) − H(αj−1�j)

H(p)
.

Theorem 6 Let 0 < p ≤ αj−1�j for j = 1, 2, · · · , t. If
∑t

j=1 αj−1 H(�j) ≥ 1 − H(p) + H(p)t, then the sum-rate
Rsum is lower bounded by

(1 − H(p))
∑t

j=1
�
αj−1 H(�j) − H(p)γj

�

1 − H(p) + H(p)t − H(p) ∑t
j=1 γj

.

If ∑t
j=1 αj−1 H(�j) < 1 − H(p) + H(p)t, and H(p) ≤

αj−1 H(�j) for j = 1, 2, · · · , t, then Rsum is lower bounded
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Fig. 6. Lower bound to achievable sum-rates for different error probability
p.
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Fig. 7. Lower bound to achievable sum-rates for different error probability
p. Here each rewriting step writes the same number of bits.

by �
t

∑
j=1

αj−1 H(�j)

�
− H(p)t.

Proof: If ∑t
j=1 αj−1 H(�j) ≥ 1 − H(p) + H(p)t, the

sum-rate is minimized when xj (j = 1, 2, · · · , t) takes the
minimum value, and we have xj ≥ γj. Otherwise, the sum-
rate is minimized when xj takes the maximum value 1.

We show some numerical results of the lower bound to sum-
rate Rsum in Figure 6, where we let �i = 1

2+t−i . The curve
for p = 0 is the optimal sum-rate for noiseless WOM code.
The other four curves are the lower bounds for noisy WOM
with p = 0.001, p = 0.005, p = 0.010 and p = 0.016,
respectively, given by Theorem 6. Note that it is possible to
further increase the lower bound values by optimizing �i. We
also show in Figure 7 the lower bound to sum-rate when each
step writes the same number of bits.
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Also thanks to polar code:

Rewriting code for rank modulation with multiset
permutation.

E. En Gad, E. Yaakobi, A.Jiang and J. Bruck, “Rank-modulation rewriting

codes for flash memories,” in ISIT 2013.
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Can we design error-correcting rewriting codes for rank modulation
with multiset permutation?
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Further reading

D. Slepian, “Permutation modulation,” in Proc. IEEE, Mar. 1965.

I. F. Blake, G. Cohen, and M. Deza, “Coding with permutations,” Inf.
Control, 1979.

A. J. Han Vinck and H. C. Ferreira, “Permutation trellis-codes,” in ISIT
2001.

C. J. Colbourn, T. Klove, and A. C. H. Ling, “Permutation arrays for
powerline communication and mutually orthogonal Latin squares,” in
IEEE Trans. Information Theory, June 2004.

I. Tamo and M. Schwartz, “On the labeling problem of permutation
group codes under the infinity metric,” in IEEE Trans. Information
Theory, Oct. 2012.

M. Schwartz and I. Tamo, “Optimal permutation anticodes with the
infinity norm via permanents of (0, 1)-matrices,” in Journal of
Combinatorial Theory, 2011.
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T. Klove, T. Lin, S. Tsai and W. Tzeng, “Permutation arrays under the
Chebyshev distance,” in IEEE Trans. Information Theory, June 2010.

Y. Yehezkeally and M. Schwartz, “Snake-in-the-box codes for rank
modulation,” in IEEE Trans. Information Theory, Aug. 2012.

T. Wadayama and M. Hagiwara, “LP-decodable permutation codes based
on linearly constrained permutation matrices,” in IEEE Trans.
Information Theory, Aug. 2012.

M. Schwartz, “Quasi-cross lattice tilings with applications to flash
memory,” in IEEE Trans. Information Theory, Apr. 2012.

M. Qin, A. Jiang and P. H. Siegel, “Parallel programming of rank
modulation,” in ISIT 2013.
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Constrained Coding
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Constrained coding for inter-cell interference

Inter-cell interference in flash memory:
The Vth shift of middle cell caused by shifting of neighboring cells is

∆Vi,j = Cx(∆Vi−1,j + ∆Vi+1,j) + Cy (∆Vi,j−1 + ∆Vi,j+1)
+Cx,y (∆Vi−1,j−1 + ∆Vi+1,j−1 + ∆Vi−1,j+1 + ∆Vi+1,j+1)

V i,jVi-1,j Vi+1,j

Vi,j+1Vi-1,j+1 Vi+1,j+1

Vi,j-1Vi-1,j-1 Vi+1,j-1

CxCx

Cy

Cy

Cx,y
Cx,y

Cx,y Cx,y
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One constraint to set for q-level cells: The difference between
adjacent levels cannot be too large.
A concrete example: Avoid (q − 1)0(q − 1) pattern for adjacent
cell levels.

Minghai Qin, Eitan Yaakobi, and Paul Siegel, “Constrained codes that mitigate

intercell interference in read/write cycles for flash memories,” in JSAC Special

Issue, May 2014.
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Constrained rank modulation: The difference between adjacent cell
ranks cannot be too large.

A more specific constraint:

Definition (Single neighbor k-constraint)

The difference between two adjacent cells’ ranks cannot be more
than k .

Frederic Sala and Lara Dolecek, “Constrained rank modulation schemes,” in

ITW 2013.
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Definition (path-scheme)

A graph with n nodes labelled by 1, 2, · · · , n. Two nodes i and j
have an edge iff |i − j | ≤ k .

k-constrained permutation ⇔ Hamiltonian path in path-scheme
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Let |An,k | denote the total number of k-constrained permutations
of length n.

Define capacity as C(k) = limn→∞
ln |An,k |

ln n! .

Theorem (Bounds for code size)

(k + 1)!bk

2
cn−k−1 ≤ |An,k | ≤ 2(2k)n − (k!)b

n
k
c

Theorem (Capacity)

If k = Θ(nε), where 0 ≤ ε ≤ 1, the capacity of k-constrained rank
modulation codes is C(k) = ε.
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Constrained coding for cell level drifting (gain and offset)

Flash memory and PCM commonly have cell level drifting.
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Definition (Model for Cell Level Drifting)

Let x = (x1, x2, · · · , xn) ∈ {0, 1, · · · , q}n be the original codeword.
Let v = (v1, v2, · · · , vn) be additive noise. Let r = (r1, r2, · · · , rn)
be received codeword. Then,

r = a(x + v) + b

where a > 0 is the scaling factor (gain), and b is the offset.

In practice, a and b are often unknown and time-variant.

Kees A. Schouhamer Immink, “Coding schemes for multi-level channels with

unknown gain and/or offset,” in ISIT 2013.
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Definition (Pearson Distance)

ρr,x̂ =

∑n
i=1(ri − r̄)(x̂i − ¯̂x)

σrσx̂

Minimize Pearson distance to find codeword. The estimation is
robust to gain and offset.

Use T -constrained codes for the Pearson-distance based decoding.

Kees A. Schouhamer Immink and Jos H. Weber, “Minimum Pearson distance

detection for multi-level channels with gain and/or offset mismatch,” draft

2014.
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Further reading

A. Berman and Y. Birk, “Error correction scheme for constrained
inter-cell coupling in flash memory,” NVMW 2011.

G. Dong, S. Li and T. Zhang, “Using data post-compensation and
pre-distortion to tolerate cell-to-cell interference in MLC NAND flash
memory,” in IEEE Trans. Circuits and Systems I, 2010.

E. Ordentlich, G. Ribeiro, R. M. Roth, G. Seroussi, and P. O. Vontobel,
“Coding for limiting current in memristor crossbar memories,” NVMW
2011.

Y. Cassuto, S. Kvatinsky and E. Yaakobi, “Sneak-path constraints in
memristor crossbar arrays,” in ISIT 2013.
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Little summary and more topics
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A little summary:

Nonvolatile memories are good,

nonvolatile memories are strange.

We need the right metrics,

to characterize noise and constraints.

The metrics are often related,

so are coding techniques.

If all goes well hand in hand,

We get reliability and speed.
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Some further topics:

Coding combined with NVM file systems

Cryptography and security for NVM

Compression in NVM

Information-theoretic memory cell design and architecture
design

Coding for networked NVMs and NVM arrays
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