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Abstract—Current flash memory technology is focused on
cost minimization of the stored capacity. However, the resulting
approach supports a relatively small number of write-erase
cycles. This technology is effective for consumer devices (smart-
phones and cameras) where the number of write-erase cycles is
small, however, it is not economical for enterprise storage systems
that require a large number of lifetime writes.

Our proposed approach for alleviating this problem consists of
the efficient integration of two key ideas: (i) improving reliability
and endurance by representing the information using relative
values via the rank modulation scheme and (ii) increasing the
overall (lifetime) capacity of the flash device via rewriting codes,
namely, performing multiple writes per cell before erasure.

We propose a new scheme that combines rank-modulation
with rewriting. The key benefits of the new scheme include: (i)
the ability to store close to 2 bits per cell on each write, and
rewrite the memory close to q times, where q is the number
of levels in each cell, and (ii) efficient encoding and decoding
algorithms that use the recently proposed polar WOM codes.

I. INTRODUCTION

The application of the rank-modulation scheme for flash

memories was proposed by Jiang et al. in [12]. The main idea

of this modulation scheme is to represent the information by

the relative levels of the flash memory cells, rather than by

their absolute levels. Given a set of flash cells with distinct

levels, the levels induce a permutation, which represents the

stored data. The motivation for the scheme comes from the

physical and architectural properties of flash memories. While

injecting charge into a flash cell is a simple operation, remov-

ing it can be done only by the removal of the entire charge

from a large block of cells, a process called block erasure.

In conventional Multi-Level Cell (MLC) flash systems, the

information is represented by the quantization of the cells’

levels. Since the charge injection operation is a noisy process,

it is often done iteratively, in order to avoid undesired block

erasures in case of overshoots. It was suggested in [12] that the

rank-modulation scheme speeds up data writing by eliminating

the over-shooting problem in flash memories. In addition, it

also increases the data retention by mitigating the effect of

charge leakage. A hardware implementation of the scheme

was recently designed to demonstrate those properties [14]. In

addition, the scheme was also implemented in phase-change

memories, where its data retention capability was verified

experimentally [19].

The work on rank modulation coding for flash memories

paved the way for additional results in this area. First, error-

correcting codes in the rank modulation setup attracted a lot

of attention; see e.g. [2], [7], [13], [21]. In addition, other

variations of rank modulation were proposed and studied, such

as [6], [22].

In this work we focus on the notion of rewriting codes,

that were proposed for the rank-modulation scheme in [12],

in order to reuse the memory between block erasures. It is

desirable to minimize the usage of block erasures, since they

are slow, power consuming and reduce the device reliability.

This is especially important in applications that require a large

number of writes, such as enterprise storage systems. In order

to minimize block erasures, the proposed approach is to rewrite

the memory without erasing it, by injecting charge to the cells

such that they induce a desired new permutation, and thus

represent a new user message. After a number of rewriting

cycles, the cells reach their maximal level, and block erasure

is unavoidable. The aim of rewriting codes is to maximize the

number of writes between block erasures.

In rank-modulation, each cell has a certain rank, according

to its relative level in the permutation. Depending on the noise

magnitude, a certain gap is needed between cells of adjacent

rank, to avoid errors. Therefore, it was proposed in [4] to

use a discrete model for the design and analysis of rewriting

codes, despite the fact that the information is only based on

the relative analog levels of the cells. The approach taken in

[4] is to focus, in every rewrite, on the difference between the

levels of the top cell in the permutation, before and after the

rewrite. This difference is defined as the cost of rewrite. The

reason for this focus is that writing with high cost gets the

memory closer to the point where block erasure is required.

Under this model, the goal of this work is to design codes

which guarantee that, in every rewrite, the cost is at most 1.

That way, the code supports a large number of writes before

block erasure. It was shown in [4] that codes with worst-case

cost of 1 allows the writing of at most 1 bit per cell in each

writing cycle.

A further generalization of the model was proposed in [5],

and studied also in [18]. In this model, the cells need to

induce a permutation of a given multiset. That is, each rank

is occupied by a pre-determined number of cells, according

to a specific multiset. For that model, it was shown in [5]

that codes with cost 1 can store up to 2 bits per cell in each

cycle. Notice that this generalization doubles the amount of

information storage for codes with cost 1. In addition, the

generalization allows the rate to approach that of the non-

binary write-once-memory model [8], when the number of
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writes and cell levels is high. In this work, we design rewriting

codes with cost 1, that allow the writing of nearly 2 bits per

cell in each cycle, and thus approach the limit of the model.

Our construction takes advantage of the recently discovered

polar codes, which were recently used in the construction of

write-once-memory codes in [3].

The rest of the paper is organized as follows. In section II,

we formally present the problem we study in this paper.

Section III describes our construction of rank modulation

codes. In section IV we give a background on polar WOM

codes and show how they can serve in our construction.

Finally, in section V, we give some concluding remarks.

II. NOTATIONS AND MODEL

Consider a set of N cells, each taking one of q levels.

Denote c = (c1, c2, . . . , cN), where ci ∈ {0, 1, . . . , q− 1}, to

be the cell-state vector. Denote a permutation of a multiset as

a multipermutation, where the multiset is defined as follows.

A multiset M = {az1
1 , . . . , azm

m } is a generalization of the

underlying set {a1, . . . , am}, where each ai appears zi times.

We call the elements of the underlying set ranks, and zi is

called the multiplicity of the rank ai. The number of ranks

is m, and the cardinality of the multiset is N = ∑m
i=1 zi.

Now let PM be the set of all N-cell permutations σM =
(σM(1), σM(2), . . . , σM(N)) of the multiset M. That is, for

1 � j � N, σM(j)∈ {a1, . . . , am}, and for i∈ {a1, . . . , am},

σ−1
M (i) is the set of all cells with rank i, i.e., σ−1

M (i) =
{j | σ(j) = i}. We also denote Si = σ−1

M (i), where M is

clear form the context, and note that |Si| = zi.

Given a cell-state vector c = (c1, c2, . . . , cN) and a

multiset M = {az1
1 , . . . , azm

m }, the permutation σc,M =
(σc,M(1), σc,M(2), . . . , σc,M(N)) is derived as follows. First,

let i1, . . . , iN be an order of the cells such that ci1 � ci2 �
· · · � ciN . Then, the cells i1, . . . , iz1 get the rank a1, the cells

iz1+1, . . . , iz1+z2 get the rank a2 and so on. More rigorously,

for i∈ {a1, . . . , am}, the cells ini , ini + 1, . . . , iNi get the rank

i, where ni = 1 + ∑i−1
�=1 z� and Ni = ∑i

�=1 z�, i.e., σ(imi ) =
σ(imi + 1) = · · · = σ(iMi ) = i. Note that a given cell-state

vector can generate different multipermutations in case that

there is equality between the levels of cells in adjacent ranks.

In this case, we will define the multipermutation to be illegal.

After a rewriting operation, the cell state is denoted as c′ =
(c′1, c′2, . . . , c′N), and we similarly define σc′ ,M and S′i . Denote

�i as the highest level among the cells of rank i. That is,

�i = max
j∈ Si

{cj}.

In addition, define �′i in the same way for c′. The cost of the

rewriting operation is defined as �′m − �m. Given a current

multipermutation σc,M and a multipermutation to be written

σc′,M, the cost of rewrite can be minimized by writing c′ as

follows. For i = 2, 3, . . . , m, for every j∈ S′i , c′j is set to be the

maximum of cj and �′i−1 + 1. When writing in this fashion, it

was shown in [5] that the cost is at most max1�i�N [σc,M(i)−
σc′,M(i)]. The goal is to design a code that allows the writing

of any information message with a rewrite cost of at most

r. We consider only the case where the encoder knows and

the decoder does not know the previous state of the memory.

The encoder and decoder use the same code for every cycle,

and there are no decoding errors (zero-error case). For the cell

states c and c′, we denote c � c′ if and only if ci � c′i, for

all i = 1, 2, . . . , N. We are now ready to define the rewriting

codes we study in this paper.

Definition 1. An (N, r, D, M = {1z1 , . . . , mzm}) rank-
modulation rewriting code is a coding scheme C( fRM, gRM)
consisting of N cells, a multiset M and a pair of encoding func-

tion fRM and decoding functions gRM. Let I = {1, · · · , D} be

the set of input information symbols. The encoding function

fRM : I × PM → PM, and the decoding function gRM : PM →
I satisfy the following constraints:

1) For any d∈ I and σ∈ PM, gRM( fRM(d, σ)) = d.

2) For any d∈ I and σ∈ PM, let σ′ = fRM(d, σ),
max1�i�N [σ(i)− σ′(i)] � r.

The rate of the code isR = (1/N) log2 D.

It was shown in [5] that the maximal rate in this model is

(r + 1) log2(r + 1)− r log2 r bits/cell, and specifically, when

r = 1, the maximal rate is 2 bits/cell. In this work, we propose

codes that approach this rate for any r, with low complexity

of encoding and decoding. The construction is presented for

the case of r = 1, where the generalization to any r is straight

forward and will be discussed afterwards.

III. CODE CONSTRUCTION

In this section we describe an (N, 1, D, M = {1z, . . . , mz})
rank-modulation rewriting code with asymptotically-optimal

rate. The first important idea of the code is that the encoding

and decoding operations are divided into m − 1 parts. The

encoder perform the m − 1 parts sequentially, while the

decoder can perform them in parallel. In addition, the input

message d is divided into m− 1 parts, corresponding to the

encoding and decoding parts, each contains
log2 D
m−1 bits. Let di

denote part i of the input message, for i = 1, 2, . . . , m− 1.

In each part i = 1, 2, . . . , m− 1 of the encoding function,

the encoder determines the set of cell that will have rank i
in the new multipermutation c′. That is, in each part i, the

encoder determines the set S′i = σ−1
M (i). Note that since M =

{1z, . . . , mz}, |Si| = |S′i | = z for all i. When the encoder is

done with all the m− 1 steps, the sets S′1, S′2, . . . , S′m−1 are all

determined, and consequently, the set S′m is also determined

by the remaining cells.

In the first part, the encoder determines the set S′1 using

a function S′1 = fr(S1 ∪ S2, d1). fr selects S′1 as a subset

of the set S1 ∪ S2, according to the data part d1. We denote

the complement subset of S′1 as S∗2 = (S1 ∪ S2) \ S′1. The

rest of the parts in the encoding function are performed

similarly. In step i, we set S′i = fr(S∗i ∪ Si+1, di), and

S∗i+1 = (S∗i ∪ Si+1) \ S′i . The decoding is done separately for

each part, according to a function di = gr(S′i). To meet the

first condition of a rank-modulation rewriting code, we must

have di = gr( fr(S, di)) for any S∈ {1, . . . , N} of size 2z and

di. Given a scheme composed of such functions fr and gr, we
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need also to show that the cost of each rewrite is at most 1. To

see this, notice that for each j∈ 1, 2, . . . , N, σ′(j) � σ(j) + 1,

since S′i is selected out of cells of rank at most i + 1 in σ.

To design the functions fr and gr, we use a certain type of

write-once-memory (WOM) codes, and add some adjustments

to it. Write-once-memory is a memory with binary cells, where

cells of state “1” cannot change their state to “0”, but cells of

state “0” can change their state to “1”. WOM codes allow to

store arbitrary information on the memory, when the encoder

knows and the decoder doesn’t know the initial state of the

memory. The WOM codes are composed of an encoding

function fWOM and decoding function gWOM, that serve as

building blocks for fr and gr. We will show later two different

implementations of { fWOM, gWOM}, but we first present an

assumption on their behavior, and show how to construct a

rank-modulation rewriting code using a scheme that meets this

assumption.

Assumption 1. For any 0 < p < 1 and 0 < ε < p/2, there

exists a binary code CWOM of N cells with encoding function

fWOM and decoding function gWOM such that given a cell-state

vector s∈ {0, 1}N with weight (number of 1’s) w(s) = (1−
p)N, it is possible to write a binary vector d of (p− δ)N bits,

for δ arbitrarily small and large enough N, such that the updated

cell-state vector s′ = fWOM(s, d) satisfies:

1) (1− p/2− ε)N � w(s′) � (1− p/2 + ε)N.

2) s � s′.
3) gWOM(s′) = d.

To connect the assumption to the scheme described above,

let p = 2/m = 2z/N, and consider the vector s in the

assumption to be the characteristic vector of the input sets

in the functions fr and gr, such that si = 0 if cell i belongs to

the input set, and si = 1 otherwise. Condition 2 of Assumption

1 implies that the set selected by fWOM is a subset of the input

set, as we need in fr, since s′i can be 0 (cell i is in S′i) only

if si = 0 (cell i is in the input set of fWOM). Condition 3
is also exactly what we need for a decoding function g f in

the scheme above. Condition 1, however, does’t meet exactly

the requirement for fr, since the output of fr need to be of

size exactly z, while condition 1 means that the size of the

set selected by fWOM is only approximately z. To overcome

this issue, fr “flips” a few bits in the output of fWOM, to

make its weight exactly N− z. The indices of the flipped cells

are kept in additional redundancy cells, and since the number

of those cells is small, the addition of the redundancy cells

doesn’t affect the asymptotic rate of the code. The decoder gr
first “flips back” the flipped bits, according to the redundancy

cells, and then uses gWOM to decode the stored message part.

One scheme that meets the conditions of Assumption 1

is the write-one-memory coding scheme that was recently

proposed by Shpilka [20]. However, in this scheme the block-

length N must be exponentially large in 1/δ, which results in

high algorithmic complexity for rates close to 2 bits per cell.

Alternatively, the polar WOM coding scheme of Burshtein and

Strugatski [3] “almost” meets the conditions of Assumption

1, and can be implemented with N only polynomially large

in 1/δ, as was shown recently in the context of channel

polarization [9], [10]. We say that polar WOM codes “almost”

meet the conditions of Assumption 1, since in polar WOM

codes there is small probability that the encoding function

fails to execute. However, since their block-length is shorter,

they offer a more practical solution. The encoding failures can

be solved by allowing a higher cost of rewriting in those rare

occasions, or by the solutions proposed in [3]. We provide a

background on polar WOM codes in section IV, and show how

to use them to construct a scheme CWOM as in Assumption 1.

Let us now describe the construction formally. To simplify

the notation and representation of the construction we dropped

all floors and ceilings, so some of the values are not necessarily

integers as required. This may encounter a small lost in the

rate of the code, but it will be minor and thus can be neglected.

Construction 1. Let m, z, N be positive integers such that N =
mz. Let p = 2/m and 0 < ε < p/2. Let N′ = N + mεNn′
(the value of n′ will be explained later). We have the following

notation:

1) The first N cells are called the information cells and

are denoted by c = (c1, . . . , cN). The information cells

c represents a permutation σc
.
= σc,Mc of the multiset

Mc = {1z, . . . , mz}.

2) The last r = mεNn′ cells are called the redundancy cells

and are partitioned into mεN vectors pk,j for 1 � k �
m, 1 � j � εN, each of n′ cells.

3) For 1 � k � m − 1, the cells pk,j represents a permu-

tation σk,j
.
= σpk,j,Mk of the multiset Mk = {kn′/2, (k +

1)n′/2}.

4) The cells pm,j represents a permutation σm,j
.
= σpm,j ,Mm

of the multiset Mm = {1n′/2, mn′/2}.

5) So in total the cells p = (p1,1, . . . , pm,εN) represents

a permutation σp
.
= σp,Mp of the multiset Mp =

{1εNn′ , . . . , mεNn′ }, and the entire N′ cells represents

a permutation σ
.
= σ{c,p},M of the multiset M =

{1z+εNn′ , . . . , mz+εNn′ }.

We assume that there is a function h : {1, 2, . . . , N} →
{0, 1}n′ which receives an integer between 1 and N, and returns

a balanced vector of length n′ (a permutation of the multiset

{0n′/2, 1n′/2}). h can be implemented, for example, by [16,

pp. 5-6] or [15], where in both cases log N < n′ < 2 log N.

We also assume that this function has an inverse function

h−1 : Im(h)→ {1, 2, . . . , N}.
An (N′, 1, D, Z) rank-modulation rewriting code C is de-

fined according to the following encoding function fRM and

decoding function gRM. The number of messages on each write

is D = 2(2z−δN)(m−1) and each message will be given as

m − 1 binary vectors, each of length 2z − δN bits. The cost

of each rewrite is 1, and Z = N′/m = z + εNn′. There are

εN(m− 1) auxiliary variables, called index variables and are

denoted by Ik,j for 1 � k � m− 1, 1 � j � εN. These index

variables will be stored in the redundancy cells and they will

indicate the information cells that their ranks were intentionally

changed during the encoding process.
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Encoding Function σ′ = fRM(σ, d):
Let d = (d1, . . . , dm−1) be the information vector, where each

di is a vector of (p − δ)N = 2z − δN bits. σ′ is composed

of σ′c, σ′p and σ′k,j in the same manner as σ. The new updated

information cells multipermutation σc is determined by the sets

S′k = σ′−1
c (k) for each rank k. Let Sk = σ−1

c (k), and let S∗1 be

the set S∗1 = S1.

Encoding of the k-th rank, 1 � k � m− 1:

1) Let vk = (vk,1, . . . , vk,N)∈ {0, 1}N be the vector de-

fined as follows: vk,i = 0 if and only if i∈ S∗k ∪ Sk+1.

2) Let uk = fWOM(vk, dk).
3) Let wk = w(uk) − (1− p/2)N (|wk| � εN), and let

i1, . . . , i|wk | be the first |wk| indices in S∗k ∪ Sk+1 whose

value in uk is equal to (sign(wk) + 1)/2. The vector u′k
is defined to be u′k,ij

= 1− uk,ij
for 1 � j � |wk| and

for all other indices i, u′k,i = uk,i (note that w(u′k) =
(1− p/2)N). Set the indices Ik,j = ij for 1 � j � |wk|
and for |wk|+ 1 � j � εN, Ik,j = 0.

4) Let S′k = {i|u′k,i = 0} and S∗k+1 = (S∗k ∪ Sk+1) \ S′k.

The new redundancy multipermutation σ′M2
is determined as

follows to store the (m − 1)εn indices. For 1 � k � m − 1,

1 � j � εN, let

σ′k,j = k · 1 + h(Ik,j).

Finally, for 1 � j � εn, σ′m,j = σm,j (these cells are actually

not needed except for clarifying the presentation).

Decoding Function gRM(σ) = d′: The information vector

d′ = (d′1, . . . , d′m−1) is decoded as follows.

First the indices Ik,j for 1 � k � m − 1, 1 � j � εN, are

decoded to be

Ik,j = h−1(σk,j − k · 1).
Decoding of the k-th rank, 1 � k � m− 1:

1) Let û′k = (uk,1, . . . , uk,N)∈ {0, 1}N be the vector de-

fined to be û′k,i = 0 if and only if i∈ Sk = σ−1
c (k).

2) The vector ûk is defined as follows. For all 1 � j � εN, if

Ik,j �= 0 then ûk,Ik,j
= 1− û′k,Ik,j

and for all other indices

i, ûk,i = û′k,i.

3) d′k = gWOM(ûk).

By the construction, we get that r/N = εmn′. To make

this ratio arbitrarily small, we must let ε be a function of N.

However, in Assumption 1 we took ε to be constant. We show

in Section IV that polar WOM codes meet Assumption 1 also

in the case that ε is not constant.

We also note that the scheme can be modified easily for an

(N, r, D, M) rank-modulation rewriting code, in order achieve

a higher rate when allowing a higher cost of rewrite. To

perform the modification, replace the set Sk+1 in the steps 1,3

and 4 of the encoding of the k-th rank with the union of the

sets Sk+1, Sk+2, . . . , Sk+r. Finally, we present a Theorem that

summarizes the properties of Construction 1. The Theorem

assumes that CWOM is implemented by polar WOM codes,

and therefore it allows a small probability of failure. We omit

the proof for space limitations.

Theorem 1. For any 0 < β < 1/2 and m and z sufficiently

large, the rank modulation rewriting code in Construction 1

can be used to write an arbitrary message of rate R < 2 with

cost 1, w.p. at least 1 − 2−Nβ
. The encoding and decoding

complexities are O(mN log N).

The next section describes the implementation of polar

WOM codes.

IV. POLAR WOM CODES

The method of channel polarization was first proposed by

Arikan in his seminal paper [1], in the context of channel

coding. We describe it here briefly by its application for

coding for a write-once memory, as proposed by Burshtein

and Strugatski [3]. This application is based on the use of

polar coding for lossy source coding, that was proposed by

Korada and Urbanke [17].

Let G2 =

(
1 0
1 1

)
, G⊗n

2 be its n-th Kronecker prod-

uct, and N = 2n. Consider a memoryless channel with

a binary-input and transition probability W(y|x). Define a

vector u∈ {0, 1}N , and let x = uG⊗n
2 , where the matrix

multiplication is over GF(2). The vector x is the input to

the channel, and y is the output word. The main idea of polar

coding is to define N sub-channels

W(i)
N (y, ui−1

1 |ui) = P(y, ui−1
1 |ui) =

1
2N−1 ∑

uN
i+1

W(y|u),

where uj
i , for 1 � i < j � N, denotes the subvector

(ui, . . . , uj). For large N, each sub-channel is either very

reliable or very noisy, and therefore it is said that the chan-

nel is polarized. A useful measure for the reliability of a

sub-channel W(i)
N is its Bhattacharyya parameter, defined by

Z(W(i)
N ) = ∑y∈Y

√
W(i)

N (y|0)W(i)
N (y|1).

Consider now a write-once memory, as described in section

III. Let s∈ {0, 1}N be the initial cell-state, and let p be the

fraction of 1’s in s. That is, p = w(s)/N, where w(s) is the

number of 1’s in s. In addition, assume that a user wishes

to store the message a∈ {0, 1}k. Note that in the case that

the decoder knows the initial state s, the communication rate

of the memory is R = k/N = 1 − p. Therefore, when

the decoder doesn’t know s, the rate cannot exceed p. The

following scheme allows a rate arbitrarily close to p for N
sufficiently large.

Consider a binary erasure channel with erasure probability

p. This channel is served as a test channel, in a compression

scheme. Let X be a binary input to the channel, and (S, G)
be the output, where S and G are binary variables as well.

In the case of a successful use of the channel, S = 1, and

G = X. In the case of erasure, S = 0, and G is uniformly

distributed. The probability transition function of the channel

can be written as

W((S, G) = (s, g)|X = x) =

⎧⎨
⎩

p/2 if s = 0,
(1− p) if s = 1, g = x,
0 if s = 1, g �= x.
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The channel is polarized by the sub-channels

W(i)
N , and a frozen set F is designed by

F =
{

i∈ {1, . . . , N} : Z(W(i)
N ) � 1− 2δ2

N

}
, where

δN = 2−Nβ
/(2N), for any 0 < β < 1/2. It was

shown in [17] that |F| = N(1− p− δ), where δ is arbitrarily

small for N sufficiently large.
Let ŝ = fWOM(s, a) be the WOM encoder. The encoder

uses a common randomness source, also called dither, denoted

by g, sampled from an N dimensional uniformly distributed

random binary vector, and known both to the encoder and to

the decoder. Let yj = (sj, gj) and y = (y1, y2, . . . , yN). The

encoder creates a vector û∈ {0, 1}N in the following way.

First, it sets uF = a, where uF is the vector of the elements

of the vector u in the set F. Then, it compresses the vector

y by the following successive cancellation scheme. For i =
1, 2, . . . , N, let ûi = ui if i∈ F. Otherwise, let

ûi =

{
0 w.p L(i)

N /(L(i)
N + 1)

1 w.p 1/(L(i)
N + 1)

,

where

L(i)
N = L(i)

N (y, ui−1
0 ) =

W(i)
N (y, ui−1

0 |ui = 0)

W(i)
N (y, ui−1

0 |ui = 1)
.

Finally, the encoder decompresses the resulting vector û into

x = ûG⊗n
2 , and sets ŝ = x+ g to be the new cell-state vector.

The decoder, a = gWOM(ŝ), calculates x = ŝ+ g, and then

recovers a =
(

x(G⊗n
2 )−1)

F, where, again, (b)F denotes the

elements of the vector b in the set F. Both the encoding and

the decoding complexities are O(N log N). In [3], a few slight

modifications for this scheme are described, for the sake of the

proof. Note that the encoder uses a randomized algorithm and

it might fail with a small probability. We present the following

Lemma from [3], that shows that the scheme described above

meets the conditions of Assumption 1 with high probability.

Lemma 1. [3] Consider the scheme described above. Then for

any ε > 0, 0 < β < 1/2 and N sufficiently large, the following

holds w.p. 1− 2−Nβ
,

1) |{k : sk = 0 and ŝk = 1}| < (p/2 + ε)N,

2) {k : sk = 1 and ŝk = 0} = ∅.

As mentioned in section III, Construction 1 requires that

Assumption 1 is met also when ε is not constant. For that

reason, we extend Lemma 1 for this case.

Lemma 2. When ε(N) is a function of N, the results of Lemma

1 hold for any ε > N
β−1

2 .

The proof of Lemma 2 follows the same lines of the proof

of Lemma 1, and is omitted for space limitations.

V. CONCLUSIONS

In this paper we presented a rewriting coding scheme for

rank modulation. The construction allows to write arbitrary

message with cost 1, where the rate is asymptotically optimal.

An important open problem for this scheme is the design of

error-correcting codes, with or without rewriting. A related

attempt for the WOM model is proposed in [11].
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