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Welcome to the zettabyte age
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Exciting times for data storage

Data storage 

Innovations in data storage are the key 
enabler of the information revolution 

Data avalanche 

Rising NVM industry 

Data center farms 
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What is this tutorial about ?

Today we will learn about

Physical characteristics of emerging non-volatile memories,

Channel models associated with these technologies,

Various recent developments in coding for memories, and

Open problems and future directions in communication techniques for
memories.
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Outline
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Basics of NVM operations
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Flash technology

A cell is a floating-gate transistor.

Row of cells is a page.

Group of pages is a block.

A flash memory block is an array of 220 ∼ million cells.
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Flash technology

Cell value corresponds to the voltage induced by the number of
electrons stored on the gate.

Single level cell (SLC)

stores 1 bit per cell; one separating level

Multiple level cell (MLC)

stores 2 or more bits per cell; multiple separating levels
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Flash programming – example 1

Flash block Initial state

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
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Flash programming – example 1

Flash block Final state

1 1 2 1
1 1 1 1
2 2 1 1
3 3 2 1
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Flash programming – example 2

Flash block Initial state

1 1 2 1
1 1 1 1
2 2 1 1
3 3 2 1
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Flash programming – example 2

Flash block Final state

1 1 3 2
2 1 1 1
2 2 1 1
3 3 3 2
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Flash programming – example 3

Flash block Initial state

1 1 2 1
1 1 1 1
2 2 1 1
3 3 2 1
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Flash programming – example 3

Flash block Intermediate state

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
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Flash programming – example 3

Flash block Final state

1 1 2 1
1 1 1 1
2 2 1 1
3 1 2 1
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Flash endurance

Flash block Programmed state

1 3 4 3
4 2 3 4
1 1 3 2
4 3 2 4
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Flash endurance

Flash block Retrieved state

1 3 4 3
3 2 3 3
1 1 2 2
3 3 2 3

Charge leakage over time results in level drop!
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Flash endurance

Frequent block erases cause so-called “wearout” due to charge loss on
the gates.

Flash memory lifetime is commonly expressed in terms of the number
of program and erase (P/E) cycles allowed before memory is deemed
unusable.

Lifetime:

SLC: ≈ 106 P/E cycles
MLC: ≈ 103 − 105 P/E cycles

With frequent writes 2GB TLC lasts less than 3 months!

19 / 76



Intercell coupling

Flash block Original state

1 3 4 3
4 2 3 4
1 1 3 2
1 1 1 3
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Intercell coupling

Flash block Programmed state

1 3 4 3
4 2 3 4
1 1 3 2
3 1 3 3
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Intercell coupling

Flash block Retrieved state

1 3 4 3
4 2 3 4
1 1 3 2
3 3 3 3

Change in charge in one cell affects voltage threshold of a neighboring
cell.

During write/read, stressed (victim) cell appears weakly programmed.
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To summarize...

Key flash features

Write on the page level, erase on the block level

Wearout limits usable lifetime

Inter-symbol interference
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Phase change memories (PCM)

Pros

Erases on the cell level

Faster access

More P/E cycles, longer
lifetime

Cons

Not as dense

Thermal accumulation

Thermal cross talk

Higher processing cost

Each cell is in two fundamental states
(with in-between states)

Amorphous – high resistance
↓ (intermediate)
↓ (intermediate)

Polycrystalline – low resistance
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Part II: Error Correction Coding
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ECC is a must for new NVMs

Early designs:
Hamming code, Reed-Solomon code

Widespread industry standard:
BCH code
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Micronix, “NAND Flash Technical Note”, 2014.

Spansion, “What Types of ECC Should Be Used on Flash Memory?”,
2011.

Micron, “The Inconvenient Truth About NAND Flash”, 2007.
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Flash chip data collection: a closer look
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Error patterns in TLC and the need for new codes

Number of wrong bits per wrong symbol Percentage of errors

1 0.9617
2 0.0314
3 0.0069

Why not use standard codes ?
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Symmetric vs. non-symmetric error spheres
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Symmetric vs. non-symmetric error spheres

!"#$%"&#'( $&&"&'()"(*$(!"&&$!)$#( !"#$%"&#'( $&&"&'()"(*$(!"&&$!)$#(

Conventional codes are optimized for the Hamming metric.

1 Do not differentiate among different types of symbol errors

2 Result in unnecessary overhead (rate loss)
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Variability-aware coding

Key idea

Control for both the number of cells to be corrected as well as the number
of bits per erroneous cell to be corrected.

An example:

Suppose (000 110 010 101 000 111) is stored

Suppose (101 110 000 101 000 011) is retrieved
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Variability-aware coding

An example:

Suppose (000 110 010 101 000 111) is stored

Suppose (101 110 000 101 000 011) is retrieved

Error pattern characterization:

1 There are 3 symbols in error

→ Code that corrects t symbols

2 There are 3 symbols in error, with at most 2 erroneous bits each

→ [t, `] code that corrects t symbols, each with at most ` bits in error

3 There are 3 symbols in error, with at most 2 erroneous bits each, and
there is 1 symbol with more than 1 bit in error

→ [t1, t2; `1, `2] code that corrects t1 + t2 symbols, each with at most `1
bits in error, and at most t2 symbols with more than `2 bits in error
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New code constructions

Theorem (Construction 2)

Let H1 be the parity check matrix of a [m, k1, `]2 code C1 (standard
[n, k, e] notation).

Let H2 be the parity check matrix of a [n, k2, t]2m−k1 code C2 defined
over the alphabet of size GF (2)m−k1 .

Then, HA = H2 ⊗ H1 is the parity check matrix of a [t; `]2m code of
length n.

k1 denotes the number of message bits, m denotes the number of
coded bits and ` is the number of bit errors code C1 can correct.

J. K. Wolf, “On codes derivable from the tensor product of check
matrices”, T-IT, 1965.
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New code constructions

Choose H =

[
H1

H3

]
as a parity check matrix of a [m, k1, `2]2 code

and H1 as a parity check matrix of a [m,m − r , `1]2 code

H1 is an r ×m matrix, H3 is an s ×m matrix.

Suppose H2 is a parity check matrix of a [n, k2, t1 + t2]2r code.

Suppose H4 is a parity check matrix of a [n, k3, t2]2s code.

Theorem (Construction 3)

Then, HB is the parity check matrix of a [t1, t2; `1, `2]2m code, where

HB =

(
H2 ⊗ H1

H4 ⊗ H3

)
.
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Performance evaluation for codes of length 4000 bits and
rate 0.86
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Non−Binary BCH Code Over GF(8)
Binary BCH Code
Different Binary BCH Code Applied to LSB, CSB, MSB
Graded−Bit Error−Correcting Code
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Exploiting level distributions
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What high-performance codes are amenable for soft decoding ?
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LDPC for Flash: Extracting soft information

Idea: multiple word line reads

2 reads compare against two thresholds

0 1

p2 p1p3
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(a) Two reads (b) Three reads

Fig. 3. Equivalent discrete memoryless channel models for SLC with (a) two reads and (b) three reads with distinct word-line

voltages.

A. PAM-Gaussian Model

This subsection describes how to select word-line voltages to achieve MMI in the context of

a simple model of the flash cell read channel as PAM transmission with Gaussian noise. MMI

word-line voltage selection is presented using three examples: SLC with two reads, SLC with

three reads, and 4-level MLC with six reads.

For SLC flash memory, each cell can store one bit of information. Fig. 2 shows the model of

the threshold voltage distribution as a mixture of two identically distributed Gaussian random

variables. When either a “0” or “1” is written to the cell, the threshold voltage is modeled as a

Gaussian random variable with variance N0/2 and either mean −√
Es (for “1” ) or mean +

√
Es

(for “0” ).

For SLC with two reads using two different word line voltages, which should be symmetric

(shown as q and −q in Fig. 2), the threshold voltage is quantized according to three regions

shown in Fig. 2: the white region, the black region, and the union of the light and dark gray

regions (which essentially corresponds to an erasure). This quantization produces the effective

discrete memoryless channel (DMC) model as shown in Fig. 3 (a) with input X ∈ {0, 1} and

output Y ∈ {0, e, 1}.

Assuming X is equally likely to be 0 or 1, the MI I(X; Y ) between the input X and output

Maximize mutual information of the induced channel to determine the
best thresholds (here T and −T )
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Performance with multi read

Figure: Performance comparison for 0.9-rate LDPC and BCH codes of length
n = 9100.
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Fig. 9. MI vs. q for various SNRs for the Gaussian model of MLC
(four-level) Flash with the erasure regions in Fig. 8 of size 2q and cen-
tered on the natural hard-decoding thresholds for Gaussians with means
{µ1, µ2, µ3, µ4} = {−3, −1, 1, 3}.
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Fig. 10. MI vs. SNR for thresholds for MLC with six reads where optimiza-
tion is either constrained by a single parameter q or fully unconstrained.

studied in Fig. 9 cause a significant reduction in MMI as
compared to unconstrained thresholds. Fig. 10 compares the
performance of the constrained optimization, which has a
single parameter q, and the full unconstrained optimization.
As shown in the figure, the benefit of fully unconstrained
optimization is insignificant.
Fig. 11 shows performance of unconstrained MMI quan-

tization on the Gaussian channel model of Fig. 8 for three
and six reads for Codes 1 and 2. With four levels, three reads
are required for hard decoding. For MLC (four-level) Flash,
using six reads recovers more than half of the gap between
hard decoding (three reads) and full soft-precision decoding.
This is similar to the performance improvement seen for SLC
(two-level) Flash when increasing from one read to two reads.
Note that in Fig. 11, the trade-off between performance

with soft decoding and performance with hard decoding is
even more pronounced. Code 1 is clearly superior with soft
decoding but demonstrates a noticeable error floor when
decoded with three or six reads.
LDPC error floors due to absorbing sets can be sensitive
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Fig. 11. FER vs. channel bit error probability simulation results using the
Gaussian channel model for 4-level MLC comparing LDPC Codes 1 and 2
with varying levels of soft information and a BCH code with hard decoding.
All codes have rate 0.9021.

Fig. 12. A (4,2) absorbing set. Variable nodes are shown as black circles.
Satisfied check nodes are shown as white squares. Unsatisfied check nodes
are shown as black squares. Note that each of the four variable nodes has
degree three. This absorbing set is avoided by precluding degree-3 nodes.

to the quantization precision, occurring at low precision but
not at high precision [27], [28]. Code 1 has small absorbing
sets including the (4, 2), (5, 1), and (5, 2) absorbing sets. As
shown in Fig. 12 for the (4,2) absorbing set, these absorbing
sets can all be avoided by precluding degree-three variable
nodes. Code 2 avoids these absorbing sets because it has no
degree-3 variable nodes. As shown in Fig. 11, Code 2 avoids
the error floor problems of Code 1.

B. A More Realistic Model

We can extend the MMI analysis of Section III-B to any
model for the Flash memory read channel. Consider again
the 4-level 6-read MLC as a 4-input 7-output DMC. Instead
of assuming Gaussian noise distributions as shown in Fig. 8,
Fig. 13 shows the four conditional threshold-voltage proba-
bility density functions generated according to the six-month
retention model of [16] and the six word-line voltages that
maximize MI for this noise model. While the conditional noise
for each transmitted (or written) threshold voltage is similar to
that of a Gaussian, the variance of the conditional distributions
varies greatly across the four possible threshold voltages. Note
that the lowest threshold voltage has by far the largest variance.

Caution:

Optimal code design in the error floor region depends on the chosen
quantization.
AWGN-optimized LDPC codes may not be the best for the quantized
(and asymmetric) Flash channel !
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Motivation: Write latency

Recall Flash programming

In practice incremental step
pulse programming is used,
a.k.a. guess and verify.

Latency increases with number
of levels.

If one allows for “dirty writes”, it suffices to correct errors in only one
direction.
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Coding for asymmetric, limited-magnitude errors

If one allows for “dirty writes”, it suffices to correct errors in only one
direction and that are of limited magnitude.

Definition (ALM Code)

Let C1 be a code over the alphabet Q1. The code C over the alphabet Q
(with |Q| > |Q1| = q1 = `+ 1) is defined as
C = {x = (x1, x2, . . . , xn) ∈ Qn | x mod q1 ∈ C1}.

Theorem

Code C corrects t asymmetric errors of limited magnitude ` if code C1
corrects t symmetric errors.

New construction inherits encoding/decoding complexity of the
underlying (symmetric) ECC.

Connections with additive number theory and asymmetric ECC
(Varshamov 1970s).
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Further Reading (1/2)
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H. Zhou, A. Jiang, and J. Bruck, “Nonuniform codes for correcting
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Research problems on coding for spatio-temporal variability
in NVMs

1 Investigation of algebraic codes for both transient and
permanent errors

2 Investigation of graph-based binary and non-binary codes
and their decoders for flash (LDPC, spatially coupled
codes etc.)

3 Constructions with tighter bounds, i.e., beyond
asymptotic optimality

4 Noise-adaptive coding

5 Coding for the target average performance

6 Deeper connections with number theoretic and
combinatorial methods

7 Performance – complexity tradeoff and evaluations for
more realistic channels
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Motivation: Coding can defer costly erases

Recall write and block-erase operations

What if we can maximize the amount of data written before the block
erase is necessary?

52 / 76



WOM Coding
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Write-once memory (WOM)

Cells are irreversibly programmed from “0” to “1”

Original applications of WOM were punch cards and optical disks

WOM coding allows for increased storage utilization
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The mother of all WOM codes

Information First Generation Second Generation

00 000 111
01 001 110
10 010 101
11 100 011
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Encoding example 1

Rivest-Shamir WOM code:

Information First Generation Second Generation

00 000 111
01 001 110
10 010 101
11 100 011

Write-1: 01 → Encode: 001.

Write-2: 10 → Encode: 101.
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Encoding example 2

Rivest-Shamir WOM code:

Information First Generation Second Generation

00 000 111
01 001 110
10 010 101
11 100 011

Write-1: 01 → Encode: 001.

Write-2: 01 → Encode: 001. No change.
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WOM model

!"#$%&'#"%(& )(*+,-&'#"%(& ./"#-&'#"%(&

Definition (WOM constraint)

The memory state is modeled as a vector yj of length n where j is the
current write (or generation). Each element y j

i , 1 ≤ i ≤ n, takes values in
the set {0, 1, . . . q − 1}. On write j , the encoder writes one of Mj

messages to the memory by updating yj−1 to yj while satisfying the
WOM-constraint yj ≥ yj−1.
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WOM model

Definition (Sum rate)

If Mj codewords can be represented at generation
j , then generation j has rate 1

n log(Mj). The sum
rate is the sum of rates across generations.

Rivest-Shamir code has rate log(M1 + M2)/n = log(4 + 4)/3 = 1.33.

Capacity is the maximum achievable sum rate.
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Capacity as a function of field order size
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Equal rate vs. unequal rate per write
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Equal rate vs. unequal rate per write
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A construction of binary WOM codes

We want to construct a binary three-write WOM over 2n cells.

Let C3 be a ternary two-write WOM of length n.

First write

Pick a first-generation codeword u in C3.
Map length-n u into length-2n binary string using Φ(0) = 00,
Φ(1) = 10, Φ(2) = 01.

Second write

Pick a second-generation codeword v in C3.
Map length-n v into length-2n binary string using Φ(0) = 00,
Φ(1) = 10, Φ(2) = 01.
Program each pair only once.

Third write

Write length-n binary string in the unused cells (one per pair).
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A construction of non-binary WOM codes

We want to construct a non-binary two-write WOM with q levels,
with 3|(q + 1).

Partition levels in groups of L = (q + 1)/3

first partition is {0, 1, . . . , L− 1}
second partition is {L− 1, L, . . . , 2L− 1}
third partition is {2L− 1, 2L, . . . , 3L− 1}

Let C2 be a binary two-write WOM code of length n.

First write:

first and second partition only

Pick a message m in Z n
3 .

Pick a first-generation codeword u in C2.
For each i , 1 ≤ i ≤ n: If ui = 0 write mi . If ui = 1 write mi + L.

Second write:

second and third partition only

Pick a message s in Z n
3 .

Pick a second-generation codeword v in C2.
For each i , 1 ≤ i ≤ n: If vi = 0 write si + (L− 1). If vi = 1 write
si + (2L− 1).
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An example using Rivest and Shamir write-twice code for
q = 2 and n = 8

Rivest-Shamir WOM code

Information First Generation Second Generation

00 000 111
01 001 110
10 010 101
11 100 011

Non-binary WOM code

Write no. Information RS code + info Encoded values

1 (0,1),(0,1,2) (001),(012) (0,1,5)

2 (0,0),(2,1,2) (111),(212) (7,6,7)
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Sum rate of short WOM codes
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Facets of WOM coding

Capacity approaching constructions
A. Shpilka, “Capacity achieving multiwrite WOM codes”, T-IT, 2014.

D. Burshtein and A. Strugatski, “Polar write once memory codes”,
T-IT 2013.

WOM with error correction/detection capabilities

Q. Huang, S. Lin, and K. A. S. Abdel Ghaffar, “Error correcting codes
for flash coding”, T-IT, 2011.

E. Yaakobi, P. H. Siegel, A. Vardy, and J. K. Wolf, “Multiple error
correcting WOM codes”, T-IT, 2012.

A. Jiang, Y. Li, E. En Gad, M. Langberg and J. Bruck, “Joint rewriting
and error correction in write-once memories”, ISIT, 2013.

Extensions
N. Bitouze, A. Graell i Amat, and E. Rosnes, “Using short synchronous
WOM codes to make WOM codes decodable”, TCOM, 2014.
L. Wang, M. Qin, E. Yaakobi, Y. H. Kim, and P. H. Siegel, “WOM
with retained messages”, ISIT, 2012.

Y. Cassuto and E. Yaakobi, “Short q-ary WOM codes with hot/cold
write differentiation”, ISIT, 2012.
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Motivation: Noisy writes in PCM

The write process in PCM is inherently inexact

The data can be written iteratively, by checking the content between
successive writes

Correctly written cells need not be further updated (cells in PCM can
be accessed individually)

The write process terminates when all cells are sufficiently well
programmed
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Rewritable channel for PCM
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Average rewriting cost is κ

Theorem

Capacity is upper-bounded by log(Γκ)

Parameter Γ depends on noise characteristics.

Exact expressions known in certain cases

Several extensions available
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Further Reading – Early Results
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Further Reading – Recent Results
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Research problems on WOM and rewriting

1 Coding for rewritable channels with read feedback

2 Extensions to other related models (WAM, floating codes
etc).

3 Connections with interference channels (e.g., dirty paper
coding)

4 Establishment of the complete capacity region/beyond
zero-error capacity.

5 Development of new tools for high-rate codes spanning
more than a couple of cells (e.g., lattices, posets)
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Further topics – beyond coding

Statistical and signal processing methods for voltage threshold
modeling and characterization

Parameter estimation and hypothesis testing
Study of time-varying stochastic processes

Communication methods for Flash channels

Design of optimal detectors under ICI
Use of equalization and signal shaping

Capacity calculations

Analysis of quantized channels
Non asymptotic performance analysis

Probabilistic methods and complexity

Implementation complexity evaluation and prototyping
Average vs. worst case performance analysis and design

Applications of interference alignment and interference channels
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TIME FOR A BREAK!
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