Channel Coding Methods for Emerging Data Storage

and Memory Systems

Opportunities to Innovate Beyond the Hamming Metric

L. Dolecek! A. Jiang?

1Department of Electrical Engineering, UCLA

2Department of Computer Science, Texas A&M

ISIT, 2014

Welcome to the zettabyte age

Data avalanche
60278

45781
40 -
20 -

0 = =

200520105015 2020

Exciting times for data storage

Data avalanche

6028 —
1

20 -

0 F= =8 l

200520102015 2020

Innovations in data storage are the key
enabler of the information revolution

Data storage

vios [y VL, SAGE <STAS SNIA

Data center farms B oo o) UBSA wam vwim
() #~=~= IBM 44 gdcron

e [(0E G Samisk @ iy
cadence © FC) HGST LSIN: M~
ot T pur romess Viking

Rising NVM industry

Exciting times for data storage

Data avalanche

200520102015 2020

New technologies

Pgrsonalized healthcare
c‘? Augmented reality
g Security “551

Smart cities

£S

Innovations in data storage are the key
enabler of the information revolution

Data storage

Data center far

—

ms
N

cadence ©

gebcron

Moo E0E & Sandisk @ e
FC) HGST LSI:: A~
W 7 pur romes VKNG

Rising NVM industry

3/76

What is this tutorial about ?

Today we will learn about

@ Physical characteristics of emerging non-volatile memories,

What is this tutorial about 7

Today we will learn about
@ Physical characteristics of emerging non-volatile memories,

@ Channel models associated with these technologies,

What is this tutorial about 7

Today we will learn about
@ Physical characteristics of emerging non-volatile memories,
@ Channel models associated with these technologies,

@ Various recent developments in coding for memories, and

What is this tutorial about 7

Today we will learn about
@ Physical characteristics of emerging non-volatile memories,
@ Channel models associated with these technologies,
@ Various recent developments in coding for memories, and

@ Open problems and future directions in communication techniques for
memories.

/76

of NVM operations

Basics

A b

AN

PSS

VY

44

ST

Flash technology

@ A cell is a floating-gate transistor.

IRy
W2l

Flash technology

@ A cell is a floating-gate transistor.
@ Row of cells is a page.

I

an)
FD
B
iy

o
d

Flash technology

@ A cell is a floating-gate transistor.
@ Row of cells is a page.
@ Group of pages is a block.

B

%_

KN
o

Flash technology

@ A cell is a floating-gate transistor.

@ Row of cells is a page.

@ Group of pages is a block.

o A flash memory block is an array of 229 ~ million cells.

)

1L
g
3

Flash technology

@ Cell value corresponds to the voltage induced by the number of
electrons stored on the gate.

Flash technology

@ Cell value corresponds to the voltage induced by the number of
electrons stored on the gate.

@ Single level cell (SLC)
e stores 1 bit per cell; one separating level

e
i

Flash technology

@ Cell value corresponds to the voltage induced by the number of
electrons stored on the gate.

@ Single level cell (SLC)
e stores 1 bit per cell; one separating level
e Multiple level cell (MLC)

e stores 2 or more bits per cell; multiple separating levels

I, s

Flash technology

@ Cell value corresponds to the voltage induced by the number of
electrons stored on the gate.

@ Single level cell (SLC)
e stores 1 bit per cell; one separating level
e Multiple level cell (MLC)

e stores 2 or more bits per cell; multiple separating levels

Bt
gaH

Flash programming — example 1

Flash block Initial state
1 111
1 111
1 111
1 111

10/76

Flash programming — example 1

Flash block Final state

g7

1121
1111
2 211
3321

11/76

Flash programming — example 2

Flash block Initial state

W N = =
WN ==
S N
e e

12 /76

Flash programming — example 2

Flash block Final state

w N D=
W N ==
(SN V)
N = =N

13/76

Flash programming — example 3

Flash block Initial state

WN = =
W N =
N = =N
e i

14 /76

Flash programming — example 3

Flash block Intermediate state

=
e
===
==

15/76

Flash programming — example 3

Flash block Final state

1121
1111
2 211
3121

16/76

Flash endurance

Flash block Programmed state
1 3 4 3
4 2 3 4
11 3 2
4 3 2 4

17 /76

Flash endurance

Flash block Retrieved state
1 3 4 3
3 2 3 3
11 2 2
3 3 2 3

@ Charge leakage over time results in level drop!

18/76

Flash endurance

@ Frequent block erases cause so-called “wearout” due to charge loss on
the gates.

@ Flash memory lifetime is commonly expressed in terms of the number
of program and erase (P/E) cycles allowed before memory is deemed
unusable.

o Lifetime:

o SLC: ~ 10° P/E cycles
e MLC: ~ 10® — 10° P/E cycles
o With frequent writes 2GB TLC lasts less than 3 months!

19/76

Intercell coupling

Flash block Original state
1 3 43
4 2 3 4
11 3 2
1 11 3

20/76

Intercell coupling

Flash block Programmed state

W = =
= = NN W
W w w s
W NP~ W

21/76

Intercell coupling

Flash block Retrieved state
1 3 4 3
4 2 3 4
11 3 2
3 3 3 3

@ Change in charge in one cell affects voltage threshold of a neighboring
cell.

e During write/read, stressed (victim) cell appears weakly programmed.

22/76

To summarize...

Key flash features

@ Write on the page level, erase on the block level
@ Wearout limits usable lifetime

@ Inter-symbol interference

sHEH
d=EEH

23 /76

Phase change memories (PCM)

Each cell is in two fundamental states
(with in-between states)

@ Amorphous — high resistance
1 (intermediate)
1 (intermediate)

@ Polycrystalline — low resistance

25/76

Phase change memories (PCM)

Pros

@ Erases on the cell level

o Faster access Each cell is in two fundamental states
@ More P/E cycles, longer (with in-between states)
lifetime @ Amorphous — high resistance

1 (intermediate)
1 (intermediate)

@ Polycrystalline — low resistance

25/76

Phase change memories (PCM)

Pros
@ Erases on the cell level

o Faster access Each cell is in two fundamental states
@ More P/E cycles, longer (with in-between states)
lifetime @ Amorphous — high resistance
Cons 1 (intermediate)

1 (intermediate)

@ Polycrystalline — low resistance

@ Not as dense
@ Thermal accumulation
@ Thermal cross talk

@ Higher processing cost

25 /76

References

[3 J. Cooke, “The inconvenient truths about NAND flash memories”,
FS, 2007.

[4 L. M. Grupp et al., “Beyond the datasheet: using test beds to probe
non-volatile memories’ dark secrets”, GC, 2010.

[

L. M. Grupp et al., “Characterizing flash memory: anomalies,
observations, and applications”, Micro, 2009.

J. Burr et al., “Phase change memory technology”, JVST, 2010.

=) =)

X. Huang et al., “Optimization of achievable information rates and
number of levels in multilevel flash memories”, ICN, 2013.

26 /76

01000181140040111001

Part Il: Error Correction Coding

01000181140040111001

ECC is a must for new NVMs

[Micronix, “NAND Flash Technical Note”, 2014.

[4 Spansion, “What Types of ECC Should Be Used on Flash Memory?”,
2011.
[Micron, “The Inconvenient Truth About NAND Flash”, 2007.

29/76

ECC is a must for new NVMs

[Micronix, “NAND Flash Technical Note”, 2014.

[4 Spansion, “What Types of ECC Should Be Used on Flash Memory?”,
2011.
[Micron, “The Inconvenient Truth About NAND Flash”, 2007.

29/76

ECC is a must for new NVMs

o Early designs:
Hamming code, Reed-Solomon code

@ Widespread industry standard:
BCH code

[Micronix, “NAND Flash Technical Note”, 2014.

[4 Spansion, “What Types of ECC Should Be Used on Flash Memory?”,
2011.
[Micron, “The Inconvenient Truth About NAND Flash”, 2007.

29 /76

Flash chip data collection: a closer look

10 Error Rates for TLC Flash
LSB: least significant bit

CSB: center significant bit
MSB: most significant bit

Error Rate

+ LSB 000
CSsB 1

—=—MSB 001
— Symbol Error Rate 101

10°

.
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 -—
P/E Cycles —

@ Data collected in Swanson Lab, UCSD.

30/76

Error patterns in TLC and the need for new codes

Number of wrong bits per wrong symbol Percentage of errors
1 0.9617
2 0.0314
3 0.0069

31/76

Error patterns in TLC and the need for new codes

Number of wrong bits per wrong symbol Percentage of errors
1 0.9617
2 0.0314
3 0.0069

Why not use standard codes 7

31/76

Symmetric vs. non-symmetric error spheres

¥ codewords ¥ errors to be corrected

®x X x

32/76

Symmetric vs. non-symmetric error spheres

8 codewords ¥ errors to be corrected

32/76

Symmetric vs. non-symmetric error spheres

8 codewords ¥ errors to be corrected

32/76

Symmetric vs. non-symmetric error spheres

33/76

Symmetric vs. non-symmetric error spheres

Conventional codes are optimized for the Hamming metric.

33/76

Symmetric vs. non-symmetric error spheres

Conventional codes are optimized for the Hamming metric.

@ Do not differentiate among different types of symbol errors

@ Result in unnecessary overhead (rate loss)

33/76

Variability-aware coding

Key idea
Control for both the number of cells to be corrected as well as the number
of bits per erroneous cell to be corrected.

An example:

@ Suppose (000 110 010 101 000 111) is stored
@ Suppose (101 110 000 101 000 011) is retrieved

35/76

Variability-aware coding

An example:

@ Suppose (000 110 010 101 000 111) is stored
@ Suppose (101 110 000 101 000 011) is retrieved

Error pattern characterization:

36/76

Variability-aware coding

An example:

@ Suppose (000 110 010 101 000 111) is stored
@ Suppose (101 110 000 101 000 011) is retrieved

Error pattern characterization:
@ There are 3 symbols in error

36/76

Variability-aware coding

An example:

@ Suppose (000 110 010 101 000 111) is stored
@ Suppose (101 110 000 101 000 011) is retrieved

Error pattern characterization:
@ There are 3 symbols in error

@ There are 3 symbols in error, with at most 2 erroneous bits each

36/76

Variability-aware coding

An example:

@ Suppose (000 110 010 101 000 111) is stored
@ Suppose (101 110 000 101 000 011) is retrieved

Error pattern characterization:
@ There are 3 symbols in error

@ There are 3 symbols in error, with at most 2 erroneous bits each

© There are 3 symbols in error, with at most 2 erroneous bits each, and
there is 1 symbol with more than 1 bit in error

36/76

Variability-aware coding

An example:

@ Suppose (000 110 010 101 000 111) is stored
@ Suppose (101 110 000 101 000 011) is retrieved
Error pattern characterization:
@ There are 3 symbols in error
— Code that corrects t symbols
@ There are 3 symbols in error, with at most 2 erroneous bits each

© There are 3 symbols in error, with at most 2 erroneous bits each, and
there is 1 symbol with more than 1 bit in error

36/76

Variability-aware coding

An example:

@ Suppose (000 110 010 101 000 111) is stored
@ Suppose (101 110 000 101 000 011) is retrieved

Error pattern characterization:
@ There are 3 symbols in error
— Code that corrects t symbols
@ There are 3 symbols in error, with at most 2 erroneous bits each
— [t,] code that corrects t symbols, each with at most ¢ bits in error

© There are 3 symbols in error, with at most 2 erroneous bits each, and
there is 1 symbol with more than 1 bit in error

36/76

Variability-aware coding

An example:

@ Suppose (000 110 010 101 000 111) is stored
@ Suppose (101 110 000 101 000 011) is retrieved

Error pattern characterization:
@ There are 3 symbols in error
— Code that corrects t symbols
@ There are 3 symbols in error, with at most 2 erroneous bits each
— [t,] code that corrects t symbols, each with at most ¢ bits in error

© There are 3 symbols in error, with at most 2 erroneous bits each, and
there is 1 symbol with more than 1 bit in error

— [t1, ta; €1, £>] code that corrects t; + t; symbols, each with at most ¢4
bits in error, and at most t, symbols with more than /¢, bits in error

36/76

New code constructions

Theorem (Construction 2)

o Let Hy be the parity check matrix of a [m, ki, (]2 code C1 (standard
[n, k, €] notation).

@ ky denotes the number of message bits, m denotes the number of
coded bits and / is the number of bit errors code C; can correct.

(3 J. K. Wolf, “On codes derivable from the tensor product of check
matrices”, T-1T, 1965.

37/76

New code constructions

Theorem (Construction 2)

o Let Hy be the parity check matrix of a [m, ki, (]2 code C1 (standard
[n, k, €] notation).

o Let Hp be the parity check matrix of a [n, ky, t],m—« code Co defined
over the alphabet of size GF(2)™ ki

@ ko denotes the number of message symbols, n denotes the number of
coded symbols and t is the number of errors code C, can correct.

3 J. K. Wolf, “On codes derivable from the tensor product of check
matrices”, T-1T, 1965.

37/76

New code constructions

Theorem (Construction 2)

o Let Hy be the parity check matrix of a [m, ki, (]2 code C1 (standard
[n, k, €] notation).

o Let Hp be the parity check matrix of a [n, k, t],m—« code Co defined
over the alphabet of size GF(2)™ k.

@ Then, Hy = H, ® Hj is the parity check matrix of a [t; {]om code of
length n.

[J. K. Wolf, “On codes derivable from the tensor product of check
matrices”, T-1T, 1965.

37/76

New code constructions

@ Choose H = [t] as a parity check matrix of a [m, k1, (2] code

Hs
and H; as a parity check matrix of a [m,m — r, ¢1]» code
e Hiis an r xm matrix, Hz is an s xm matrix.

@ Suppose H, is a parity check matrix of a [n, kp, t1 + t2]or code.

@ Suppose Hj is a parity check matrix of a [n, ks, to]2s code.

Theorem (Construction 3)

Then, Hg is the parity check matrix of a [ty, t2; {1, (2]om code, where

He — H, ® Hy
B Hy@Hs |-

38/76

Performance evaluation for codes of length 4000 bits and

rate 0.86

Error Rates of Codes Applled to TLC Flash

107 I T T
-+-Non- Blnary BCH Code Over GF()
- e-Binary BCH Code ks
- « - Different Binary BCH Code Applied to LSB, CSB, MSBf ~
. - « - Graded-Bit Error-Correcting Code oo
® 107 T TToIET -
.a /,’,o
o Ll
5 B
& pmmmnn S
= e O--=--- -
o 4 -7
10°F L & - =
e P P
gt B delabobeds 1
- . 7
o--
'02;300 3000 32‘00 34‘00 SB‘DD SB‘BO 4[1‘00 42‘00 4400
P/E Cycles

39/76

Performance evaluation for codes of length 4000 bits and

rate 0.86

Error Rates of Codes Applied to TLC Flash

10 T T T
-+-Non- Blnary BCH Code Over GF()

- e-Binary BCH Code b
- » - Different Binary BCH Code Applied to LSB, CSB, MSBf
- «» - Graded-Bit Error-Correcting Code oo

.4 =
g
2y

3
T

Bit Error Rate
v
\

3
3
T
S

¥

o7 I I
2800 3000 3200 3400 3600 3800 4000 4200 4400

P/E Cycles

39/76

Performance evaluation for codes of length 4000 bits and

rate 0.86

Error Rates of Codes Applied to TLC Flash

107" T T T
-+-Non- Blnary BCH Code Over GF()
- e-Binary BCH Code b
- » - Different Binary BCH Code Applied to LSB, CSB, MSBf ~
. - «» - Graded-Bit Error-Correcting Code oo
o F T TrToET B
‘(-U' /,’,o
o Ll
‘9‘ e Prg 7
& Ammnn et
= e o----= <
o . ‘ -7
107 . - o
P - 4 -
AL 20% Improvement * 7700
S 4 PP 3
--- -7
o--
‘027800 30‘00 SZ‘UD 3400 36‘00 38‘0[} 40‘00 42‘00 4400
P/E Cycles

39/76

Exploiting level distributions

Bt}
gaH

41/76

Exploiting level distributions

Bt}
gaH

@ What high-performance codes are amenable for soft decoding ?

41/76

LDPC for Flash: Extracting soft information

o ldea: multiple word line reads

42/76

LDPC for Flash: Extracting soft information

o ldea: multiple word line reads

@ 2 reads compare against two thresholds

42/176

LDPC for Flash: Extracting soft information

o ldea: multiple word line reads

@ 2 reads compare against two thresholds

42/176

LDPC for Flash: Extracting soft information

o ldea: multiple word line reads

@ 2 reads compare against two thresholds

P> D3 D

@ Maximize mutual information of the induced channel to determine the
best thresholds (here T and —T)

42 /76

LDPC for Flash: Extracting soft information

o ldea: multiple word line reads

43/76

LDPC for Flash: Extracting soft information

o ldea: multiple word line reads

@ 3 reads compare against three thresholds

Ps P3P D

@ Maximize mutual information of the induced channel to determine the
best thresholds (here T;, —T7 and 0)

43 /76

Performance with multi read

Figure: Performance comparison for 0.9-rate LDPC and BCH codes of length
n = 9100.

Frame Error Rate vs. Raw Bit Error Rate (MLC Gaussian Model)
10 oASRA000 —&— Hard BCH

Hard (3 reads)
Code 1

_ g - Hard (3 reads)
Code 2

o— 6 reads MMI
Code 1

1

1

1

I

1

i

{

o

|| - g - B reads MMI
f Code 2

|| = ® = Soft Code 2
1| —e— Soft Code 1
f

1

i
1
1

1|

1

. Hard (3 reads)
Shannon Limit

Frame Error Rate

-o-

6 reads
A Shannon Limit MMI

== Soft Shannon Limit

|
0.003 0.004 0.006 0.0080.01 0.015 0.02 0.03 0.06
Channel Bit Error Probability

b i ifm i s

44/76

Performance with multi read

Figure: Performance comparison for 0.9-rate LDPC and BCH codes of length
n = 9100.

Frame Error Rate vs. Raw Bit Error Rate (MLC Gaussian Model)
10° oASRA000 —&— Hard BCH

1

1 Hard (3 reads)
1 Code 1

! _ g - Hard (3reads)
! Code 2

1

|| —e— 6 reads MMI

: Code 1

|| - g - B reads MMI

f Code 2

|| = ® = Soft Code 2
1| —e— Soft Code 1
f

1

i
1
1

1|

1

. Hard (3 reads)

“™ Shannon Limit

Frame Error Rate

6 reads
A Shannon Limit MMI

== Soft Shannon Limit

b i ifm i s

|
0.003 0.004 0.006 0.0080.01 0.015 0.02 0.03 0.06
Channel Bit Error Probability

Caution:
@ Optimal code design in the error floor region depends on the chosen
quantization.
o AWGN-optimized LDPC codes may not be the best for the quantized

(and asymmetric) Flash channel !
44 /76

Motivation: Write latency

@ Recall Flash programming

46 /76

Motivation: Write latency

@ Recall Flash programming

@ In practice incremental step

pulse programming is used, @ @.9
a.k.a. guess and verify. 3 e ks e
. . ‘ H ¢ \
@ Latency increases with number [O?] l[og] [gogéﬂ Eoﬁ%
- || — — b
of levels.

46 /76

Motivation: Write latency

@ Recall Flash programming

@ In practice incremental step

pulse programming is used, @ @.9
a.k.a. guess and verify. 3 e ok =
. . ‘ H ¢ \
@ Latency increases with number [O?] [og] [goog [e;ogg

of levels.

o If one allows for “dirty writes”, it suffices to correct errors in only one
direction.

46 /76

Coding for asymmetric, limited-magnitude errors

@ If one allows for “dirty writes”, it suffices to correct errors in only one
direction and that are of limited magnitude.

Definition (ALM Code)

Let C; be a code over the alphabet Q1. The code C over the alphabet @
(with |Q| > |Q1] = g1 = £+ 1) is defined as

C={x=(x1,x2,...,%1) € Q" | x mod ¢1 € C1}.

47 /76

Coding for asymmetric, limited-magnitude errors

@ If one allows for “dirty writes”, it suffices to correct errors in only one
direction and that are of limited magnitude.

Definition (ALM Code)

Let C; be a code over the alphabet Q1. The code C over the alphabet @
(with |Q| > |Q1] = q1 = £+ 1) is defined as
C={x=(x1,x2,...,%1) € Q" | x mod ¢1 € C1}.

| \

Theorem
Code C corrects t asymmetric errors of limited magnitude ¢ if code C;
corrects t symmetric errors.

e New construction inherits encoding/decoding complexity of the
underlying (symmetric) ECC.

@ Connections with additive number theory and asymmetric ECC
(Varshamov 1970s).

47 /76

Further Reading (1/2)

[3

&)) & &

Y. Cassuto, M. Schwartz, V. Bohossian, and J. Bruck, “Codes for
asymmetric limited magnitude errors with application to multilevel
flash memories™, T-1T, 2010.

S. Yari, T. Klgve, and B. Bose, “Some codes correcting unbalanced
errors of limited magnitude for flash memories”, T-IT, 2013.

S. Bizaglo and T. Etzion, "Tilings with n-dimensional chairs and their
applications to asymmetric codes”, T-1T,2013.

H. Zhou, A. Jiang, and J. Bruck, “Nonuniform codes for correcting
asymmetric errors in data storage”, T-IT, 2013.

M. Blaum, "Codes for detecting and correcting unidirectional errors”,
1993.

48 /76

Further Reading (2/2)

4§ R. Gabrys, E. Yaakobi, and L. Dolecek, “Graded bit error correcting
codes with applications to flash memory”, T-IT, 2013.

[4 P. Vontobel and R. Roth, “Coding for combined block-symbol error
correction”, T-IT, 2014.

[4 J. Wang et al., “Enhanced precision through multiple reads for LDPC
decoding in flash memories”, JSAC, 2014.

[4 J. Wang, L. Dolecek, and R. D. Wesel, “The cycle consistency matrix
approach to LDPC absorbing sets in separable circulant-based codes”,
T-IT, 2013.

[4 K. Haymaker and C. Kelley, “Structured bit-interleaved LDPC codes
for MLC flash memory”, JSAC, 2014.

@ A. Jiang, H. Li, and J. Bruck, “On the capacity and programming of
flash memories”, T-1T, 2012.

49 /76

Research problems on coding for spatio-temporal variability

in NVMs

m @ Investigation of algebraic codes for both transient and

=
<

RIRY

permanent errors

50 /76

Research problems on coding for spatio-temporal variability

in NVMs

m @ Investigation of algebraic codes for both transient and

permanent errors
<,\: :> @ Investigation of graph-based binary and non-binary codes
: :> and their decoders for flash (LDPC, spatially coupled

codes etc.)

50 /76

Research problems on coding for spatio-temporal variability

in NVMs

m @ Investigation of algebraic codes for both transient and

permanent errors
<,\2 ;:> @ Investigation of graph-based binary and non-binary codes
: ;1> and their decoders for flash (LDPC, spatially coupled

codes etc.)

© Constructions with tighter bounds, i.e., beyond
asymptotic optimality

50/ 76

Research problems on coding for spatio-temporal variability

in NVMs

Investigation of algebraic codes for both transient and
permanent errors

Investigation of graph-based binary and non-binary codes
and their decoders for flash (LDPC, spatially coupled
codes etc.)

Constructions with tighter bounds, i.e., beyond
asymptotic optimality

Noise-adaptive coding

50/ 76

Research problems on coding for spatio-temporal variability

in NVMs

Investigation of algebraic codes for both transient and
permanent errors

Investigation of graph-based binary and non-binary codes
and their decoders for flash (LDPC, spatially coupled
codes etc.)

Constructions with tighter bounds, i.e., beyond
asymptotic optimality
Noise-adaptive coding

Coding for the target average performance

50 /76

Research problems on coding for spatio-temporal variability

in NVMs

Investigation of algebraic codes for both transient and
permanent errors

Investigation of graph-based binary and non-binary codes
and their decoders for flash (LDPC, spatially coupled
codes etc.)

Constructions with tighter bounds, i.e., beyond
asymptotic optimality

Noise-adaptive coding

Coding for the target average performance

Deeper connections with number theoretic and
combinatorial methods

50 /76

Research problems on coding for spatio-temporal variability

in NVMs

Investigation of algebraic codes for both transient and
permanent errors

Investigation of graph-based binary and non-binary codes
and their decoders for flash (LDPC, spatially coupled
codes etc.)

Constructions with tighter bounds, i.e., beyond
asymptotic optimality

Noise-adaptive coding

Coding for the target average performance

Deeper connections with number theoretic and
combinatorial methods

Performance — complexity tradeoff and evaluations for
more realistic channels

50/76

Motivation: Coding can defer costly erases

@ Recall write and block-erase operations

w575

@ What if we can maximize the amount of data written before the block
erase is necessary?

52/76

N\
/0/0/0/./

/®/®) | |

/7]
[/)]]

WOM Coding

N\
/0/0/0/./

/®@/®) | |

/7]
[/)]]

Write-once memory (WOM)

o Cells are irreversibly programmed from “0" to “1"

@ Original applications of WOM were punch cards and optical disks

@ WOM coding allows for increased storage utilization

54 /76

The mother of all WOM codes

Information | First Generation | Second Generation

00 000 111
01 001 110
10 010 101

11 100 011

55 /76

Encoding example 1

Rivest-Shamir WOM code:

Information | First Generation | Second Generation

00 000 111
01 001 110
10 010 101

11 100 011

56 /76

Encoding example 1

Rivest-Shamir WOM code:

Information | First Generation | Second Generation
00 000 111
01 001 110
10 010 101
11 100 011

@ Write-1: 01 — Encode: 001.

56 /76

Encoding example 1

Rivest-Shamir WOM code:

Information | First Generation | Second Generation
00 000 111
01 001 110
10 010 101
11 100 011

@ Write-1: 01 — Encode: 001.
@ Write-2: 10 — Encode: 101.

56 /76

Encoding example 1

Rivest-Shamir WOM code:

Information | First Generation | Second Generation
00 000 111
01 001 110
10 010 101
11 100 011

@ Write-1: 01 — Encode: 001.
@ Write-2: 10 — Encode: 101.

57/76

Encoding example 2

Rivest-Shamir WOM code:

Information | First Generation | Second Generation

00 000 111
01 001 110
10 010 101

11 100 011

58 /76

Encoding example 2

Rivest-Shamir WOM code:

Information | First Generation | Second Generation
00 000 111
01 001 110
10 010 101
11 100 011

@ Write-1: 01 — Encode: 001.

58 /76

Encoding example 2

Rivest-Shamir WOM code:

Information | First Generation | Second Generation
00 000 111
01 001 110
10 010 101
11 100 011

@ Write-1: 01 — Encode: 001.
o Write-2: 01 — Encode: 001. No change.

58 /76

WOM model

First write Second write Third write

SEEC §EEE EsEm @mes

Definition (WOM constraint)

The memory state is modeled as a vector y/ of length n where j is the
current write (or generation). Each element y/, 1 < i < n, takes values in
the set {0,1,...q — 1}. On write j, the encoder writes one of M;
messages to the memory by updating y/~1 to y/ while satisfying the
WOM-constraint y/ > y/~1.

59 /76

WOM model

Definition (Sum rate)

If M; codewords can be represented at generation
J, then generation j has rate %Iog(Mj). The sum
rate is the sum of rates across generations.

60 /76

WOM model

Definition (Sum rate)

If M; codewords can be represented at generation
J, then generation j has rate %Iog(Mj). The sum
rate is the sum of rates across generations.

@ Rivest-Shamir code has rate log(M; + M)/n = log(4 + 4)/3 = 1.33.

60 /76

WOM model

Definition (Sum rate)

If M; codewords can be represented at generation
J, then generation j has rate %Iog(Mj). The sum
rate is the sum of rates across generations.

@ Rivest-Shamir code has rate log(M; + M)/n = log(4 + 4)/3 = 1.33.

@ Capacity is the maximum achievable sum rate.

60 /76

Capacity as a function of field order size

Capacity (normalized)

S H N W ke Ot N

Unrestricted sum-rate for ¢ = 2,4, 8, 10

q=2

Uncoded ———

5

10

Number of generations ¢

15

20

61/76

Capacity as a function of field order size

Capacity (normalized)

S H N W ke Ot N

Unrestricted sum-rate for ¢ = 2,4, 8, 10

q=10
g=8 ——
g=4 ——
q=2 ——
Uncoded ———
5 10 15

Number of generations ¢

20

61/76

Equal rate vs. unequal rate per write

Capacity of binary WOM codes

5 T
Unrestricted-rate
Fixed-rate ----—-—-| =

4 =
2 =
os ’/,4/
I
< 2
s |/

1

0

0 5 10 15 20

Number of generations ¢

62/76

Equal rate vs. unequal rate per write

Capacity of binary WOM codes

Unrestricted-rate
Fixed-rate ---------

346
3 >\ 3.35
| /

0) 10 15 20

Number of generations ¢

Capacity (bits)

62/76

A construction of binary WOM codes

@ We want to construct a binary three-write WOM over 2n cells.

63/76

A construction of binary WOM codes

@ We want to construct a binary three-write WOM over 2n cells.

@ Let C3 be a ternary two-write WOM of length n.

63/76

A construction of binary WOM codes

@ We want to construct a binary three-write WOM over 2n cells.
o Let C3 be a ternary two-write WOM of length n.

o First write

e Pick a first-generation codeword u in Cs.
o Map length-n u into length-2n binary string using ¢(0) = 00,
®(1) = 10, &(2) = 01.

63/76

A construction of binary WOM codes

@ We want to construct a binary three-write WOM over 2n cells.
o Let C3 be a ternary two-write WOM of length n.

o First write
e Pick a first-generation codeword u in Cs.
o Map length-n u into length-2n binary string using ¢(0) = 00,
®(1) = 10, ®(2) = 0L
@ Second write
e Pick a second-generation codeword v in Cs.
o Map length-n v into length-2n binary string using ¢(0) = 00,
®(1) = 10, ®(2) = 0L
e Program each pair only once.

63 /76

A construction of binary WOM codes

We want to construct a binary three-write WOM over 2n cells.

Let C3 be a ternary two-write WOM of length n.
o First write

e Pick a first-generation codeword u in Cs.
o Map length-n u into length-2n binary string using ¢(0) = 00,
®(1) = 10, &(2) = 01.
Second write
e Pick a second-generation codeword v in Cs.
o Map length-n v into length-2n binary string using ¢(0) = 00,
®(1) = 10, &(2) = 01.
e Program each pair only once.
Third write

o Write length-n binary string in the unused cells (one per pair).

63 /76

A construction of non-binary WOM codes

@ We want to construct a non-binary two-write WOM with g levels,
with 3[(g +1).

64 /76

A construction of non-binary WOM codes

@ We want to construct a non-binary two-write WOM with g levels,
with 3[(g +1).
e Partition levels in groups of L = (g +1)/3
first partition is {0,1,...,L — 1}
second partition is {L —1,L,...,2L — 1}
third partition is {2L — 1,2L,...,3L — 1}

64 /76

A construction of non-binary WOM codes

@ We want to construct a non-binary two-write WOM with g levels,
with 3[(g +1).
e Partition levels in groups of L = (g +1)/3
first partition is {0,1,...,L — 1}
second partition is {L —1,L,...,2L — 1}
third partition is {2L — 1,2L,...,3L — 1}
@ Let C» be a binary two-write WOM code of length n.
o First write:

o Pick a message min Zj.
e Pick a first-generation codeword u in Cs.
o Foreach i, 1 <i<n: If uy =0 write m;. If u; =1 write m; + L.

64 /76

A construction of non-binary WOM codes

@ We want to construct a non-binary two-write WOM with g levels,
with 3[(g +1).
Partition levels in groups of L = (g +1)/3

first partition is {0,1,...,L — 1}

second partition is {L —1,L,...,2L — 1}

third partition is {2L — 1,2L,...,3L — 1}

@ Let C» be a binary two-write WOM code of length n.
@ First write:

o Pick a message min Zj.

e Pick a first-generation codeword u in Cs.

o Foreach i, 1 <i<n: If uy =0 write m;. If u; =1 write m; + L.
@ Second write:

o Pick a message s in Z3'.

e Pick a second-generation codeword v in C,.

e Foreach i, 1 < i< n: If vy =0 write s;+ (L—1). If v, =1 write
Si + (2L — 1).

64 /76

A construction of non-binary WOM codes

@ We want to construct a non-binary two-write WOM with g levels,
with 3[(g +1).
Partition levels in groups of L = (g +1)/3
first partition is {0,1,...,L — 1}
second partition is {L —1,L,...,2L — 1}
third partition is {2L — 1,2L,...,3L — 1}
Let Co be a binary two-write WOM code of length n.
First write: first and second partition only

o Pick a message min Zj.
e Pick a first-generation codeword u in Cs.
o Foreach i, 1 <i<n: If uy =0 write m;. If u; =1 write m; + L.

Second write:
o Pick a message s in Z3'.
e Pick a second-generation codeword v in C,.
e Foreach i, 1 < i< n: If vy =0 write s;+ (L—1). If v, =1 write
Si + (2L — 1).

64 /76

A construction of non-binary WOM codes

@ We want to construct a non-binary two-write WOM with g levels,
with 3[(g +1).
Partition levels in groups of L = (g +1)/3
first partition is {0,1,...,L — 1}
second partition is {L —1,L,...,2L — 1}
third partition is {2L — 1,2L,...,3L — 1}
Let Co be a binary two-write WOM code of length n.
First write: first and second partition only

o Pick a message min Zj.
e Pick a first-generation codeword u in Cs.
o Foreach i, 1 <i<n: If uy =0 write m;. If u; =1 write m; + L.

Second write: second and third partition only
o Pick a message s in Z3'.
e Pick a second-generation codeword v in C,.
e Foreach i, 1 < i< n: If vy =0 write s;+ (L—1). If v, =1 write
Si + (2L — 1).

64 /76

An example using Rivest and Shamir write-twice code for

g=2and n=28

Rivest-Shamir WOM code

Information | First Generation | Second Generation
00 000 111
01 001 110
10 010 101
11 100 011

Non-binary WOM code

] Write no. \ Information \ RS code + info \ Encoded values ‘
1 (0,1),(0,1,2) (001),(012) (0,1,5)
2 (0,0),(2,1,2) (111),(212) (7,6,7)

65 /76

Sum rate of short WOM codes

Unrestricted sum-rate for ¢ = 2,4, 8,10

3.5 F i

q=10

- g=8 —— =
S, N -4
| i p— -~
g Uncoded —— //
g 25
g
B
> 2
h=
% =
g5 15
@)

1

2 3 4 5

Number of generations ¢

66 /76

Sum rate of short WOM codes

Unrestricted sum-rate for g = 2,4, 8,10

3.5 § -

=2
— Uncoded
T 3t .
R
Té
= 25
e
z o2
k3]
&
F L5 |
S 7 [. el RS code
1 | 1 1 1

2 3 4 3

Number of generations t

66 /76

Sum rate of short WOM codes

Unrestricted sum-rate for ¢ = 2,4, 8,10

3.5_| T T]

=2 —
— Uncoded ——
=
5 31 1
S
&
E 25t .
S BQIKS code
E +
e W |
T
YKSVW code
1 1 1 Il
2 3 1 5

Number of generations ¢

66 /76

Sum rate of short WOM codes

Unrestricted sum-rate for ¢ = 2,4, 8,10

3.5_| T T]

q=4
— q= 2
= 3 || Uncoded —— GYDSVW code |
:TE 3 I
2 25t L
E) ’/ &
& 15fF3% ® |
© +
1 | . | |
2 3 4 5

Number of generations ¢

66 /76

Sum rate of short WOM codes

Unrestricted sum-rate for ¢ = 2,4, 8,10

. i GYDSVW code |

= -9
T utas —A
[}
é 2.5
PO
5
515 F%
&) +

1 1 1 1 1

2 3 4 5

Number of generations ¢

66 /76

Sum rate of short WOM codes

Capacity (normalized)

Unrestricted sum-rate for ¢ = 2,4, 8,10

*

*
+ GD code
2 3 4)

Number of generations ¢

66 /76

Facets of WOM coding

o Capacity approaching constructions
@ A. Shpilka, “Capacity achieving multiwrite WOM codes”, T-IT, 2014.

@ D. Burshtein and A. Strugatski, “Polar write once memory codes”,
T-1T 2013.
e WOM with error correction/detection capabilities

@ Q. Huang, S. Lin, and K. A. S. Abdel Ghaffar, “Error correcting codes
for flash coding”, T-IT, 2011.

@ E. Yaakobi, P. H. Siegel, A. Vardy, and J. K. Wolf, “Multiple error
correcting WOM codes”, T-IT, 2012.

@ A. Jiang, Y. Li, E. En Gad, M. Langberg and J. Bruck, “Joint rewriting
and error correction in write-once memories”, ISIT, 2013.

@ Extensions

N. Bitouze, A. Graell i Amat, and E. Rosnes, “Using short synchronous
WOM codes to make WOM codes decodable”, TCOM, 2014.

@ L. Wang, M. Qin, E. Yaakobi, Y. H. Kim, and P. H. Siegel, “WOM
with retained messages”, ISIT, 2012.

[§ Y. Cassuto and E. Yaakobi, “Short g-ary WOM codes with hot/cold

write differentiation”, ISIT, 2012.
67 /76

68 /76

Motivation: Noisy writes in PCM

@ The write process in PCM is inherently inexact

69 /76

Motivation: Noisy writes in PCM

@ The write process in PCM is inherently inexact
@ The data can be written iteratively, by checking the content between
successive writes

69 /76

Motivation: Noisy writes in PCM

@ The write process in PCM is inherently inexact

@ The data can be written iteratively, by checking the content between
successive writes

o Correctly written cells need not be further updated (cells in PCM can
be accessed individually)

69 /76

Motivation: Noisy writes in PCM

@ The write process in PCM is inherently inexact

@ The data can be written iteratively, by checking the content between
successive writes

o Correctly written cells need not be further updated (cells in PCM can
be accessed individually)

@ The write process terminates when all cells are sufficiently well
programmed

69 /76

Motivation: Noisy writes in PCM

@ The write process in PCM is inherently inexact

@ The data can be written iteratively, by checking the content between
successive writes

o Correctly written cells need not be further updated (cells in PCM can
be accessed individually)

@ The write process terminates when all cells are sufficiently well
programmed

Noisy write 1 Stored message
channel >

Write

Input message A controller

Noiseless read
channel

69 /76

Rewritable channel for PCM

.

|
|
| Write

|
Input message | controller

Noisy write | stored message

channel

Noiseless read
] channel

@ Average rewriting cost is k

Capacity is upper-bounded by log(T'k)

@ Parameter I depends on noise characteristics.

@ Exact expressions known in certain cases

@ Several extensions available

70/76

Further Reading — Early Results

[4 R. L. Rivest and A. Shamir, “"How to reuse a “write-once” memory”,
1&C, 1982.

J. K. Wolf, A. D. Wyner, J. Ziv, and J. Korner, “Coding for
write-once memory”, AT& T, 1984,

C. Heegard, “On the capacity of permanent memory”, T-IT, 1985.
G. D. Cohen, P. Godlewski, and F. Merkx, “Linear binary code for
write-once memories”, T-IT, 1986.

F. Fu and A. J. Han Vinck, “On the capacity of generalized
write-once memory with state transitions described by an arbitrary
directed acyclic graph”, T-IT, 1999.

&) &) &

71/76

Further Reading — Recent Results

[§] E. Yaakobi, S. Kayser, P. Siegel, A. Vardy, and J. K. Wolf, “Codes for
write-once memories”, T-IT, 2012,

[§] A. Bhatia, M. Qin, A. lyengar, B. Kurkoski, and P. Siegel,
“Lattice-based WOM codes for multilevel flash memories”, JSAC,
2014.

R. Gabrys and L. Dolecek, “Constructions of nonbinary WOM codes
for multilevel flash memories”, preprint, 2014.

R. Gabrys, E. Yaakobi, L. Dolecek, P. Siegel, A. Vardy, and J. K. Wolf,
“Non-binary WOM codes for multilevel flash memories”, ITW, 2011.
L. A. Lastras-Montano, M. Franceschini, T. Mittelholzer, and M.
Sharma, “Rewritable storage channels”, ISITA, 2008.

R. Venkataramanan, S. Tatikonda, L. Lastras-Montafio, M.

Franceschini, “"Rewritable storage channels with hidden state”, JSAC,
2014.

) & & &

72/76

Research problems on WOM and rewriting

<2 ;:> @ Coding for rewritable channels with read feedback

:> @ Extensions to other related models (WAM, floating codes
etc).

© Connections with interference channels (e.g., dirty paper
coding)

© Establishment of the complete capacity region/beyond
zero-error capacity.

© Development of new tools for high-rate codes spanning
more than a couple of cells (e.g., lattices, posets)

73/76

74/76

Further topics — beyond coding

@ Statistical and signal processing methods for voltage threshold
modeling and characterization

o Parameter estimation and hypothesis testing
e Study of time-varying stochastic processes

75/ 76

Further topics — beyond coding

@ Statistical and signal processing methods for voltage threshold
modeling and characterization

o Parameter estimation and hypothesis testing
e Study of time-varying stochastic processes

@ Communication methods for Flash channels

o Design of optimal detectors under ICl
e Use of equalization and signal shaping

75 /76

Further topics — beyond coding

@ Statistical and signal processing methods for voltage threshold
modeling and characterization

o Parameter estimation and hypothesis testing
e Study of time-varying stochastic processes

@ Communication methods for Flash channels

o Design of optimal detectors under ICl
e Use of equalization and signal shaping

o Capacity calculations

e Analysis of quantized channels
e Non asymptotic performance analysis

75 /76

Further topics — beyond coding

@ Statistical and signal processing methods for voltage threshold
modeling and characterization

o Parameter estimation and hypothesis testing
e Study of time-varying stochastic processes

@ Communication methods for Flash channels

o Design of optimal detectors under ICl
e Use of equalization and signal shaping

o Capacity calculations

e Analysis of quantized channels
e Non asymptotic performance analysis

@ Probabilistic methods and complexity

e Implementation complexity evaluation and prototyping
o Average vs. worst case performance analysis and design

75 /76

Further topics — beyond coding

@ Statistical and signal processing methods for voltage threshold
modeling and characterization

o Parameter estimation and hypothesis testing
e Study of time-varying stochastic processes

@ Communication methods for Flash channels

o Design of optimal detectors under ICl
e Use of equalization and signal shaping

Capacity calculations

e Analysis of quantized channels

e Non asymptotic performance analysis
@ Probabilistic methods and complexity

e Implementation complexity evaluation and prototyping
o Average vs. worst case performance analysis and design

Applications of interference alignment and interference channels

75 /76

TIME FOR A BREAK!

76 /76

	NVM preliminaries
	Error Correcting Codes
	Rewriting Codes

