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Abstract—The construction of asymmetric error-correcting
codes is a topic that was studied extensively, however; the existing
approach for code construction assumes that every codeword
should tolerate asymmetric errors. Our main observation is that
in contrast to symmetric errors, asymmetric errors are content
dependent. For example, in Z-channels, the all-1 codeword is
prone to have more errors than the all-0 codeword. This motivates
us to develop nonuniform codes whose codewords can tolerate
different numbers of asymmetric errors depending on their
Hamming weights. The idea in a nonuniform codes’ construction
is to augment the redundancy in a content-dependent way and
guarantee the worst case reliability while maximizing the code
size. In this paper, we first study nonuniform codes for Z-channels,
namely, they only suffer one type of errors, say . Specif-
ically, we derive their upper bounds, analyze their asymptotic
performances, and introduce two general constructions. Then, we
extend the concept and results of nonuniform codes to general
binary asymmetric channels, where the error probability for each
bit from 0 to 1 is smaller than that from 1 to 0.

Index Terms—Asymmetric errors, bounds and constructions,
coding for data storage, nonuniform codes.

I. INTRODUCTION

A SYMMETRIC errors exist in many storage devices [5]. In
optical disks, read-only memories, and quantum memo-

ries, the error probability from 1 to 0 is significantly higher than
the error probability from 0 to 1, which is modeled by Z-chan-
nels where the transmitted sequences only suffer one type of
errors, say . In some other devices, like flash memories
and phase changememories, although the error probability from
0 to 1 is still smaller than that from 1 to 0, it is not ignorable.
That means both types of errors say and are
possible, modeled by binary asymmetric channels. In contrast
to symmetric errors, where the error probability of a codeword
is context independent (since the error probability for 1s and
0s is identical), asymmetric errors are context dependent. For
example, the all-1 codeword is prone to have more errors than
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the all-0 codeword in both Z-channels and binary asymmetric
channels.
The construction of asymmetric error-correcting codes is a

topic that was studied extensively. In [15], Kløve summarized
and presented several such codes. In addition, a large amount of
efforts are contributed to the design of systematic codes [1], [3],
constructing single or multiple error-correcting codes [2], [17],
[18], increasing the lower bounds [8]–[10], [28] and applying
low-density parity-check (LDPC) codes in the context of asym-
metric channels [25]. In particular, Tallini and Bose in [18] and
[19] introduced the theory and design of codes capable of simul-
taneously correcting (or more generally, controlling)
errors and errors. However, the existing approach
for code construction is similar to the approach taken in the
construction of symmetric error-correcting codes, namely, it as-
sumes that every codeword could tolerate asymmetric errors
(or, in the more general case of errors and
errors) with (or, and , respectively) independent from the
sent codeword. As a result, different codewords might have dif-
ferent reliability. To see this, let us consider errors to be i.i.d.,
where every bit that is a 1 can change to a 0 by an asymmetric
error with crossover probability and each bit that is a 0
keeps unchanged. For a codeword

, let denote the Ham-
ming weight of . Then, the probability for to have at most
asymmetric errors is

If the code can correct errors, then is the probability
of correctly decoding (assuming codewords with more than
errors are uncorrectable), and we say that this codeword
can correct up to errors. It can be readily observed that the
reliability of codewords decreases when their Hammingweights
increase, for example, see Fig. 1.
While asymmetric errors are content dependent, in most

applications of data storage, the reliability of each codeword
should be content independent. So we are interested in the worst
case performance rather than the average performance that is
commonly considered in telecommunication, and we want to
construct error-correcting codes that can guarantee the relia-
bility of every codeword evenly. In this case, it is not desired to
let all the codewords tolerate the same number of asymmetric
errors, since the codeword with the highest Hamming weight
will become a “bottleneck” and limit the code rate. We call
the existing codes uniform codes while we focus on the notion
of nonuniform codes, namely, codes whose codewords can
tolerate different numbers of asymmetric errors depending on
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ZHOU et al.: NONUNIFORM CODES FOR CORRECTING ASYMMETRIC ERRORS IN DATA STORAGE 2989

Fig. 1. Relation between and when and .

their Hamming weights. The goal of introducing nonuniform
codes is to maximize the code size while guaranteeing the
reliability of each codeword for combating asymmetric errors.
Examples of nonuniform codes are error-correcting constant
weight codes [4], [13]. In particular, in [21] and [22], some
Z-channel capacity achieving feedback coding schemes are
given, which are based on constant weight codes. Here, we
are interested in forward error correction only (there is no
feedback), and we study a general class of nonuniform codes.
In a nonuniform code, given a codeword of

weight , we let denote the number of errors that
has to tolerate, and we let denote the number of

errors that has to tolerate. Both and are step functions
on that can be predetermined by the channel, the
types of errors, and the required reliability. In this paper, we
consider a nondecreasing function and a nonincreasing
function of codeword weight. As a result, we call such a code
as a nonuniform code correcting errors. In particular, for
Z-channels where for all , we call it a
nonuniform code correcting asymmetric errors.
Example 1: In Z-channels, let be the crossover probability

of each bit from 1 to 0 and let be maximal tolerated error
probability for each codeword. If we consider the errors to be
i.i.d., then we can get

(1)

for . In this case, every erroneous codeword can be
corrected with probability at least .
The following notations will be used throughout of this paper:

the maximal error probability for each codeword;

the error probability of each bit from 1 to 0;

the error probability of each bit from 0 to 1;

a nondecreasing function that indicates the number
of errors to tolerate;

a nonincreasing function that indicates the number
of errors to tolerate.

In this paper, we introduce the concept of nonuniform codes
and study their basic properties, upper bounds on the rate,
asymptotic performance, and code constructions. We first focus
on Z-channels and study nonuniform codes correcting asym-
metric errors. The paper is organized as follows: In Section II,
we provide some basic properties of nonuniform codes, as the
generalizations of those for uniform codes studied in [15]. In
Section III, we give an almost explicit upper bound for the size of
nonuniform codes. Section IV studies and compares the asymp-
totic performances of nonuniform codes and uniform codes. Two
general constructions, based on multiple layers or bit flips, are
proposed in Sections V and VI. Finally, we extend our discus-
sions and results from Z-channels to general binary asymmetric
channels in Section VII, where we study nonuniform codes
correcting errors, namely, errors and
errors. Concluding remarks are presented in Section VIII.

II. BASIC PROPERTIES OF NONUNIFORM CODES FOR
Z-CHANNELS

Storage devices such as optical disks, read-only memories,
and quantum atomic memories can be modeled by Z-channels,
in which the information can suffer a single type of error, namely

. In this section, we study some properties of nonuniform
codes for Z-channels, namely, codes that only correct asym-
metric errors. Typically, is a nondecreasing function in ,
the weight of the codeword. We prove it in the following lemma
for the case of i.i.d. errors.
Lemma 1: Assume the errors in a Z-channel are i.i.d.; then,

given any , the function defined in (1) satisfies
for all .

Proof: Let us define

Then

which leads us to

(2)

First, let us prove that . Since

we have .
We know that , so

According to definition of , we can conclude that
.

Second, let us prove that . Based on
(2), we have

So .
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We know that ; therefore

According to the definition of , we have
.

This completes the proof.
Given two binary vectors and

, we say if and only if
for all . Let be the (asymmetric) “ball” centered
at , namely, it consists of all the vectors obtained by changing
at most in into 0s, i.e.,

where is the weight of and

We have the following properties of nonuniform codes as the
generalizations of those for uniform codes studied in [15].
Lemma 2: Code is a nonuniform code correcting asym-

metric errors if and only if for all
with .

Proof: According to the definition of nonuniform codes,
all the vectors in can be decoded as , and all the vectors
in can be decoded as . Hence, for all

.
Lemma 3: There always exists a nonuniform code of themax-

imum size that corrects asymmetric errors and contains the
all-zero codeword.

Proof: Let be a nonuniform code correcting asym-
metric errors, and assume that . If there exists a
codeword such that , then we can get a
new nonuniform code of the same size by replacing with

in . If there does not exist a codeword such that
, then we can get a larger nonuniform code

by adding to .
Given a nonuniform code , let denote the number of

codewords with Hamming weight in , i.e.,

Given a nondecreasing function , let denote a set of
weights that can reach weight with at most asymmetric
errors, namely,

Lemma 4: Let be a nonuniform code correcting asym-
metric errors. For , we have

(3)

Proof: Let be the set
consisting of all the vectors of length and weight . If
with , according to the properties of ,
contains vectors of weight , namely

According to Lemma 2, we know that is a
disjoint union, in which the number of vectors is

Since and there are at most vectors
in , the lemma follows.

III. UPPER BOUNDS

Let denote the maximum size of a uniform code cor-
recting asymmetric errors, and let denote the max-
imum size of a nonuniform code correcting asymmetric er-
rors, where is a constant and is a nondecreasing function
of codeword weight. In this section, we first present some ex-
isting results on the upper bounds of for uniform codes.
Then, we derive an almost explicit upper bound of for
nonuniform codes.

A. Upper Bounds for Uniform Codes

An explicit upper bound to was given by Varshamov
[23]. In [15], Borden showed that is upper bounded by

where is the maximal number of vectors in with
Hamming distance at least . Goldbaum [12] pointed out that the
upper bounds can be obtained using integer programming. By
adding more constraints to the integer programming, the upper
bounds were later improved by Delsarte and Piret [7] andWeber
et al. [26], [27]. Kløve generalized the bounds of Delsarte and
Piret, and gave an almost explicit upper bound which is very
easy to compute by relaxing some of the constraints[14], in the
following way.
Theorem 5: [14] For , let be de-

fined by

Then, .
This method obtains a good upper bound to (al-

though it is not the best known one). Since it is easy to compute,
when and are large, it is every useful for analyzing the sizes
of uniform codes.
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Fig. 2. This diagram demonstrates the relative values of .

B. Upper Bounds for Nonuniform Codes

We now derive an almost explicit upper bound for the size of
nonuniform codes correcting asymmetric errors, followed the
idea of Kløve [14] for uniform codes. According to the lemmas
in the previous section, we can get an upper bound of ,
denoted by , such that

where the maximum is taken over the following constraints:

Here, condition is given by Lemma 3, and condition is
given by Lemma 4. Our goal is to find an almost explicit way to
calculate .
Lemma 6: Assume is maximized over

in the problem above. If for some
integer with , then

Proof: Suppose that for some that sat-
isfies the aforementioned condition. Let and

, as indicated in Fig. 2, where a
triangular denote the ball centered at the top vertex. Further-
more, we let . Note that in this
case, and .
We first prove that for all , . In order

to prove this, we let ; then, we get

It is easy to obtain that

So

Now, we construct a new group of real numbers
such that

with

For such , it is not hard to prove that for
. On the other hand

which contradicts our assumption that is maximized
over the constraints. So the lemma is true.
Lemma 7: Assume is maximized over

in the aforementioned problem. If
for some integer with , then

where

Proof: Let . If ,
then the lemma is true. So we only need to prove it for the case
that . According to our assumption, for all
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If , then we can construct a new group of real
numbers such that

with

Now, we show that this new group of real numbers
satisfies our constraints, i.e., for all with

Specifically, we only need to focus on the case that .
If , then

It is easy to see that ; hence, it implies

which contradicts with our assumption that is maxi-
mized over the constraints. This completes the proof.
Now let be a group of optimal solutions to

that maximize . Then, sat-
isfy the condition in Lemma 7. We see that . Then,
based on Lemma 7, we can get uniquely by itera-
tion. Hence, we have the following theorem for calculating the
upper bound .
Theorem 8: Let be defined by

Then, .
This theorem provides an almost explicit expression for the

upper bound , which is much easier to calculate than
the equivalent expression defined at the beginning of this sec-
tion. Note that in the theorem, we do not have a constraint like

Fig. 3. Upper bounds of the rates for uniform/nonuniform codes when
and .

the one (constraint 4) in Theorem 5. It is because that the op-
timal nonuniform codes do not have symmetric weight distri-
butions due to the fact that monotonically increases with
(demonstrated in Lemma 1).

C. Comparison of Upper Bounds

Here, we focus on i.i.d. errors, i.e., given the crossover prob-
ability from 0 to 1 and the maximal tolerated error proba-
bility , the function is defined in (1). In this case, we can
write the maximum size of a uniform code as

, and write the maximum size of a nonuniform code
as .
Nowwe let denote the maximal code rate defined

by

Similar, we let denote the maximal code rate de-
fined by

By the definition of uniform and nonuniform codes, it is simple
to see that .
Fig. 3 depicts the upper bounds of and

for different values of when and
. The upper bound of is obtained based

on the almost explicit upper bound given by Kløve, and the
upper bound of is obtained based on the almost
explicit method proposed in this section. It demonstrates that
given the same parameters, the upper bound for nonuniform
codes is substantially greater than that for uniform codes.

IV. ASYMPTOTIC PERFORMANCE

In this section, we study and compare the asymptotic rates
of uniform codes and nonuniform codes. Note that the perfor-
mance of nonuniform codes strongly depends on the selection
of the function . Here, we focus on i.i.d. errors, so given
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, we study the asymptotic behavior of
and as . By the definition of nonuniform
and uniform codes, the “balls” containing up to (or )
errors that are centered at codewords need to be disjoint.
Before giving the asymptotic rates, we first present the fol-

lowing known result. For any , when is large enough,
we have

where is the entropy function with

and

Lemma 9: Let be the maximum size of a constant-
weight binary code of codeword length with Hamming weight
and minimum distance . Let be the maximum

size of a constant weight binary code of codeword length and
Hamming weight that is capable of correcting asymmetric
errors. Then

Proof: Let be a code of length , constant weight ,
and size that corrects asymmetric errors. For all

, let us define be the set consisting of all the
vectors obtained by changing at most in into 0s, i.e.,

Then, , we know that .
Let be a vector such that

for . Then, and
. Without loss of generality (w.l.o.g.), suppose

that . Then, , and the Hamming distance
between and is

So the minimum distance of is at least . As a result,
.

On the other hand, if a constant-weight code has minimum
distance at least , it can correct asymmetric errors. As
a result, .

A. Bounds of

Let us first give the lower bound of and
then provide the upper bound.
Theorem 10 (Lower Bound): Given , if
, we have

Proof: We consider uniform codes that correct asym-
metric errors, where

i.e.,

According to Hoeffding’s inequality, for , if
as

which contradicts with the aforementioned inequality. If
as

which also contradicts with the aforementioned inequality.
So for any , as becomes large enough, we have

. If we write , then
for large enough.
Since each codeword tolerates asymmetric errors, we have

for every with . The Gilbert Bound gives that (see
Graham and Sloane[13])

Hence

For a binomial term and , when is
large enough
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Let and with , as becomes
large enough, we have

From , we get ; then, is a
continuous function of . As becomes large, we have

, so we can approximate with . Similarly,
we can approximate with . Then, we can get
as

If , the maximum value can be achieved at .
Hence, we have

This completes the proof.
Theorem 11 (Upper Bound): Given , we have

Proof: For a uniform code correcting asymmetric errors,
we have the following observations.
1) There is at most one codeword with Hamming weight at
most .

2) For , the number of codewords with Ham-

ming weight is at most .

Consequently, the total number of codewords is

So as , we have

where the last step is due to the continuousness of
over .

This completes the proof.
We see that when , does not depend on
as long as . It is because that when , we

have , which does not depend on . This property also
holds by when .

B. Bounds of

In this section, we study the bounds of the asymptotic rates of
nonuniform codes. Here, we use the same idea as that for uni-
form codes, besides that we need also to prove that the “edge
effect” can be ignored, i.e., the number of codewords with Ham-
ming weight does not dominate the final result.
Theorem 12 (Lower Bound): Given , we have

Proof: We consider nonuniform codes that corrects
asymmetric errors, where

for all .
Based onHoeffding’s inequality, for any , as becomes

large enough, we have . In another
word, for any , when is large enough and , we
have .
Let and ; then, when is large enough,

if , we have

If , we call it the “edge” effect. In this case, .
Since each codeword with Hamming weight can tolerate

errors

for every with .
Applying the Gilbert Bound, we have

Then
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TABLE I
UPPER BOUNDS AND LOWER BOUNDS FOR THE MAXIMUM RATES OF UNIFORM CODES AND NONUNIFORM CODES

When , we have

Note that when for small , we have

So we can ignore this edge effect. That implies that we can write

for any with .
Since for any fixed

is a continuous function of . As , we have

This completes the proof.
Theorem 13 (Upper Bound): Given , we have

with .
Proof: The upper bound is the capacity of the Z-channel

given in [20].

C. Comparison of Asymptotic Performances

Table I summarizes the analytic upper bounds and lower
bounds of and ob-
tained in this section. For the convenience of comparison, we
plot them in Fig. 4. The dashed curves represent the lower and
upper bounds to , and the solid curves
represent the lower and upper bounds to .
The gap between the bounds for the two codes indicate the
potential improvement in efficiency (code rate) by using the
nonuniform codes (compared to using uniform codes) when
the codeword length is large. In this figure, the upper bound for
nonuniform codes is also the capacity of the Z-channel. It shows

Fig. 4. Bounds of and .

that nonuniform codes may be able to achieve the Z-channel
capacity as becomes large, while uniform codes cannot (here
we assume that they have codewords of high weights and worst
case performance is considered, so the constructions of uniform
codes cannot achieve the capacity of Z-channel).

V. LAYERED CODES CONSTRUCTION

In [15], Kløve summarized some constructions of uniform
codes for correcting asymmetric errors. The code of Kim and
Freiman was the first one constructed for correcting multiple
asymmetric errors. Varshamov [24] and Constrain and Rao [6]
presented some constructions based on group theory. Later, Del-
sarte and Piret [7] proposed a construction based on “expur-
gating/puncturing” with some improvements given by Weber et
al. [27]. It is natural for us to ask whether it is possible to con-
struct nonuniform codes based on existing constructions of uni-
form codes. In this section, we propose a general construction
of nonuniform codes based on multiple layers. It shows that the
sizes of the codes can be significantly increased by equalizing
the reliability of all the codewords.

A. Layered Codes

Let us start from a simple example: Assume we want to con-
struct a nonuniform code with codeword length and

In this case, how can we construct a nonuniform code effi-
ciently? Intuitively, we can divide all the codewords into two
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layers such that each layer corresponds to an individual uniform
code, namely, we get a nonuniform code

where is a uniform code correcting one asymmetric error
and is a uniform code correcting two asymmetric errors. So
we can obtain a nonuniform code by combining multiple uni-
form codes, each of which corrects a number of asymmetric
errors. We call nonuniform codes constructed in this way as
layered codes. However, the simple construction above has a
problem—due to the interference of neighbor layers, the code-
words at the bottom of the higher layer may violate our re-
quirement of reliability, namely, they cannot correct sufficient
asymmetric errors. To solve this problem, we can construct a
layered code in the following way. Let us first construct a uni-
form code correcting two asymmetric errors. Then, we addmore
codewords into the code such that we have the following.
1) The weights of these additional codewords are less than

. This condition can guarantee that in the
resulting nonuniform code, all the codewords with weights
at least 6 can tolerate two errors.

2) These additional codewords are selected such that the
codewords with weights at most 5 can tolerate one error.

B. Construction

Generally, given a nondecreasing function , we can get a
nonuniform code with layers by iterating the aforemen-
tioned process. Based on this idea, given , we construct lay-
ered codes as follows.
Let and let be binary codes of code-

word length , where

and for , the code can correct asymmetric errors.
Given , we can construct a layered code such that

where

We see that there is a shift of the layers (corresponding to the
function and the function ), see Fig. 5 as a demonstration.
The following theorem shows that the aforementioned construc-
tion satisfies our requirements of nonuniform codes, i.e., it cor-
rects asymmetric errors.
Theorem 14: Let be a layered code based on the aforemen-

tioned construction; then, for all , can tolerate
asymmetric errors.

Proof: We prove that for all with ,
. W.l.o.g., we assume .

If , the conclusion is true.
If and , then

. That means there does not exist a word

Fig. 5. Demonstration of functions and .

such that and and
. Since , according to the def-

inition of , it is easy to get .
So there does not exist a word such that
and and , namely,

.
This completes the proof.
We see that the constructions of layered codes are based on

the provided group of codes such that
and for , and the code corrects asym-

metric errors. Examples of such codes include Varshamov codes
[24], Bose–Chaudhuri–Hocquenghem (BCH) codes, etc.
The construction of Varshamov codes can

be described as follows. Let
be distinct nonzero elements of , and let

. For ,
let . For
and , let

where the elementary symmetric function for are
defined by

Then, can correct asymmetric errors (for ), and
.

Such a group of codes can also be constructed by BCH codes:
Let be distinct nonzero elements of
with . For , let

C. Decoding Algorithm

Assume is a codeword in and is a received
erroneous word with error vector ; then, there is an efficient
algorithm to decode into a codeword, which is denoted by
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. If has at most asymmetric errors, then
. We show that the layered codes proposed above also have
an efficient decoding algorithm if (for ) are
provided and efficient.
Theorem 15: Let be a layered code based on the aforemen-

tioned construction, and let be a received word such
that and . To recover from , we enu-
merate the integers in . If we
can find an integer such that and

, then .
Proof: If we let , then we can get that satis-

fies the conditions and . So such exists.
Now we only need to prove that once there exists satisfying

the conditions in the theorem, we have . We prove
this by contradiction. Assume there exists satisfying the con-
ditions but . Then, . Since
we also have , , which
contradicts the property of the layered codes.
This completes the proof.
In the aforementioned method, to decode an erroneous word
, we can check all the integers between and

to find the value of . Once we find the integer sat-
isfying the conditions in the theorem, we can decode into

directly. (Note that the length of the interval for , namely
, is normally much smaller

than . It is approximately for i.i.d. errors when
is large.) We see that this decoding process is efficient if
is efficient for .

D. Layered Versus Uniform

Typically, nonlinear codes, like Varshamov codes, are supe-
rior to BCH codes. But it is still not well known how to esti-
mate the sizes of Varshamov codes and their weight distribu-
tions. To compare uniform constructions and nonuniform con-
structions for correcting asymmetric errors, we focus on BCH
codes, namely, we compare normal BCH codes with layered
BCH codes. Here, we consider i.i.d. errors, and we assume that
the codeword length is , the crossover probability is ,
and the maximal tolerated error probability is .
Table II shows the relations between the dimension and the

number of errors that can be corrected in BCH codes when
. According to [16], many BCH codes have approximated

binomial weight distribution. So given an BCH code,
the number of codewords of weight is approximately

For a normal BCH code, it has to correct errors with

Then it has codewords where can be obtained from Table II
based on the value of .
For a layered BCH code, the codewords with Hamming

weight have to correct asymmetric errors such that

TABLE II
BCH CODES WITH CODEWORD LENGTH 255 [11]

Fig. 6. Estimated rates of BCH codes and layered BCH codes when
and .

for all . Based on the approximated weight distribu-
tion of BCH codes, the number of codewords in a layered BCH
codes can be estimated by summing up the numbers of code-
words with different weights.
Fig. 6 plots the estimated rates of BCH codes and layered

BCH codes for different when and .
Here, for a code , let be the number of codewords; then,
the rate of is defined as . From this figure, we see
that under the same parameters , the rates of layered
BCH codes are much higher than those of BCH codes. By con-
structing nonuniform codes instead of uniform codes, the code
rate can be significantly increased. Comparing Fig. 6 with Fig. 3,
it can be seen that the rates of layered BCH codes are very close
to the upper bounds of uniform codes. It implies that we can
gain more by considering nonuniform codes rather than non-
linear uniform codes.
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Fig. 7. Estimated rates of flipping/layered BCH codes when
and .

VI. FLIPPING CODES CONSTRUCTION

Many nonlinear codes designed to correct asymmetric errors
like Varshamov codes are superior to linear codes. However,
they do not yet have efficient encoding algorithms, namely, it is
not easy to find an efficient encoding function
with . In this section, we focus on the approach
of designing nonuniform codes for asymmetric errors with ef-
ficient encoding schemes, by utilizing the well-studied linear
codes.
A simple method is that we can use a linear code to correct
asymmetric errors directly, but this method is inefficient

not only because the decoding sphere for symmetric errors is
greater than the sphere for asymmetric errors (and therefore
an overkill), but also because for low-weight codewords, the
number of asymmetric errors they need to correct can be much
smaller than .
Our idea is to build a flipping code that uses only low-weight

codewords (specifically, codewords of Hamming weight no
more than ), because they need to correct fewer asymmetric
errors and therefore can increase the code’s rate. In the rest of
this section, we present two different constructions.

A. First Construction

First, we construct a linear code (like BCH codes) of length
with generator matrix that corrects symmetric er-

rors. Assume the dimension of the code is . For any binary
message , we can map it to a codeword in such
that . Next, let denote a word obtained by flipping all
the bits in such that if , then and if , then

; and let denote the final codeword corresponding to
. We check whether and construct in the fol-
lowing way:

Here, the auxiliary bits (0s or 1s) are added to distinguish that
whether has been flipped or not, and they form a repetition
code to tolerate errors.
The corresponding decoding process is straightforward. As-

sume we received a word . If there is at least one 1 in the
auxiliary bits, then we “flip” the word by changing all 0s to 1s
and all 1s to 0s; otherwise, we keep the word unchanged. Then,
we apply the decoding scheme of the code to the first bits of
the word. Finally, the message can be successfully decoded if
has at most errors in the first bits.

B. Second Construction

In the previous construction, several auxiliary bits are needed
to protect one bit of information, which is not very efficient.
Here, we try to move this bit into the information part of the
codewords in . This motivates us to give the following con-
struction.
Let be a systematic linear code with length that corrects
symmetric errors (we will specify later). Assume the di-

mension of the code is . Now, for any binary message
of length , we get by adding one bit 0

in front of . Then, we can map to a codeword in such
that

where is the generator matrix of in systematic form and the
length of is . Let be a codeword in such that the
first bit and its weight is the maximal one among all the
codeword in , i.e.,

Generally, is very close to . For example, in any primitive
BCH code of length 255, is the all-one vector; also we can
construct LDPC codes that include the all-one vector as long as
their parity-check matrices have even number of ones in each
column. In order to reduce the weights of the codewords, we
use the following operations. Calculate the relative weight

Then, we get the final codeword

where is the binary sum, so is to flip the bits in
corresponding the ones in . So far, we see that the maximal
weight for is . That means we need to select
such that

For many linear codes, is the all-one vector, so
In the aforementioned encoding process, for different binary

messages, they have different codewords. And for any code-
word , we have . That is because either or
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, where both and are codewords in and , is a
linear code. So the resulting flipping code is a subset of code .
The decoding process is very simple. Given the received word

, we can always get by applying the decoding
scheme of the linear code if . If , that means
has been flipped based on , so we have ; otherwise,

. Then, the initial message .
We see that the second construction is a little more efficient

than the first one, by moving the bit that indicates flips from
the outside of a codeword (of an error-correcting code) to the
inside. Here is an example of the second construction. Let
be the Hamming code, which is able to correct single-bit
errors. The generating matrix of the Hamming code is

Here, we have and . Assume the binary message
is ; then, we have . It is easy
to see that is the all-one codeword, i.e., . In this
case, , so the final codeword .
Assume the binary message is ; then, we have

. In this case, , so the final
codeword .
Assume the received word is . By applying the

decoding algorithm of Hamming codes, we get .
Since , we have , and as a result, .

C. Flipping Versus Layered

When is sufficiently large, the aforementioned flipping
codes become nearly as efficient (in terms of code rate) as a
linear codes correcting symmetric errors. It is much
more efficient than designing a linear code correcting
symmetric errors. Note that when is large and is small,
these codes can have very good performance on code rate.
That is because when is sufficiently large, the rate of an
optimal nonuniform code is dominated by the codewords with
the same Hamming weight , and approaches
as gets close to 0. We can intuitively understand it based
on two facts when is sufficiently large: 1) there are at most

codewords in this optimal nonuniform code. 2)
When becomes small, we can get a nonuniform code with at
least codewords. So when is sufficiently large and
is small, we have . Hence, an optimal nonuniform code
has almost the same asymptotic performance with an optimal
weight-bounded code (Hamming weight is at most n/2) that
corrects asymmetric errors.
Let us consider a flipping BCH code based on the second

construction. Similar as the previous section, we assume that
the codeword length is and the number of codewords
with weight can be approximated by

where is the dimension of the code. Fig. 7 compares the es-
timated rates of flipping BCH codes and those of layered BCH

codes when and . Surprisingly, the flip-
ping BCH codes achieve almost the same rates as layered BCH
codes. Note that, for the layered codes, we are able to further
improve the efficiency (rates) by replacing BCH codes with Var-
shamov codes, i.e., based on layered Varshamov codes.

VII. EXTENSION TO BINARY ASYMMETRIC CHANNELS

In the previous sections, we have introduced and studied
nonuniform codes for Z-channels. The concept of nonuniform
codes can be extended from Z-channels to general binary
asymmetric channels, where the error probability from 0 to 1
is smaller than the error probability from 1 to 0 but it may not
be ignorable. In this case, we are able to construct nonuniform
codes correcting a big number of errors and a small
number of errors. Such codes can be used in flash mem-
ories or phase change memories, where the change in data has
an asymmetric property. For example, the stored data in flash
memories is represented by the voltage levels of transistors,
which drift in one direction because of charge leakage. In phase
change memories, another class of nonvolatile memories, the
stored data is determined by the electrical resistance of the
cells, which also drifts due to thermally activated crystalliza-
tion of the amorphous material. This asymmetric property will
introduce more errors than errors after a long
duration.
In this section, we first investigate binary asymmetric chan-

nels where the probability from 0 to 1 is much smaller than that
from 1 to 0, namely, , but is not ignorable. In this
case, is very small, we would not gain much by letting be a
variable. Instead, for simplicity, we let be a constant function.
Later, we consider general binary asymmetric channels, where
can be an arbitrary nonincreasing step function.

A. Is a Constant Function

We show that if is a constant function, then correcting
errors is equivalent to correcting asym-

metric errors, where can be an arbitrary step functions on
.

The following theorem extends Theorem 2 in [18].
Theorem 16: Let be a constant function; a code is a

nonuniform code correcting errors if and only if it is a
nonuniform code correcting asymmetric errors.

Proof: 1) We first show that if is a nonuniform code
correcting errors where is a constant function, then
it can correct asymmetric errors. We need to prove that
there does not exist a pair of codewords such that

where

Let us prove it by contradiction. Assume that their exists a
pair of codewords that satisfy the aforementioned inequal-
ities. By adding at most errors, we get a vector
from such that the Hamming distance between and is
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Fig. 8. Demonstration of .

minimized; also we get a vector from such that the Ham-
ming distance between and is minimized. In this case, we
only need to show that

which contradicts with our assumption that can correct
errors. The intuitive way of understanding is shown in
Fig. 8. In the figure, we present each vector as a line, in which
the solid part is for 1s and the dashed part is for 0s.
If and , then

so . The statement is true.
If and , then . In this

case

We get the statement.
Similarly, if and , we have

and

If and , we can get

Based on the aforementioned discussions, we can conclude
that if is a nonuniform code correcting errors where
is a constant function, then it is also a nonuniform code cor-

recting asymmetric errors.
2) We show that if is a nonuniform code correcting

asymmetric errors where is a constant function, then it is also
a nonuniform code correcting errors. That means for any

, there does not exist a vector such that

Fig. 9. Demonstration of .

Let us prove this by contradiction. We assume there exists a
vector satisfies the aforementioned conditions. Now, we de-
fine a few vectors such that

The intuitive way of understanding these vectors is shown in
Fig. 9. In the figure, we present each vector as a line, in which
the solid part is for 1s and the dashed part is for 0s.
Then

Now we want to show that

Since

we only need to show that

According to the definition of , it is easy to get that

So , which leads us to

Similarly, we can also get

In this case, is not a nonuniform code correcting asym-
metric errors, which contradicts with our assumption.
Based on the aforementioned discussions, we can get the con-

clusion in the theorem.
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According to the aforementioned theorem, if is a con-
stant function, the upper bound of nonuniform codes correcting

errors is exactly the upper bound of nonuniform code
correcting asymmetric ( ) errors. To construct a
nonuniform code correcting errors, it is equivalent to
construct a nonuniform code correcting asymmetric
( ) errors. Hence, our code constructions in Sections V
and VI can be applied.

B. Is a Nonincreasing Function

Another case of binary asymmetric channel is that
but is not much smaller than . In this case, it is not efficient
to write as a constant function. Instead, we consider it as a
nonincreasing step function.
Theorem 17: Let be a nondecreasing function and be

a nonincreasing function. A code is a nonuniform code cor-
recting errors if it is a nonuniform code correcting
asymmetric errors. Here, for all

Proof: Let be a nonuniform code correcting errors.
For any , w.l.o.g, we assume . If

, then there does not exist a vector
such that

If , according to the
proof in Theorem 16, we can get that there does not exist a vector
such that

Since

we can get that there does not exist a vector such that

Finally, we conclude that is a nonuniform code correcting
errors.

According to the aforementioned theorem, to construct a
nonuniform code correcting errors, instead, we can con-
struct a nonuniform code correcting asymmetric errors.
So the problem of constructing a nonuniform code for an ar-
bitrary binary asymmetric channel is converted to the problem
of constructing a nonuniform correcting for a Z-channel. Note
that this conversion results in a little loss of code efficiency,
but typically it is very small. Both layered codes and flipping

codes can be applied for correcting errors in binary asymmetric
channels. A little point to notice is that might not be a
strict nondecreasing function of codeword weight. In this case,
we can find a nondecreasing function which is slightly larger
than , and construct a nonuniform code correcting
asymmetric errors.
When we apply flipping codes for correcting errors in binary

asymmetric channels, we do not have to specify and sep-
arately. For example, assume that i.i.d. errors are considered.
If the maximal tolerated error probability is , then given a
codeword of weight , it has to tolerate total errors. For

, can be obtained by calculating the minimal
integer such that

To construct a flipping code, we only need to find a linear code
such that it corrects symmetric errors, where is
the codeword with the maximum weight in the linear code.
Theorem 18: Let be a nondecreasing function and be a

nonincreasing function. If a code is a nonuniform code cor-
recting errors, then it corrects asymmetric errors.
Here

Proof: The proof of this theorem is very similar as the
proof for the previous theorem. It follows the conclusion in The-
orem 16.
According to the aforementioned theorem, to calculate the

upper bound of nonuniform codes correcting errors, we
can first calculate the upper bound of nonuniform codes cor-
recting asymmetric errors. Generally speaking, nonuni-
form codes correcting errors (considering the optimal
case) are more efficient than nonuniform codes correcting
asymmetric errors, but less efficient than those correcting
asymmetric errors. According to the definitions of and ,
it is easy to get that

for . Typically, if , then
. It implies that nonuniform codes correcting er-

rors are roughly as efficient as those correcting asym-
metric errors. If we consider i.i.d. errors and long codewords,
it is equally difficult to correct errors introduced by a binary
asymmetric channel with crossover probabilities and or a
Z-channel with a crossover probability .

VIII. CONCLUDING REMARKS

In storage systems with asymmetric errors, it is desirable to
design error-correcting codes such that the reliability of each
codeword is guaranteed in the worst case, and the size of the
code is maximized. This motivated us to propose the concept
of nonuniform codes, whose codewords can tolerate a number
of asymmetric errors that depends on their Hamming weights.
We derived an almost explicit upper bound on the size of
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nonuniform codes and compared the asymptotic performances
of nonuniform codes and uniform codes—it is evident that
there is a potential performance gain by using nonuniform
codes. In addition, we presented two general constructions of
nonuniform codes, including layered codes and flipping codes.
Open problems include efficient encoding for layered codes
and the construction of flipping codes when is not small. In
general, the construction of simple and efficient nonuniform
codes is still an open problem.
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