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Abstract—Flash memories have many distinct properties,
which affect the design of error correcting codes. In this paper,
we combine error correction with rewriting, and present such a
code construction based on polar coding.

I. INTRODUCTION

Coding for rewriting is an important technology for flash
memories. It has the potential to substantially increase their
longevity, speed and power efficiency. Since its proposition in
recent years [7], lots of works have appeared in this area [12].
The most basic model for rewriting is a write-once memory
(WOM) model [9], where a set of binary cells are used to
store data, and the cell levels can only increase when the data
are rewritten. For flash memories, this constraint implies that
the rewriting will delay expensive block erasures, which leads
to better preservation of cell quality and higher performance.

There have been many techniques for the design of WOM
codes. They include linear code, tabular code, codes based
on projective geometry, coset coding, etc. [3], [9] Codes with
substantially higher rates were discovered in recent years [12].
In 2012, WOM codes that achieve capacity were discovered
by Shpilka et al. [10] and Burshtein et al. [2]. The latter code
used a very interesting construction based on polar coding. It
should be noted that polar coding is now also used to construct
rewriting codes for the rank modulation scheme [4].

Compared to the many works on WOM codes, the works
on WOM codes that also correct errors have been much more
limited. Existing works are mainly on correcting a few errors
(e.g., 1, 2, or 3 errors [13], [14]). However, for rewriting to
be widely used in flash memories, it is important to design
WOM codes that can correct a substantial number of errors.

In this paper, we present a new coding scheme that com-
bines rewriting with error correction. It supports any number
of rewrites and can correct a substantial number of errors. The
code construction uses polar coding. Our analytical technique
is based on the frozen sets corresponding to the WOM channel
and the error channel, respectively, including their common
degrading and common upgrading channels. We present lower
bounds to the sum-rate achieved by our code. The actual
sum-rates are further computed for various parameters. The
analysis focuses on the binary symmetric channel (BSC). An
interesting observation is that in practice, for relatively small
error probabilities, the frozen set for BSC is often contained in
the frozen set for the WOM channel, which enables our code
to have a nested structure. The code can be further extended
to multi-level cells (MLC) and more general noise models.

We present a longer version of this work in [6].

II. BASIC MODEL

Let there be N = 2m cells that are used to store data. Every
cell has two levels: 0 and 1. It can change only from level 0
to level 1, but not vice versa. That is called a WOM cell [9].

A sequence of t messages M1, M2, · · · , Mt will be written
into the WOM cells, and when Mi is written, we do not need to
remember the value of the previous messages. (LetMj denote
the number of bits in the message Mj, and let Mj ∈ {0, 1}Mj .)
For simplicity, we assume the cells are all at level 0 before
the first write happens.

After cells are programmed, noise will appear in the cell
levels. For now, we consider noise to be a BSC with error
probability p, denoted by BSC(p). These errors are hard
errors, namely, they physically change the cell levels from
0 to 1 or from 1 to 0. For flash memories, such errors can be
caused by read/write disturbs, interference and charge leakage,
and are quite common.

A. The model for rewriting

A code for rewriting and error correction consists of t
encoding functions E1, E2, · · · , Et and t decoding functions
D1, D2, · · · , Dt. For i = 1, 2, · · · , N and j = 1, 2, · · · , t,
let si,j ∈ {0, 1} and s′i,j ∈ {0, 1} denote the level of the
i-th cell right before and after the j-th write, respectively.
We require s′i,j ≥ si,j. Let ci,j ∈ {0, 1} denote the level
of the i-th cell at any time after the j-th write and before
the (j + 1)-th write, when reading of the message Mj can
happen. The error ci,j ⊕ s′i,j ∈ {0, 1} is the error in the i-
th cell caused by the noise channel BSC(p). (Here ⊕ is an
XOR function.) For j = 1, 2, · · · , t, the encoding function
Ej : {0, 1}N × {0, 1}Mj → {0, 1}N changes the cell levels
from sj = (s1,j, s2,j, · · · , sN,j) to s′j = (s′1,j, s′2,j, · · · , s′N,j)
given the initial cell state sj and the message to store Mj.
(Namely, Ej(sj, Mj) = s′j.) When the reading of Mj hap-

pens, the decoding function Dj : {0, 1}N → {0, 1}Mj

recovers the message Mj given the noisy cell state cj =
(c1,j, c2,j, · · · , cN,j). (Namely, Dj(cj) = Mj.)

For j = 1, · · · , t, Rj =
Mj
N is called the rate of the j-

th write. Rsum = ∑t
j=1 Rj is called the sum-rate of the code.

When there is no noise, the maximum sum-rate of WOM code
is known to be log2(t + 1); however, for noisy WOM, the
maximum sum-rate is still largely unknown [5].



B. Polar codes

We give a short introduction to polar codes due to its
relevance to our code construction. A polar code is a linear
block error correcting code proposed by Arıkan [1]. It is the
first known code with an explicit construction that provably
achieves the channel capacity of symmetric binary-input dis-
crete memoryless channels (B-DMC). The encoder of a polar
code transforms N input bits u = (u1, u2, · · · , uN) to N
codeword bits x = (x1, x2, · · · , xN) through a linear trans-

formation. (In [1], x = uG⊗m
2 where G2 =

(
1 0
1 1

)
, and

G⊗m
2 is the m-th Kronecker product of G2.) The N codeword

bits (x1, x2, · · · , xN) are transmitted through N independent
copies of a B-DMC. For decoding, N transformed binary
input channels {W(1)

N , W(2)
N , · · · , W(N)

N } can be synthesized
for u1, u2, · · · , uN , respectively. The channels are polarized
such that for large N, the fraction of indices i for which
I(W(i)

N ) is nearly 1 approaches the capacity of the B-DMC [1],
while the values of I(W(i)

N ) for the remaining indices i are
nearly 0. The latter set of indices are called the frozen set.
For error correction, the ui’s with i in the frozen set take
fixed values, and the other ui’s are used as information bits.
A successive cancellation (SC) decoding algorithm achieves
diminishing block error probability as N increases.

Polar code can also be used for optimal lossy source
coding [8], which has various applications. In particular, in [2],
the idea was used to build capacity achieving WOM codes.

Our code analysis uses the concept of upgrading and de-
grading channels, defined based on frozen sets. As in [11],
a channel W ′ : X → Z is called "degraded with respect to
a channel W : X → Y” if an equivalent channel of W ′ can
be constructed by concatenating W with an additional channel
Q : Y → Z, where the inputs of Q are linked with the outputs
of W. That is, W ′(z|x) = ∑y∈Y W(y|x)Q(z|y). We denote
it by W ′ � W. Equivalently, the channel W is called “an
upgrade with respect to W ′”, denoted by W �W ′.

III. CODE CONSTRUCTION

In this section, we introduce our code construction that
combines rewriting with error correction.

A. Basic code construction with a nested structure

1) Basic concepts: First, let us consider a single rewrite
step (namely, one of the t writes). Let s = (s1, s2, · · · , sN) ∈
{0, 1}N and s′ = (s′1, s′2, · · · , s′N) ∈ {0, 1}N denote the cell
levels right before and after this rewrite, respectively. Let g =
(g1, g2, · · · , gn) be a pseudo-random bit sequence with i.i.d.
bits that are uniformly distributed. The value of g is known
to both the encoder and the decoder, and g is called a dither.

For i = 1, 2, · · · , N, let vi = si ⊕ gi ∈ {0, 1} and v′i =
s′i ⊕ gi ∈ {0, 1} be the value of the i-th cell before and after
the rewrite, respectively. As in [2], we build the WOM channel
in Figure 1 for this rewrite, denoted by WOM(α, ε). Here
α ∈ [0, 1] and ε ∈ [0, 1

2 ] are given parameters, with α =
1−∑N

i=1
si
N representing the fraction of cells at level 0 before
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Fig. 1. The WOM channel WOM(α, ε).

the rewrite, and ε =
∑N

i=1 s′i−si

N−∑N
i=1 si

representing the fraction of
cells that are changed from level 0 to level 1 by the rewrite.
Let FWOM(α,ε) ⊆ {1, 2, · · · , N} be the frozen set of the polar
code corresponding to this channel WOM(α, ε). It is known

that limN→∞
|FWOM(α,ε) |

N = α H(ε). [2]
For the noise channel BSC(p), let FBSC(p) ⊆ {1, 2, · · · , N}

be the frozen set of the polar code corresponding to the channel
BSC(p). It is known that limN→∞

|FBSC(p) |
|N| = H(p).

In this subsection, we assume FBSC(p) ⊆ FWOM(α,ε). It is
as illustrated in Figure 2(a). In this case, the code has a nice
nested structure: for any message M ∈ {0, 1}M, the set of
cell values VM ⊆ {0, 1}N that represent the message M is
a linear subspace of a linear error correcting code (ECC) for
the noise channel BSC(p), and {VM|M ∈ {0, 1}M} form a
partition of the ECC. Later we will extend the code to general
cases.

FWOM(↵,✏)

FBSC(p)

stored message all 0s

{1, 2, · · · , N}

(a)

{1, 2, · · · , N}
FWOM(↵,✏)

FBSC(p)

stored message all 0s

stored in additional cells

(b)
Fig. 2. (a) Nested code for FBSC(p) ⊆ FWOM(α,ε). (b) General code.

2) The encoder: Let E : {0, 1}N × {0, 1}M → {0, 1}N

be the encoder for this rewrite. Namely, given the current cell
state s and the message to write M ∈ {0, 1}M, the encoder
needs to find a new cell state s′ = E(s, M) that represents M
and is above s (that is, cell levels only increase).

The encoding process is similar to [2], but with some differ-
ence in how to assign bits to FWOM(α,ε). For convenience of
presentation, here we assume the polar code to be the original
code designed by Arıkan [1]; however, note that it can be gen-
eralized to other polar codes as well. We present the encoding
function in Algorithm 1. Here y and u are two vectors of
length N; uFWOM(α,ε)−FBSC(p)

, {ui|i ∈ FWOM(α,ε) − FBSC(p)}
are all the bits ui in the frozen set FWOM(α,ε) but not FBSC(p);



uFBSC(p)
, {ui|i ∈ FBSC(p)} are all the bits ui in FBSC(p); and

G⊗m
2 is the m-th Kronecker product of G2 =

(
1 0
1 1

)
.

Algorithm 1 The encoding function s′ = E(s, M)

y← ((s1, v1), (s2, v2), · · · , (sN , vN)) .
Let uFWOM(α,ε)−FBSC(p)

← M.
Let uFBSC(p)

← (0, 0, · · · , 0).
for i from 1 to N do

if i /∈ FWOM(α,ε) then

L(i)
N (y, (u1, u2, · · · , ui−1))← W(i)

N (y,(u1,u2,··· ,ui−1)|ui=0)

W(i)
N (y,(u1,u2,··· ,ui−1)|ui=1)

.

(Comment: Here W(i)
N (y, (u1, u2, · · · , ui−1)|ui = 0)

and W(i)
N (y, (u1, u2, · · · , ui−1)|ui = 1) can be com-

puted recursively using formulae (22), (23) in [1]).

Let ui ←


0 with probability L(i)

N

1+L(i)
N

1 with probability 1
1+L(i)

N

.

Let v′ ← uG⊗m
2 .

Let s′ ← v′ ⊕ g.

3) The decoder: We now present the decoder D :
{0, 1}N → {0, 1}M. Let c = (c1, c2, · · · , cN) ∈ {0, 1}N

be the noisy cell levels after the message is written. Given c,
the decoder should recover the message as D(c) = M.

Our decoder works essentially the same way as a polar error
correcting code. We present it as Algorithm 2.

Algorithm 2 The decoding function M̂ = D(c)
View c⊕ g as a noisy codeword, which is the output of a
binary symmetric channel BSC(p). Decode c⊕ g using the
decoding algorithm of the polar error-correcting code [1],
where the bits in the frozen set FBSC(p) are set to 0s. Let
v̂ = (v̂1, v̂2, · · · , v̂N) be the recovered codeword.
Let M̂←

(
v̂(G⊗m

2 )−1)
FWOM(α,ε)−FBSC(p)

, which denotes the

elements of the vector v̂(G⊗m
2 )−1 whose indices are in the

set FWOM(α,ε) − FBSC(p).

By [1], it is easy to see that both the encoding and the
decoding algorithms have time complexity O(N log N).

4) Nested code for t writes: In the above, we have pre-
sented the encoder and the decoder for one rewrite. It can be
naturally applied to a t-write error correcting WOM code as
follows. For j = 1, 2, · · · , t, for the j-th write, replace α, ε,
s, s′, v, v′, M, M, E, D, c, M̂, v̂ by αj−1, εj, sj, s′j, vj, v′j,
Mj,Mj, Ej, Dj, cj, M̂j, v̂j, respectively, and apply the above
encoder and decoder.

Note that when N → ∞, the values of α1, α2, · · · , αt−1
can be computed using ε1, ε2, · · · , εt−1: for BSC(p), αj =
αj−1(1− εj)(1− p) + (1− αj−1(1− εj))p. Optimizing the
code means to choose optimal values for ε1, ε2, · · · , εt that
maximize the sum-rate.

B. Extended code construction

We have introduced the code for the case FBSC(p) ⊆
FWOM(α,ε) so far. Our experiments show that for relatively
small p and typical values of (α0, ε1), (α1, ε2), · · · , (αt−1, εt),
the above condition holds. We now consider the general case
where FBSC(p) is not necessarily a subset of FWOM(α,ε).

We first revise the encoder in Algorithm 1 as follows.
After all the steps in the algorithm, we store the bits in
uFBSC(p)−FWOM(α,ε)

using Nadditional,j cells (for the j-th write).
(It is illustrated in Figure 2(b).) In this paper, for sim-
plicity, we assume the bits in uFBSC(p)−FWOM(α,ε)

are stored
using just an error correcting code designed for the noise
channel BSC(p). (It will not be hard to see that we can
also store it using an error-correcting WOM code, such
as the one presented above, for higher rates. However, we
skip the details for simplicity.) Therefore, we can have
limN→∞

Nadditional,j
|FBSC(p)−FWOM(αj−1,εj)

| = 1
1−H(p) . And the sum-rate

becomes Rsum =
∑t

j=1Mj

N+∑t
j=1 Nadditional,j

.

We now revise the decoder in Algorithm 2 as follows.
First recover the bits in uFBSC(p)−FWOM(α,ε)

using the decoding
algorithm of the ECC for the Nadditional,j additional cells.
Then carry out all the steps in Algorithm 2, except that the
bits in FBSC(p) − FWOM(α,ε) are known to the decoder as the
above recovered values instead of 0s.

We analyze the sum-rate of our general code construction
as N → ∞. (For more details, please see [6].) We get

the sum-rate Rsum ,
∑t

j=1Mj

N+∑t
j=1 Nadditional,j

= (1 − H(p)) ·
1

H(p) ∑t
j=1 αj−1 H(εj)−∑t

j=1 xj
1−H(p)+H(p)t

H(p) −∑t
j=1 xj

.

Let γj , max

{
αj−1 H(

p
αj−1

)

H(p) ,
αj−1 H(εj)+H(p)−H(αj−1εj)

H(p)

}
.

Theorem 1 Let 0 < p ≤ αj−1εj for j = 1, 2, · · · , t.
If ∑t

j=1 αj−1 H(εj) ≥ 1 − H(p) + H(p)t,
then the sum-rate Rsum is lower bounded by

(1−H(p))
∑t

j=1(αj−1 H(εj)−H(p)γj)
1−H(p)+H(p)t−H(p)∑t

j=1 γj
. If ∑t

j=1 αj−1 H(εj) <

1 − H(p) + H(p)t, and H(p) ≤ αj−1 H(εj) for
j = 1, 2, · · · , t, then Rsum is lower bounded by(

∑t
j=1 αj−1 H(εj)

)
−H(p)t.

We show some numerical results of the lower bound to sum-
rate Rsum in Figure 3, where we let εi =

1
2+t−i . The curve

for p = 0 is the optimal sum-rate for noiseless WOM code.
The other four curves are the lower bounds for noisy WOM
with p = 0.001, p = 0.005, p = 0.010 and p = 0.016,
respectively, given by Theorem 1. Note that it is possible to
further increase the lower bound values by optimizing εi.

IV. EXPERIMENTAL RESULTS

In this section, we study the achievable rates of our error
correcting WOM code, using polar codes of finite lengths. In
the following, we assume the noise channel is BSC(p), and
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search for good parameters ε1, ε2, · · · , εt that achieve high
sum-rate for rewriting. We also study when the code can have
a nested structure, which simplifies the code construction.

A. Finding BSCs satisfying FBSC(p) ⊆ FWOM(α,ε)

The first question we try to answer is when BSC(p) satisfies
the condition FBSC(p) ⊆ FWOM(α,ε), which leads to an elegant
nested code structure. We search for the answer experimen-
tally. Let N = 8192. Let the polar codes be constructed
using the method in [11]. To obtain the frozen sets, we let
|FWOM(α,ε)| = N(α H(ε)−∆R), where ∆R = 0.025 is a rate
loss we considered for the polar code of the WOM channel [2];
and let FBSC(p) be chosen with the target block error rate 10−5.

The results are shown in Figure 4. The four curves cor-
respond to α = 0.4, 0.6, 0.8, and 1.0. The x-axis is ε, and
the y-axis is the maximum value of p we found that satisfies
FBSC(p) ⊆ FWOM(α,ε), which, clearly, increases with both α
and ε. And it has nontrivial values (namely, it is comparable
to or higher than the typical error probabilities in memories).

B. Achievable sum-rates

We search for the achievable sum-rates of the general
code. Given p, we search for ε1, ε2, · · · , εt that maximize
the sum-rate Rsum. We show the results for t-write error-
correcting WOM codes—for t = 2, 3, 4, 5—in Figure 5. (In
the experiments, we let N = 8192, ∆R = 0.025, and the
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Fig. 5. Sum-rates for different t obtained in experimental search using code
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target block error rate be 10−5.) The x-axis is p, and the
y-axis is the maximum sum-rate found in our algorithmic
search. We see that the achievable sum-rate increases with the
number of rewrites t. And we comment that in most cases, the
achievable rate of the general code is very close to that of a
nested code (which is more restricted). This means the nested
code is already performing well for this parameter range.

Note that the lower bound to sum-rate Rsum in Figure 3
is actually higher than the rates we have found through
experiments by now. This is because the lower bound is for
N → ∞, while the codes in our experiments are still short so
far and consider the rate loss ∆R. Better rates can be expected
as we increase the code length and further improve our search
algorithm due to the results indicated by the lower bound.
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