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Abstract Network planarization has been an important technique in numerous sen-
sornet protocols—such as Greedy Perimeter Stateless Routing (GPSR), topology dis-
covery, data-centric storage, etc.—however the planarization process itself has been
difficult. Known efficient planarization algorithms exist only for restrictive wireless
network models: unit-disk graphs with accurately known location information. In
this paper, we study efficient planarization of wireless sensor networks, and present
a novel planarization method for a more general network model, where sensors can
have non-uniform transmission ranges and no location information is needed. Our
planarization algorithms also include a (2 + ε)-approximation algorithm and an FPT
algorithm for the BIPARTITE PLANARIZATION problem.
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1 Introduction

Wireless sensor networks usually need very efficient network protocols due to the
limited communication and computation capabilities of small sensors. Therefore, it
is important to exploit the special topological properties of sensornets for network
functions. A common observation is that the topology of a wireless sensornet usually
has a strong correlation with the geometry of the sensor field. This observation has
been used in notable applications like geographic routing [12, 13], etc. In these ap-
plications, network planarization has become a very important technique, because a
well planarized network not only exhibits the geometric properties of the sensor field,
but can also be efficiently utilized in network protocols.

The objective of network planarization is to get a connected planar subgraph of the
network that contains all the nodes of the network. To well reflect the geometry of the
sensor field, the planar subgraph should contain many links, so that the hop distance
(or communication distance) between nodes does not change a lot after planarization.
Network planarization first became the foundation of several well known geographic
routing protocols, including GPSR [12, 13], Compass Routing [14], GOAFR [15],
etc. Such protocols use the faces in the planar subgraph to perform perimeter rout-
ing, which guarantees packet delivery. Since then, network planarization has also
become a fundamental tool in numerous other applications, including data-centric
storage [18], network localization [16] and topology discovery [9, 10, 19]. Here the
data-centric storage schemes use the planar graph to help determine on which set of
nodes to store each datum, as well as for routing; the network localization schemes
can use the properties of planar graphs to facilitate localization; and the topology dis-
covery schemes can use the faces of the planar graph to recognize and locate bound-
aries and holes in the sensor field. Discovering boundaries and holes in a sensor field
is useful for understanding the collected sensor data (because the meaning of sensor
data often depends on the type of physical environment where they are collected),
for understanding the sensing environment (e.g., building floor plan, transportation
network, lakes) and detecting events (e.g., fire in a forest), and for load-balanced
routing.

Although network planarization has been proven to be an excellent technique for
sensor network protocols, an important problem remains: network planarization it-
self is difficult. So far, efficient planarization algorithms exist only for very restrictive
models: unit-disk graphs with accurately known measurements related to the nodes’
physical locations. The measurements are the nodes’ positions, the angles between
all adjacent links, or the lengths of all links. A unit-disk graph (UDG) is a graph
where two nodes have a link between them if and only if their physical distance is at
most one. So it corresponds to a network where the transmission ranges are the same
for all nodes and in all directions. For unit-disk graphs with accurate location mea-
surements, network planarization can be performed efficiently in a distributed fashion
based on Gabriel-graph, Relative-Neighborhood graph or Delaunay graph [3]. When
the network knows the accurate node positions and is very similar to the unit-disk
graph,—specifically, when it is the so called

√
2-quasi unit disk graph,—although no

network planarization algorithm is known, the problem can be circumvented to some
extent by using “virtual links” [2]. However, the virtual links may need to be real-
ized by long paths in the network, which makes the approach not so useful for many



Algorithmica (2011) 60: 593–608 595

applications. For more general networks, no efficient planarization method is known.
Practical sensor networks often deviate significantly from the unit-disk graph model.
The transmission ranges of sensors usually vary substantially in different directions
due to reasons including multi-path fading, antenna design, etc., and it is common
to observe a variation ratio up to five or more [11]. Also, it is often hard for sensors
to obtain accurate location measurements via expensive localization devices (e.g.,
GPS) or localization algorithms [3]. No efficient network planarization algorithm is
currently available for such practical wireless sensor networks.

In this paper, we present a novel method that leads to a new planarization algo-
rithm that robustly planarizes sensor networks of realistic models: networks with non-
uniform transmission ranges and unlocalized sensors (that is, sensors whose location
information is unknown). The method starts with a simple shortest path between two
faraway nodes in the network, and progressively planarizes the whole network.

The key for our approach is to solve the so called BIPARTITE PLANARIZATION

problem. It has been proved to be NP-hard [8]. We present two planarization algo-
rithms for different settings. We first present a (2 + ε)-approximation algorithm for
this problem where ε is an arbitrarily small positive number. The algorithm is ap-
plicable to general networks, and achieves the best known approximation ratio. It
outperforms the known results in the graph drawing research field [7].

We then present a fixed parameter tractable (FPT) algorithm that solves the prob-
lem exactly (namely, it finds the optimal solution) running in time O((2 + ε)knO(1)).
The algorithm uses the key observation that when a certain parameter is small, the
problem can be solved in polynomial time. We show the usefulness of the algorithm
to practical networks by simulations.

Since no information on node locations is known, the planar subgraph output by
our method is not embedded. It is already sufficient for some applications, such as
topology discovery (boundary recognition) [9]. If embedding is needed, the planar
graph can be embedded efficiently as a plane graph by using existing planar embed-
ding algorithms in graph drawing [5, 17] or in [9, 10]. The embedded graph can then
be used for many applications, including geographic routing [12]. We demonstrate the
performance of our planarization method and its application to topology discovery by
extensive simulations. We show that the planar subgraphs maintain the distance be-
tween nodes with small stretches, detect holes and boundaries with a much higher
precision than existing methods, and our method is robust to the network models
with different configurations.

The rest of the paper is organized as follows. In Sect. 2, we present an overview of
the new planarization scheme. In Sect. 3, we present an efficient approximation algo-
rithm for planarization. In Sect. 4, we present a fixed parameter tractable algorithm
for optimal planarization. In Sect. 5, we describe the implementation of the planariza-
tion scheme, and demonstrate its performance by simulations. In Sect. 6, we present
the conclusions.

2 Overview of the Planarization Scheme

In this section, we present an overview of the new planarization scheme. The scheme
is for planarizing a sensor network deployed in a two-dimensional sensor field. The
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Fig. 1 The shortest path
between two faraway nodes, in
two sensor networks with
drastically different transmission
ranges. The average degree is 7
in both cases. (a) A sensornet
with uniform transmission
ranges. (b) A sensornet where
the transmission ranges in
different directions vary by up to
10 times

network is not required to be a unit-disk graph, nor is any location information
needed. The only known information is the bi-directional connectivity between sen-
sors. The planarization scheme consists of five steps, described as follows.

2.1 Finding a Shortest Path Between Two Faraway Nodes

The first step is to find a shortest path between two faraway nodes. The two faraway
nodes can be found with the following common approach: first, randomly choose a
node a, use one flooding to build a shortest path tree rooted at a, and find the node b

that is the furthest (in hops) from a in the network; then, use a similar method to find
the node c that is the furthest (in hops) from b. b and c are the two faraway nodes
we need, and the unique path between b and c in the shortest path tree rooted at b

is the shortest path between b and c. The advantage of a shortest path between two
faraway nodes is that such a path usually does not twist, regardless of the uniformity
of the transmission ranges. Thus, such a path is very likely to be a plane graph. We
illustrate the property in Fig. 1. The two networks shown in Fig. 1 have drastically
different features in the uniformity of transmission ranges, and the path is similar to
a straight line in both cases. (When there are holes in the sensor field, the path may
not be straight but still spreads out well.) This observation is validated by extensive
simulations.

In the following, we will call the shortest path between b and c the base path.

2.2 Building a Shortest Path Tree

The second step is to build a shortest path tree. First, we find the node r1 that is the
furthest away (in hops) from the base path. This can be easily done by viewing the
nodes in the base path as a super node, and build a shortest path tree rooted at this
super node. Then, we build a shortest path tree rooted at node r1. See Fig. 2(a) for an
illustration.

2.3 Planarizing the Network Layer by Layer

In this third step, we planarize part of the network layer by layer. The nodes in the
base path are in Layer 1. Recursively, in the shortest path tree rooted at r1, if a node
is the parent of a node in Layer i and is not included in any of the first i layers, then it
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Fig. 2 Red (Darker) edges
indicate (a) the shortest path tree
rooted at node r1. Here r1 is
near the up right corner of the
network. (b) The nodes in the
layers, and the edges between
layers

Fig. 3 Planarize two adjacent
layers. The upper graph is
before planarization, and the
lower graph is after
planarization. (1) In the upper
graph, e, f are cover nodes of
the virtual edge {5,6} and make
its cover number be 2. (2) If c is
the only cover node for virtual
edge {3,4} in an optimal
solution, neither of the walls
{c,3} and {c,4} is removed by
that solution

is in Layer i + 1. A node that is not the ancestor (in the tree) of any node in the base
path is not included in any layer. Let us say that the maximum layer found this way
is Layer M . See Fig. 2(b) for an illustration.

We progressively build a planar graph that includes the nodes in the M layers.
First, we process Layer 1 and Layer 2. Let G = (V1 ∪ V2,E) denote the bipartite
graph where the nodes in Layer 1 are in one row and the nodes in Layer 2 are in the
other row. The edges in G are all those network links between Layer 1 and Layer 2.
See Fig. 3 for an illustration. In the bipartite graph G, the nodes in the bottom row—
which are the nodes in Layer 1—are placed following their order in the base path. The
nodes in the top row—which are the nodes in Layer 2—are not ordered yet. We then
use a planarization algorithm to remove some edges from G, and order the nodes
in the top row, so that the remaining edges do not cross each other. (All the edges
are straight.) Thus we obtain a planar subgraph between Layer 1 and Layer 2. Then,
we process Layer 2 and Layer 3 in the same way, then Layer 3 and Layer 4, . . . ,

and finally Layer M − 1 and Layer M . Note that when we are processing Layer i

and i + 1, the nodes in Layer i (the bottom row) have been ordered. So the same
algorithm can be used M − 1 times. All the edges we keep in these M − 1 steps form
a planar graph.

The general idea is that the base path and the shortest path tree rooted at r1 both act
as good references for planarization. By processing the nodes layer by layer, we comb
through the network and obtain a planar subgraph. The algorithm for planarizing the
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Fig. 4 (a) After finishing the
first tree, we build the second
and planarize it similarly. Edges
of the second tree are red
(darker); (b) the path
a → b → c, the edge {c, d}, and
the edge {e, f } can be added
into the planar graph

edges between two adjacent layers is the key operation in our method. We present the
details of the algorithm in the following sections.

2.4 Building a Second Shortest Path Tree and Planarizing the Network

The planar graph built so far is a skeleton of the network covering part (often about
half) of the sensor field. In this step, we build a second shortest path tree and planarize
more of the network. This second tree is rooted at the node r2 that is the furthest (in
hops) from the node r1. The planarization process is exactly the same as the process
in the previous step (namely, the third step), except that here node r2 replaces node
r1, and we do not include in the layers here those nodes that have been included in
Layer 2 through Layer M − 1 in the previous step. See Fig. 4(a) for an illustration.
The planar graphs built in this step and the previous step together form a large planar
subgraph that covers most of the sensor field.

2.5 Refining the Planar Graph

The planar graph built so far is a skeleton of the network, which usually covers the
whole sensor field. Those nodes outside it are usually within a few hops from it. To
include all nodes into the planar graph and to include more edges, three simple steps
are performed. First, if a node in the planar graph—which we shall call Gplanar—
finds that it has many 1- or 2-hop neighbors outside Gplanar , it uses a 4-hop localized
flooding to add one or more paths to Gplanar , as long as the new path connects nodes
in the same face and therefore preserves planarity of Gplanar . Note that the previous
planarization steps already tell us what the faces in the planar graph are, so this op-
eration is easily doable. Second, if there are still nodes outside Gplanar , they connect
themselves to Gplanar via small trees, which is a simple operation. The trees preserve
the planarity of the graph. At this moment, the planar graph contains all the nodes.
Then, to add more edges to Gplanar , the nodes add their incident edges to it if the
new edge connects two nodes in the same face (and therefore preserves the planarity).
Now we get the final planar subgraph of the network. See Fig. 4(b) for an illustration
on how the refining is done.
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3 An Approximation Planarization Algorithm

In the previous section, the planarization scheme was presented. The key operation
is how to planarize two adjacent layers. That is also the only part of the scheme
whose detail has not been specified. Naturally, our objective is to remove as few
edges as possible during planarization, because a dense planar graph is desirable. In
this section, we present an approximation algorithm to this NP-hard problem.

We formally define the problem as follows:

BIPARTITE PLANARIZATION problem (BiPP): In a bipartite graph G = (V1 ∪
V2,E), the nodes in the bottom row V1 are already linearly ordered, and the
nodes in the top row V2 are not (see Fig. 3 for an example). How to remove
some edges from G, and linearly order the nodes in the top row V2, so that
no two edges cross each other? The objective is to minimize the number of
removed edges.

In the graph drawing research field, this problem is also called the ONE SIDED

TWO-LAYER PLANARIZATION problem. It is known to be NP-hard, even when the
nodes in V2 all have degrees at most two and the nodes in V1 all have degrees at most
one [8]. The best existing solution that runs in polynomial time is a 3-approximation
algorithm [7]. In this section, we present a new algorithm whose approximation ratio
can be arbitrarily close to 2, thus improving the best known result.

Let us define a few terms. For any two nodes v1 and v2 in the bottom row V1,
if they are adjacent (in the sense of the given ordering of the nodes in V1), then we
imagine there is a virtual edge between v1 and v2. We say that a node u ∈ V2 covers
a virtual edge e if u has neighbors in the graph G that are on both the left side and
the right side of e in the bottom row. Such a node u is called a cover node of e. The
number of nodes in V2 covering e is called the cover number of e. All the edges
incident to a cover node of e are called the walls of e. Note that every cover node of
e is incident to at least two walls of e (see the upper figure in Fig. 3).

Our approximation algorithm is based on the following observations.

Observation 3.1 (Lemma 10 of [7]) In any solution to the BIPARTITE PLANARIZA-
TION problem, the cover number of any virtual edge e is at most 1. Therefore, let
y be the cover number of e in the graph G. Then any solution must remove at least
y − 1 walls of e.

Therefore, when the cover number of a virtual edge is large, if we remove two
walls around e for each of the cover nodes, we would have removed no more than
twice the number of edges removed by any solution plus one. This technique is used
in our algorithm.

On the other hand, if the cover numbers of all the virtual edges are relatively
small, we can solve the problem efficiently using a divide and conquer technique.
The following observation is the basis for the divide and conquer technique.

Observation 3.2 Let y be the cover number of a virtual edge e in the graph G, in any
solution at most one of e’s cover nodes can keep all its corresponding walls around e.
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For all the other cover nodes of e, each of them must remove all the walls on at least
one side of e. Therefore, if we enumerate all the possible ways to solve the conflicts
at e in any solution, there are at most y2y−1 + 2y cases to consider. (Specifically, for
each cover node, we first consider if its walls should be removed; if yes, we consider
which side of the walls to remove. So there are y2y−1 + 2y cases.)

If a virtual edge e has no cover node in a solution, the nodes in the bottom row can
be separated into two parts: the left of e and the right of e. Then every node in the top
row is adjacent to nodes in only one of the two parts. So in that case, the problem can
be solved for the two subgraphs separately. If in an optimal solution, e has one cover
node, then the following observation tells us that we can still divide the problem into
two parts.

Observation 3.3 Suppose that in an optimal solution, a virtual edge e has exactly
one cover node u. If the wall wl (respectively, wr ) incident to u is the closest edge
to e from the left (respectively, right) side, then wl,wr must have not been removed
by that optimal solution (as shown in Fig. 3). In that case (assuming that we have
guessed this case to be true), when we search for the optimal solution, we can mark
the two walls closest to e from each side (namely, wl and wr ) to be irremovable
(namely, we do not remove them in the algorithm).

The approximation algorithm is shown in Fig. 5.
Let us first look at the subroutine Exact-BiPP. Within each recursion we pick the

edge e and branch on all possible cases to reduce the cover number of e to at most 1.
After that there are two cases to consider: (1) e has 1 cover node; (2) e has no cover
node. In the first case, suppose v covers e with the edges {v,u1} and {v,u2}, i.e.,
{v,u1} and {v,u2} are both kept in the final solution and marked irremovable. Hence
we have divided the problem to two isolated subproblems in line 6 of Exact-BiPP. In
the case e has no cover node in the solution, it is clear that we have split the problem
into two independent subproblems. Since we enumerate all possible cases at e in the
recursive stage, the optimal solution is guaranteed.

Let c ≤ |V2| be the maximum cover number of all virtual edges in V1. Let T (n)

be the running time of the algorithm where n = |V1| for each recursion. We have the
recurrence relationship T (n) < 2 × c2cT (n

2 ). This recursion has a solution T (n) <

(2c2c)log2 n = nc+log2 c+O(1). Hence we obtain the following lemma immediately.

Lemma 3.4 The algorithm Exact-BiPP finds the optimal solution for the BIPARTITE

PLANARIZATION problem and runs in time nc+log2 c+O(1) where c is the maximum
cover number for all virtual edges in V1 and n is the number of nodes in V1.

In the following theorem, we prove the algorithm APX-BiPP’s approximation ra-
tio, 2 + 3ε, and its polynomial time complexity. The parameter ε can be a arbitrarily
small positive number, so we assume that ε ≤ 1/3.

Theorem 3.5 The planarization algorithm APX-BiPP is a (2 + 3ε)-approximation

for the BIPARTITE PLANARIZATION problem. It runs in time O(|V1| 1
ε
+log2

1
ε
+O(1) +

|E||V1|).
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Algorithm 1. APX-BiPP
Require: G = (V1 ∪ V2,E), ε

Ensure: Gplanar : A solution to BiPP

1. repeat
2. e ← a virtual edge in V1 with cover number > 1/ε

3. for each cover node of e, remove a wall incident to that node from each side
of e

4. until no virtual edge in V1 has cover number larger than 1/ε

5. call the procedure Exact-BiPP(G) and return the result

Algorithm 2. Exact-BiPP
Require: G = (V1 ∪ V2,E)

Ensure: Gplanar : A solution to BiPP

1. Let n be the number of nodes in V1. If n < 5, solve the problem in the brute force
way, and return the solution

2. e ← the �n/2	th virtual edge in V1
3. y ← the cover number of e

4. for all y2y−1 + 2y cases at e (see Observation 3.2) do
5. skip this iteration if in this case, an irremovable edge is to be removed
6. the problem is now split into two disjoint subproblems of roughly the same

size,
recursively call Exact-BiPP on them

7. record the solution of this case if it removes the least number of edges among
all cases considered so far

8. end for
9. remove edges according to the best solution got above
10. return G

Fig. 5 The approximation algorithm

Proof Since APX-BiPP returns a result returned by Exact-BiPP, by Lemma 3.4, it
produces a solution for the problem.

Let us look at the approximation ratio. In the recursive stage (subroutine Exact-
BiPP) of the algorithm, by Lemma 3.4 we get the exact solution.

While in the preprocessing stage (lines 1 through 4 in APX-BiPP), let ae > 1/ε be
the cover number of e. Among the ae nodes in V2 covering e, at most one of them
can be the cover node of e in any solution. We removed 2ae edges over e. That is at
most ae + 1 more than the number of edges removed by an optimal solution S.

Suppose that in the preprocessing stage (lines 1 through 4 in APX-BiPP), we have
run the loop m times. Let M be the total number of edges removed, since in each loop
we remove at least 2/ε edges, we have M > 2m/ε. Let 2ai be the number of edges
we removed at the i’th loop for an edge ei (1 ≤ i ≤ m). Then by the argument in the
previous paragraph, any optimal solution would have removed at least ai − 1 edges
for the edge ei . Hence the total number of edges removed by any optimal solution S
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would be at least
m∑

i=1

(ai − 1) = M/2 − m.

Let the residual graph (we obtained at line 5) be B ′. Therefore the number of edges re-
moved by S, denoted by R(B), is at least M/2−m+R(B ′′) where B ′′ is the residual
graph after we removed these M/2 − m edges according to S. Since in the approx-
imation stage we have removed all walls at those virtual edges, B ′ is a subgraph of
B ′′. Hence we have R(B ′) ≤ R(B ′′) and R(B) ≥ M/2 − m + R(B ′). While in our
approximated solution the number of edges removed, denoted by A(B), is exactly
M + R(B ′). Hence we have

A(B)

R(B)
≤ M + R(B ′)

M/2 − m + R(B ′)
= 2 + 4m − 2R(B ′)

M − 2m + 2R(B ′)

≤ 2 + 4m

2m/ε − 2m
. (1)

Now we show that the algorithm runs in polynomial time. The preprocessing
stage takes time O(|E||V1|). In the stage when we call Exact-BiPP, since the cover
numbers of all virtual edges in V1 are bounded by 1

ε
, by Lemma 3.4 the running

time is upper bounded by n
1
ε
+log2

1
ε
+O(1). Therefore the total running time is then

O(|V1| 1
ε
+log2

1
ε
+O(1) + |E||V1|). �

4 A Parameterized Algorithm for Optimal Planarization

In our extensive simulations, we observed that while planarizing the subgraph in-
duced by two adjacent layers, the number of edges that need to be removed is usually
much smaller than the number of nodes in those two layers, for a network of moderate
density (average degree roughly between 6 and 12). If the network is very dense, we
can use a simple preprocessing operation to reduce the edge density to the moderate
level. (Details of the operation will be discussed later.) Therefore a question remains:
can we use that observation to practically improve the planarization algorithm?

In recent years, a new approach called parameterized computation has been pro-
posed to solve NP-hard problems by exploiting small parameters [6]. Let k be a
parameter in a parameterized problem. We say that the problem is fixed parameter
tractable (FPT) if it can be solved optimally in time O(f (k)nO(1)), where n is the
input size and f (k) is a function of k. When k is bounded, not only is the time
complexity polynomial, but it usually also grows much slower than O(nk) when n

increases. Quite a few NP-hard problems have been proved to be FPT with effective
algorithms. For example, the VERTEX COVER problem with parameter k as the cover
size can be solved in time O(1.286k + n3) [4].

In [7], the authors showed that the BIPARTITE PLANARIZATION problem (also
called the ONE SIDED TWO-LAYER PLANARIZATION problem) is fixed parameter
tractable when the parameter k is an upper bound for the number of edges to be
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Fig. 6 (a) z(u, v) is an arc; the edges {p,q}, {s, t}, {z′′, u} conflict with z(u, v); the conflict number of
z(u, v) is then 3; z′(u′, v′) strictly covers z(u, v) and has a larger conflict number 7. (b) Cover number
and conflict number at virtual edge e(s, t): let f be the cover number of the virtual edge e(s, t), there are
at least f − 1 edges incident to nodes between u and s but not z

removed. They developed an FPT algorithm for the problem running in time 3knO(1).
In this section, we present an improved FPT algorithm running in time (2+γ )knO(1),
where γ can be an arbitrarily small positive number.

Formally, the parameterized version of the BIPARTITE PLANARIZATION problem
can be stated as follows:

Given an instance of the BIPARTITE PLANARIZATION problem and a parame-
ter k, either find a solution to the instance that removes at most k edges, or
report that no such solution exists.

Let us first define a few terms. Let u ∈ V1 be the leftmost neighbor of a node
z ∈ V2, and v ∈ V1 be the rightmost. We call the pair of edges {u, z}, {z, v} an arc, and
denote it by z(u, v). We say that the arc z(u, v) conflicts with an edge {w1,w2} if it is
necessary to remove {w1,w2} in order to keep both edges {z,u}, {z, v} in a solution.
To help simplify the following discussion, for each pair of arcs z(u, v), z′(u, v)—i.e.,
they share the same leftmost and rightmost neighbors u,v in V1—we also consider
{z,u} a conflict edge of z′(u, v). Similarly {z′, u} is also a conflict edge of z(u, v).

The conflict number of an arc z(u, v) is the number of edges that conflict with the
arc. (See Fig. 6(a) for an illustration of the terms.)

The conflict number of a given arc z(u, v) is simply the summation of the follow-
ing two numbers: (1) the number of edges incident to nodes (exclusively) between
u,v in V1 but not z; (2) the number of arcs of the form z′(u, v) (where z′ �= z), i.e.
they share the same leftmost (rightmost) node in V1. The set of edges that are con-
flicting with a given arc can also be decided easily by definition.

The following lemma shows the relationship between cover numbers and conflict
numbers.

Lemma 4.1 If there is a virtual edge e in V1 with cover number f , there must exist
an arc that has conflict number at least f − 1. In other words, if no arc has conflict
number larger than f −1, no virtual edge in V1 will have cover number larger than f .

Proof Suppose the left-most walls of e are incident to u in V1. Let z(u, v) be the
arc such that v in V1 is the furthest away to the right of u. Hence {z,u} is a leftmost
wall of e and v is the right-most neighbor of the cover nodes adjacent to u. Each of
the f − 1 cover nodes (other than z) of e either is adjacent to u and has no neighbor
exclusively to the right of v, or has its left-most wall exclusively to the right of u.
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Algorithm 3. FPT-BiPP (where β ≥ 1 is any given number)
Require: G(V1 ∪ V2,E), k

Ensure: Gplanar : A solution removing no more than k edges

1. z(u, v) ← the arc with the maximum conflict number c(z)

2. if c(z) = 0 then return true
3. if k < c(z) then return false
4. if c(z) ≤ β then
5. planarize G using the procedure Exact-BiPP. (That is, run Exact-BiPP(G).)
6. if Exact-BiPP(G) removes at most k edges, return true; else return false
7. end if
8. E(z) ← the set of edges conflicting with z(u, v)

9. if FPT-BiPP(G(V1 ∪ V2,E \ E(z)), k − c(z)) return true
10. if FPT-BiPP(G(V1 ∪ V2,E \ {{z,u}}), k − 1) return true
11. if FPT-BiPP(G(V1 ∪ V2,E \ {{z, v}}), k − 1) return true
12. return false

Fig. 7 The FPT algorithm

By definition, each of these f − 1 cover nodes (other than z) of e will contribute at
least 1 to z(u, v)’s conflict number. Either their rightmost walls (if they are adjacent
to u but not v) or their leftmost walls will be conflict edges of z(u, v). The conflict
number of z(u, v) is, therefore, at least f − 1. �

We present the FPT algorithm in Fig. 7. The constant β is any predefined positive
number that is no smaller than 1. The algorithm returns a solution if there exists
a solution that removes at most k edges, and returns false otherwise. (With a little
abuse of notations, when the algorithm returns true, it returns the solution as well.)
Note that when a solution is found, the conflict number of every arc becomes 0.

The following theorem proves the correctness and complexity of the algorithm.

Theorem 4.2 The algorithm FPT-BiPP will either find a solution for the BIPARTITE

PLANARIZATION problem by removing at most k edges, or correctly report that there
is no such solution. The running time of the algorithm is upper bounded by (2 +
1
β
)knβ+log2 β+O(1).

Proof During the calling of the routine Exact-BiPP in line 5 (that is, when c(z) ≤ β),
since the conflict numbers of the nodes in V1 are upper bounded by β , by Lemma 4.1,
the cover number of the virtual edges in V1 will be bounded by β + 1. Again by
Lemma 3.4, the running time of Exact-BiPP in this algorithm will be bounded by
T1 = nβ+log2 β+O(1).

As for the recursive calls in lines 9, 10 and 11, we branch into three cases where
k decreases by 1,1 and c(z), respectively. Since we enter this stage only if c(z) > β ,
if we use T (k) to denote the running time of the algorithm, the following recurrence
relationship holds for T (k):

T (k) ≤ 2T (k − 1) + T (k − β).
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We use induction to show that T1(2 + 1
β
)k is an upper bound for T (k). In the

case when k < c(z), we return false right away. If c(z) ≤ k ≤ β , we already have
T (k) ≤ T1. Hence when k ≤ β , we always have T (k) ≤ T1(2 + 1

β
)k.

Suppose for β ≤ k < t we have T (k) ≤ T1(2+ 1
β
)k . Using basic calculus, it is easy

to verify that when β ≥ 1, 2(2 + 1
β
)β−1 + 1 ≤ (2 + 1

β
)β . Thus we have

T (t) ≤ 2T (t − 1) + T (t − β) ≤ 2T1

(
2 + 1

β

)t−1

+ T1

(
2 + 1

β

)t−β

≤ T1

(
2 + 1

β

)t−β[
2

(
2 + 1

β

)β−1

+ 1

]
≤ T1

(
2 + 1

β

)t

.

This proves that the running time of the algorithm is bounded by (2 +
1
β
)knβ+log2 β+O(1). �

The exponential part of the running time of the algorithm FPT-BiPP can be arbi-
trarily close to 2k by choosing a large enough value for β .

The difference between the approximation approach and a parameterized approach
is that the latter gives the optimal solution. Although the problem is NP-hard, the FPT
algorithm solves the problem in polynomial time when the parameter is small, i.e.,
the exponential part of the running time is independent of the number of the nodes
in the input graph. As we will show later in simulations, the number of edges to be
removed is actually very small (less than 15 in most cases for networks of up to 2500
nodes) for networks with practical models.

5 Implementing the Planarization Algorithms

We conducted extensive simulations to test the performance of the planarization
method. The performance has been very stable for different network models, sensor
deployment methods, network sizes and sensor densities. In the following, we present
some typical simulation results. A planarized network has numerous applications, in-
cluding topology discovery, localization, geographic routing, etc. (For geographic
routing, embedding is needed and such embedding algorithms are available [5, 9, 10,
17].) We illustrate the performance of our result by showing its application to topol-
ogy discovery. We observe that our planarized network can locate holes and outer
boundaries of the sensor fields accurately.

We will only present the simulation results of the centralized implementation of
our algorithm. For interested readers, we outline the distributed implementation of
our planarization algorithm in the following. The centralized FPT-BiPP algorithm
will be used for solving the BIPARTITE PLANARIZATION problem during the pla-
narization process. Our planarization method utilizes a few shortest path trees, and a
practically limited amount of localized flooding to refine the final result. (The total
cost of the localized flooding is about the same as flooding the network once or twice.)
Both building shortest path trees and localized flooding are very mature techniques
in networking. Both algorithms presented in Sects. 3 and 4 planarize the network
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layer by layer, which naturally corresponds to a distributed implementation. While
planarizing two adjacent layers, we take the simple approach of letting one node in
the two layers act as a proxy and run the algorithm in a centralized way. (The nodes
in the two layers can easily send their information to the proxy node via the corre-
sponding shortest path tree.) Note that our algorithms take the divide and conquer
approach, so it is simple to decentralize its implementation.

The faces in the planarized network are always very clear throughout the pla-
narization process. That is because nodes are planarized layer by layer, and the pla-
narization algorithm sorts the edges incident to each node by ordering the nodes in
the two adjacent layers. That makes the refinement step and the topology discovery
application of using faces to recognize holes/boundaries very simple.

Our method works well for networks of moderate or sparse edge densities. For
dense networks (e.g., average degree 15 or more. We picked 15 as our threshold based
on our experiences. Minor changes on the threshold may slightly affect the results
of the algorithm), we apply the following simple preprocessing that can effectively
reduce the edge density and the number of edge crossings: for maximal cliques in
each node’s neighborhood, we remove some edges from it so that the remaining edges
form a star. Detecting maximal cliques in graphs itself is a very interesting topic,
readers are referred to [1] for an in-depth discussion on this topic. In this paper, we
suggest the following simple greedy approach to detect maximal cliques: starting
from a node u and the induced subgraph C of G containing u. We repeatedly find a
neighbor v of u such that C ∪ {v} is a clique and add v to C. We stop when there is
no such v existing. At the end C is one of the maximal cliques in u’s neighborhood.
Apparently this process can be done in polynomial time. Note that the average degree
of a planar graph is always less than 6. So such an edge-reduction preprocessing step
goes along well with planarization.

We have presented two planarization algorithms: an approximation algorithm and
an FPT algorithm. They have very similar performance in practice. We present the
simulation results for the FPT algorithm in the following (the results for the approxi-
mation algorithm are very similar to that of the FPT algorithm so we decided not to in-
clude them here). In most simulations, the optimal planarization solution removes less
than 15 edges for all the layers. So by setting the parameter k to the FPT-BiPP to 15 or
a little above for networks of N (ranged from 1000 to 2500) nodes, the FPT algorithm
finds the optimal solution and maintains a low time complexity at the same time.

We randomly deploy N sensors uniformly in a 15000 × 15000 square area. The
network follows the quasi unit disk graph (quasi-UDG) model: two nodes do not have
a link if their distance is greater than R, have a link if their distance is less than r , and
have a link with probability 1/3 if their distance is between r and R. (Here r ≤ R.)
Let α = R/r . When N and α are given, we adjust r and R to obtain the desired
average node degree. To make the sensor field non-trivial, we also randomly place
holes in the network. Our reported results are for two holes of radius about 2R. For
each parameter configuration, 1000 networks are generated and measured.

A typical planarization result is shown in Fig. 8. To quantitatively analyze the
performance of planarization, we measure the stretch (str.) of hop distance and its
standard deviation σ . Let u,v be two nodes, whose hop distance is h(u, v) before
planarization and is h′(u, v) after planarization. The multiplicative stretch is defined
as h′(u, v)/h(u, v), and the additive stretch is h′(u, v) − h(u, v). To better charac-
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Fig. 8 Wireless sensor network and its planarization. (a) The black (darkest) edges and the green (darker)
edges are the planarized network. The light (grey) edges are the remaining edges in the original network.
The original network is a quasi-UDG with N = 2000 nodes and average degree 12, where transmission
ranges vary by as much as R/r = 5. (b) A plane embedding of the planarized network

Table 1 Planarization results for N = 1500

Additive stretch for nodes within Diameter/4 hops
d = 7 d = 9 d = 11

α D str. σ D str. σ D str. σ

1 48.3 4.03 9.80 40.1 3.56 8.04 36.1 3.36 7.27
2 36.2 3.45 8.11 30.6 3.28 7.19 27.4 3.24 6.66
5 28.9 3.23 6.76 24.0 3.05 6.25 21.5 2.98 6.00
10 27.0 3.11 6.82 23.7 3.01 6.13 21.4 2.96 5.83

Multiplicative stretch for nodes more than Diameter/4 hops apart

d = 7 d = 9 d = 11
α dp str. σ dp str. σ dp str. σ

1 3.5 1.27 0.57 3.8 1.28 0.56 3.8 1.30 0.57
2 3.7 1.31 0.54 3.8 1.35 0.56 3.9 1.38 0.58
5 3.7 1.36 0.55 3.8 1.40 0.55 3.8 1.43 0.56
10 3.7 1.36 0.54 3.8 1.40 0.55 3.8 1.43 0.57

terize the stretch of different node pairs, we measure the multiplicative stretch for
nodes whose hop distance is greater than 1/4 of the network diameter, and measure
the additive stretch for the others. The results are shown in Table 1 where d is the
average degree of the input networks, dp is the average degree of the planar spanning
subgraph found and D is the average diameter of the input networks.

We see that for networks of very different connectivity models and densities, the
stretch is constantly small. This shows the good performance of the planarized net-
works.

6 Conclusions

In this paper, we present a new planarization scheme for wireless sensor networks.
The scheme is efficient and works for sensor networks of a general model, where
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sensors can have non-uniform transmission ranges and no location information is
needed. The planarization scheme provides a tool for many applications. A natural
question is how to further decentralize the scheme for higher efficiency, and to ex-
tend the scheme for sensor networks of more specialized topological features. This
remains as our future research.
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