
A

Half-Wits: Software Techniques for Low-Voltage Probabilistic Storage
on Microcontrollers with NOR Flash Memory

Mastooreh Salajegheh, University of Massachusetts Amherst
Yue Wang, Texas A&M University
Anxiao (Andrew) Jiang, Texas A&M University
Erik Learned-Miller, University of Massachusetts Amherst
Kevin Fu, University of Massachusetts Amherst

[Accepted to Special Issue on Probabilistic Computing]

This work analyzes the stochastic behavior of writing to embedded flash memory at voltages lower than
recommended by a microcontroller’s specifications in order to reduce energy consumption. Flash memory
integrated within a microcontroller typically requires the entire chip to operate on a common supply voltage
almost twice as much as what the CPU portion requires. Our software approach allows the flash memory
to tolerate a lower supply voltage so that the CPU may operate in a more energy-efficient manner. Energy-
efficient coding algorithms then cope with flash memory writes that behave unpredictably.

Our software-only coding algorithms (in-place writes, multiple-place writes, RS-Berger codes, and slow
writes) enable reliable storage at low voltages on unmodified hardware by exploiting the electrically cumu-
lative nature of half-written data in write-once bits. For a sensor monitoring application using the MSP430,
coding with in-place writes reduces the overall energy consumption by 34%. In-place writes are competitive
when the time spent on low-voltage operations such as computation are at least four times greater than the
time spent on writes to flash memory. Our evaluation shows that tightly maintaining the digital abstrac-
tion for storage in embedded flash memory comes at a significant cost to energy consumption with minimal
gain in reliability. We find our techniques most effective for embedded workloads that have significant duty
cycling, rare writes, or energy harvesting.

Categories and Subject Descriptors: C.3 [SPECIAL-PURPOSE AND APPLICATION-BASED SYS-
TEMS]: Real-time and embedded systems

General Terms: Design, Performance, Experiments, Measurements

Additional Key Words and Phrases: Flash Memory, Low-Power Devices, Approximate Computing, Reliable
computing with unreliable components

ACM Reference Format:
Salajegheh, M., Wang, Y., Jiang, A., Learned-Miller, E., Fu, K. 2012. Half-Wits: Software Techniques for Low-
Voltage Probabilistic Storage on Microcontrollers with NOR Flash Memory. ACM Trans. Embedd. Comput.
Syst. V, N, Article A (May 2011), 25 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

An earlier version of this work appears in the Proceedings of the 9th USENIX Conference on File and
Storage Technologies (FAST 2011, San Jose, CA, February 2011).
Authors’ addresses: M. Salajegheh, K. Fu and E. Learned-Miller, Computer Science Department, Univer-
sity of Massachusetts Amherst, 140 Governors Drive, Amherst, MA, 01003-9264; Y. Wang and A. Jiang,
Computer Science and Engineering Department, Texas A&M University, College Station, TX 77843-3112.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2011 ACM 1539-9087/2011/05-ARTA $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: May 2011.

A:2 M. Salajegheh et al.

1. INTRODUCTION
Billions of microcontrollers appear in embedded systems ranging from thermostats
and utility meters to tollway payment transponders and pacemakers. Recent years
have witnessed a proliferation of low-power embedded devices [Akyildiz et al. 2002;
Buettner et al. 2008; Kahn et al. 1999; Mainwaring et al. 2002], many of which use
on-chip flash memory for storage.

While the reliability, low cost, and high storage density of flash memory make it a
natural choice for embedded systems [Jiang et al. 2008], the relatively high voltage
requirement of flash writes (Table I) introduces challenges for energy-efficient designs
aiming to maximize the system’s effective lifetime (e.g., the run time on a typical bat-
tery whose voltage declines over time). Instrumenting the system to operate at a fixed
low voltage vl is one way to reduce power consumption; however, achieving consistently
correct results for flash writes is guaranteed only if vl is higher than a manufacturer-
specified threshold (as flash reads are reliable at low voltage). Moreover, in energy-
limited devices that cannot provide a constant supply voltage, scenarios may arise in
which the flash memory is the only hardware component whose operating require-
ments are not met.

Because embedded flash memory typically shares a common voltage supply with the
CPU (separate power rails are cost-prohibitive), a single voltage must be chosen that
satisfies different components with different minimum voltage requirements. Embed-
ded systems generally address the voltage limitations of flash memory in one of the
following ways:

i) A system can choose a high supply voltage sufficient for both reliable writes to
flash memory and reliable CPU operation. This is a common choice for non CPU-
bound workloads, but causes the CPU to consume more energy than necessary. For
example, the TI MSP430F2131 microcontroller [Texas Instruments Incorporated] in
active mode consumes almost double the power when operating at 2.2 V instead of
1.8 V. Its onboard flash memory requires 2.2 V for reliable writes to flash memory.

ii) A system can choose a low supply voltage sufficient for CPU operation, but insuffi-
cient for highly reliable writes to flash memory. This choice allows the energy source to
last longer and for the CPU to compute more efficiently. An example of such a system
is the Intel WISP [Sample et al. 2008], a batteryless RFID tag that sets its operating
voltage to 1.8 V—below its onboard flash memory’s 2.2 V specified minimum—to save
power. Flash memory cannot be reliably written on this device. The microcontroller
could use a low-power wireless interface (e.g., RF backscatter) to store data remotely.
Such an approach, however, raises privacy as well as performance concerns [?].

iii) A system can modify hardware to enable dynamic voltage scaling. This approach
requires additional analog circuitry such as voltage regulators and GPIO-controlled
switches. Because many embedded systems are extremely cost-sensitive, this choice
is unattractive for high-volume manufacturing with low per-unit profit margins. An
additional 50-cent part on a thermostat control can be cost-prohibitive. Moreover, small

Table I. Flash memory restricts choices for the CPU voltage supply on most microcontrollers because the
CPU shares the same power rail as the on-chip flash memory. Many microcontrollers require a higher
voltage level for the flash memory writes than for the CPU operations.

Microcontroller CPU Flash Write
Min. Voltage Min. Voltage

TI MSP430F1232/ 149/ 413 [Texas Instruments Incorporated] 1.8 V 2.7 V
TI MSP430F2131 [Texas Instruments Incorporated] 1.8 V 2.2 V

PIC32M [Microchip] 2.3 V 3.0 V
ATmega128L [Atmel AVR Solutions] 2.7 V 4.5 V
STM32F103C6 [STMicroelectronics] 2.0 V 3.3 V

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: May 2011.

Half-Wits: Software Techniques for Low-Voltage Probabilistic Storage on Microcontrollers with NOR Flash MemoryA:3

CPU

Fl
as
h

Fl
as
h

CPUVo
lta
ge

Time

Half-Wits

Conventional

Fig. 1. Operating at a lower voltage and tolerating errors instead of the conventional case of choos-
ing the highest minimum voltage requirement may help decrease energy consumption. Considering that
Power ∝ voltage2, decreasing voltage decreases the power consumption quadratically.

changes may necessitate a new PCB layout—upsetting the delicate supply chain and
invalidating stocked inventories of already fabricated PCBs.

Approach. Our approach reduces the operating voltage of the microcontroller to a
point at which the resulting power savings of the CPU portion of the workload exceeds
the power cost of the algorithms for ensuring reliable writes (Figure 1). Our low-power
storage scheme benefits from the accumulative property of flash memory by repeating
writes to the same cell. Each write operation will increase the chance of success by
forcing some number of state transitions. That is, a failed write is still progress. The
technique requires minimal or no hardware modification and also allows for RFID-
scale and small-scale energy harvesting devices to better exploit capacitors as power
supplies. The capacitor provides finite energy and therefore the voltage decays expo-
nentially. The long tail of the curve provides insufficient voltage for conventional writes
to flash memory, but it is sufficient for reliable storage with our techniques.

Of wits and half-wits. Rivest and Shamir introduced the notion of write-once bits
(wits) in the context of coding theory to make write-once storage behave like read-
write storage [Rivest and Shamir 1982]. Bits in flash memory behave like wits because
a programmed bit cannot be reprogrammed without calling an energy-intensive erase
operation to a block of memory much larger than a single write. We coin the term half-
wits to refer to wits used in a manner inconsistent with a manufacturer’s specifications,
resulting in stochastic behavior. Half-wits in this work are wits of flash memory used
below the recommended supply voltage.

In examining error rates at low voltage and constructing a system that provides
reliable storage despite errors, our work suggests that it is appropriate to relax previ-
ously assumed constraints and reexamine the costly digital abstractions layered above
on-chip flash memory.

Contributions. Our primary contributions include algorithms that enable reliable
writes to flash memory while coping with low voltage, and an empirical evaluation
that characterizes the behavior of on-chip flash memory at voltages below minimum
levels specified by manufacturers. Our evaluation identifies three key factors affecting
error rates: voltage, Hamming weight of the data, and the wear-out history of the flash
memory.

The first algorithm, in-place writes, makes attempts at write time to store a value
correctly in the given memory address. The in-place writes method repeatedly writes
data to the same memory address. The intuition behind this approach is that repeat-
ing a write attempt in a consistent location accumulates the charge in the same cell,
increasing the chance of storing a bit of information correctly. In addition, since flash
writes only flip bits in a single direction, a correctly written bit cannot be reversed
to produce an error on a second write attempt. The second algorithm, multiple-place

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: May 2011.

A:4 M. Salajegheh et al.

0 20 40 60 80 100 120 140 160
−200

−150

−100

−50

0

50

100

150

200

250

Time (s)

V
ol

ta
ge

 (
m

v)

(a) Writes at 2.0 V

0 20 40 60 80 100 120 140 160
−200

−150

−100

−50

0

50

100

150

200

250

Time (s)

V
ol

ta
ge

 (
m

v)

(b) Writes at 1.9 V

0 20 40 60 80 100 120 140 160
−200

−150

−100

−50

0

50

100

150

200

250

Time (s)

V
ol

ta
ge

 (
m

v)

(c) Writes at 1.8 V

Fig. 2. As operating voltage decreases, flash-write errors increase. (a) shows an original ECG signal cor-
rectly stored at 2.0 V (despite operating below the recommended threshold). As the voltage decreases in (b)
and further in (c), erroneous writes (light-colored spikes, height varying according to the magnitude of the
error) become more common. The black line shows the reconstructed signal that includes the errors.

writes, tries to decrease the probability of error by making attempts at both write time
and read time. This method stores data in more than one location in the hopes that the
data (even partially) would be stored correctly in at least one of these locations. The
third algorithm is a hybrid error-correcting code combining Reed-Solomon (RS) [Reed
and Solomon 1960] and Berger [Berger 1961] codes. The Berger code detects, but does
not correct, asymmetric errors caused by the low write voltage. Given the approximate
locations of errors, which are determined by the Berger code, the RS code efficiently
recovers the originally stored data. The fourth algorithm, slow writes, tries to store
the data correctly by slowing down the speed of flash writes. A slow write would allow
more charge to be stored in a cell and would decrease the probability of error.

The paper compares all three methods in terms of energy consumption, execution
time, and error correction rate. We also show that our methods are most effective for
CPU-bound workloads. With respect to cost and energy, our techniques may enable
already deployed embedded flash memory to remain competitive with emerging tech-
nology for low-power, non-volatile memory.

2. BEHAVIOR OF STORAGE ON HALF-WITS
Before we can design effective coding algorithms, we must first understand the behav-
ior of errors on half-wits. By tolerating a lower voltage, an energy-limited embedded
device can decrease its power consumption and therefore extend its lifetime on a fi-
nite energy supply1. The minimum operating voltage of embedded devices that use
nonvolatile on-chip storage is usually determined by the requirements of flash mem-
ory. For example, the TI MSP430 microcontroller can operate at 1.8 V, but its nominal
minimum voltage for flash writing and erasure is 2.2 V (Table I). Increasing operating
voltage from 1.8 V to 2.2 V causes the CPU to draw about 50% more power without
commensurate gain in clock speed because of the voltage squaring effect.

The cost of lowering voltage below flash memory requirements in order to save power
is the extra work necessary to ensure reliable writes to flash memory. Figure 2 shows
the result of running a MSP430F2131 at three different voltages—all lower than the
nominal minimum for flash writes—to store electrocardiogram (ECG) data samples
from the PhysioNet database [Goldberger et al. 2000] in flash memory. Many medical
sensor networks [Lo et al. 2005; Malan et al. 2004; Shnayder et al. 2005] that pro-
vide ECG measurements are energy-limited and use on-chip flash memory as primary
storage.

1Or because of relaxed requirements, eliminate the need for multiple batteries in series to achieve a suffi-
cient voltage.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: May 2011.

Half-Wits: Software Techniques for Low-Voltage Probabilistic Storage on Microcontrollers with NOR Flash MemoryA:5

Test Platform Monitor Platform

JTAG

Voltage Supply

Fig. 3. Automated flash memory testbed. A monitoring platform observes and logs the behavior of the
flash memory test platform. The test platform runs at a voltage controlled by the experimenter, while the
monitoring platform runs at a constant voltage within the manufacturer’s specified voltage. This setup helps
to automate the experiments.

These graphs support the intuition that flash writes may not be error-free at low
voltages and that there exist voltage levels below the minimum recommended voltage
at which flash writes function correctly2. To investigate the behavior of flash mem-
ory at low voltage and determine the factors influencing the error rate, we performed
experiments on an automated testbed.

2.1. Experimental Methodology
We use a consistent experimental setup for all of the experiments in this work. Our
choice of test platform is a TI MSP430 [Texas Instruments Incorporated] microcon-
troller with on-chip flash memory. More specifically, we tested two types of TI micro-
controllers: MSP430F2131 and MSP430F1232. The MSP430 is common in low-power
embedded applications; we note especially its use in sensor motes [Polastre et al. 2005]
and RFID-scale batteryless devices [Sample et al. 2008; Zhang et al. 2011]. In our
setup, an MSP430 microcontroller runs a test program that involves both computa-
tion and flash operation. We power the microcontroller with an external power supply
held steady at a voltage below the nominal minimum for flash writes. An external chip
captures the contents of flash memory after each experiment.

To automate the testing of flash write behavior, we have developed a flash memory
testbed (Figure 3). The two major components of the testbed are a test platform and
a connected monitoring platform. The monitoring platform is based on an additional
MSP430 microcontroller. The test platform runs a test program at low voltage. When
the test program completes, the test platform sends the result of the experiment to the
monitoring chip via GPIO pins. The test and monitoring platforms share 8+1 GPIO
pins to carry one byte of data and a clock signal. Once the test platform puts data on
its eight data pins, it raises the clock pin. The monitoring chip reads data from its
GPIO pins whenever it detects a rising clock signal and logs the results in its own
flash memory. The monitoring chip runs at a voltage above the nominal minimum for
its own flash writes, thereby storing reliably.

2Moreover, a nonzero error rate may be tolerable for some applications. In the case of ECG data, the cardiac
pulse interval can be recovered from noisy data stored at low voltage.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: May 2011.

A:6 M. Salajegheh et al.

Table II. Erroneous flash writes at low voltage. Insufficient electrical charge may result in some bits failing
to transition from 1 (the initial state) to 0.

Intended 00001100 00001101 00001110 00010100 00100111 10100100(Binary)
Written 11101101 01011111 11111111 11111111 00101111 10101111

Hamming distance 4 3 5 6 1 3

2.2. Unreliable, Low-Voltage Flash Memory Writes
The TI MSP430 [Texas Instruments Incorporated] datasheet states that flash writes
at any voltage lower than the nominal minimum voltage (which is 2.2 V in the case
of MSP430F2131) are not guaranteed to succeed. However, as the graphs in Figure 2
show, not all flash writes fail at low voltages. On the contrary, in this specific experi-
ment, most of the writes (95.24% at 1.9 V and 89.88% at 1.8 V) succeed.

In a NOR flash memory, all cells are initialized to 1, and writing data to a byte of
flash memory means setting an appropriate number of bits to 0 by applying electrical
charge to the corresponding flash cells. At low voltage, there may be insufficient charge
to effect a transition to 0, and a flash write may store fewer 0 bits than requested [Pa-
van et al. 1997]. To be specific, we define errors as follows: when a byte of data d1 is
written in a flash memory address and then data d2 is read from that address, there
is an error if d1 6= d2. An experiment, explained next, investigates the behavior of
low-voltage flash memory and gives bit-level results.

Using the automated flash testbed explained in Section 2.1, the test platform runs
a program that writes numbers {0, · · · , 255} to flash memory, then sends the contents
of its flash memory to the monitoring platform via GPIO pins. Table II compares the
written data and the intended data for cases in which errors occurred. It demonstrates
that, when both are represented as integers, the absolute value of the stored data is
always greater than or equal to the absolute value of the intended data.

2.3. Determining Factors That Affect Error Rates
We consider the following potential factors that may affect the error rate of setting a bit
to 0 in a flash memory at low voltage: voltage level, Hamming weight of the data, wear-
out history, permutation of 0s, and neighbor cells. The effects of each of these variables
are evaluated by designing an experiment to test a hypothesis. All the experiments are
performed on flash memories with minimal previous usage unless stated otherwise.

Voltage level: Our hypothesis is that the lower a chip’s operating voltage (and that
of its on-chip flash memory), the higher the error rate of flash writes. Figure 4 confirms
this hypothesis; moreover, the graph shows that for different chips of exactly the same
type, the error rate can be different even under equivalent voltages.

Experiment: Two MSP430F2131 and two MSP430F1232 microcontrollers run a pro-
gram that writes zeros to the data segment of their flash memory. We increased the
microcontroller’s operating voltage in 10-mV steps, and used the monitoring platform
to compute the byte error rates over 50 runs.

Hamming weight: In an erased (i.e., having value 1) flash cell, writing a 1 is always
error-free because no change to the cell is necessary. However, setting a cell to 0 might
fail if there is not enough charge accumulated in that cell. Our hypothesis is that the
lower the Hamming weight (number of 1s in the binary representation) of a number,
the higher the probability of error when writing that number to flash at low voltage.

Based on per-byte Hamming weight, there are nine equivalence classes of integers
that can be represented in one byte. The weight-8 equivalence class has only one mem-
ber, 255, which can always be written to an erased flash cell without error. The other
extreme case is the weight-0 equivalence class, containing only 0s, that requires all
eight bits to transition to 0. Figure 5 shows the byte error rate for all nine equivalence
classes, measured in the following experiment.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: May 2011.

Half-Wits: Software Techniques for Low-Voltage Probabilistic Storage on Microcontrollers with NOR Flash MemoryA:7

Experiment: At 1.84 V, a MSP430F2131 runs a program that writes numbers from
the same equivalence class to one block (64 bytes) of flash memory. We used the mon-
itoring platform to compute the average byte error rate of flash writes for each of the
nine equivalence classes over 50 runs.

Corollary: To exploit the fact that the Hamming weight of a number affects error
rate when written to flash, one can transform numbers into numbers with greater
Hamming weights before writing them to flash memory.

Wear-out history: Flash memory has a limited lifetime (about 105 cycles of era-
sures) after which the erase operations fail to reset the bits to 1 reliably. We suspect
that the more flash memory is erased (worn-out), the lower its error rate of setting
bits to 0 would become3. Figure 6 shows a heat map of bit error rate for three blocks
of flash memory (192 bytes) on an MSP430F2131 microprocessor. Lighter colors in the
heat map represent higher error rates. The disproportionately dark color of the middle
block is due to more frequent erasure of that block compared to the other two blocks.

Experiment: A MSP430F2131 runs a program that writes zeros to all three blocks
of its flash memory. The MSP430 is first worn out such that one block has 6,000
write/erase cycles and two blocks have minimal previous usage. We used the moni-
toring platform to compute the average error rate for all bits in the three blocks of
memory over 50 trials.

Corollary: Wear-out history affects error rate, so storing data in more than one lo-
cation might help decrease the error rate, especially if those locations are in different
blocks of memory.

Permutation of 0s: Two numbers belonging to the same Hamming-weight equiv-
alence class can have different permutations of 0 bits. We tested to see how the error
rate depends on the permutation of 0s in one byte of data. For example, the numbers
240, 15, 170, and 71 all have four 0s in their binary representation but in different
places (240 has 0s in the right nibble, and 15 has all of its 0s in its left nibble, etc.). The
result of the experiment shows a similar byte error rate with mean of 39.85± 4.29% for
numbers in the same equivalence class. The small standard deviation (4.29%) shows
that the permutation of 0s does not significantly affect the error rate and therefore we
do not consider this to be a factor in our design directions.

Experiment: A MSP430F2131 runs a program that cycles through eight numbers
from the same Hamming-weight equivalence class, writing them to 192 consecutive

3This counterintuitive hypothesis is consistent with the notion that flash erasures (settings bits to 1) become
harder with wear-out.

1.8 1.82 1.84 1.86 1.88 1.9 1.92 1.94
0

20

40

60

80

100

Voltage (V)

E
rr

o
r

ra
te

 (
%

)

2131 (A)

2131 (B)

1232 (A)

1232 (B)

Fig. 4. Flash write error rates decrease as voltage increases. This trend holds for all the chips
(MSP430F2131 and MSP430F1232) we tested, though error rates differ even between chips of the same
model.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: May 2011.

A:8 M. Salajegheh et al.

0 1 2 3 4 5 6 7 8
0

50

100

Hamming weight

E
rr

or
 r

at
e(

%
)

Fig. 5. As the Hamming weight (number of 1s in the binary representation) of a number increases, the
error rate of low-voltage flash writes decline. The data correspond to a MSP430F2131 running at 1.84 V.

1

More often used

Voltage = 1.850 V

0

20

40

60

80

100

12
 ro

w
s

(m
em

or
y

le
ng

th
)

Error (%)

128 bits (memory width)

Fig. 6. Worn-out flash memory blocks are biased toward ease of writing zeros. Lighter color represents
higher average number of errors over 50 trials. The middle block has been write/erase cycled 6,000 times.
The other two blocks are minimally used.

bytes of flash memory. We used the monitoring platform to compute the average error
rates for each of the 192 bytes over 50 trials.

Neighbor cells: Another factor that might affect the error rate of storage in a flash
cell at low voltage is the values of neighboring cells. However, our results suggest that
a cell’s error rate does not appear to depend on the values stored in neighboring cells
(Figure 7).

Experiment: In order to determine if the error rate of a cell is affected by its neighbor,
we consider all numbers from the same Hamming-weight equivalence class whose two
Least Significant Bits (LSBs) are set to either 00 (case 1) or 10 (case 2). An example of
case 1 is number 60 (0b00111100) and an example of case 2 is number 30 (0b00011110).
This experiment fixes the Hamming weight variable and changes the neighbor value
of the LSB to be 0 or 1. We deem a write erroneous if the LSB is not set to 0. The
experiment was done for a Hamming weight of four and it was repeated for five voltage
levels in the interval of 1.82 V to 1.84 V with steps of 5 mV. The error rate for any
voltage above 1.84 V was close to 0% and for any voltage below 1.82 was close to 100%.
We used the monitoring platform to compute the average error rates of case 1 and
case 2 for each of the voltage levels over 50 trials.

Temperature: Temperature is another factor that usually affects the performance
of electronic components. We tested to see if the error rate of low-voltage flash writes
depends on the temperature of the chip. The experimental results show that at higher

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: May 2011.

Half-Wits: Software Techniques for Low-Voltage Probabilistic Storage on Microcontrollers with NOR Flash MemoryA:9

temperatures, the error rate decreases. We found that for a TI MSP430F2131 operat-
ing at 1.83 V, the error rate is 63% at 25◦C, while the error rate becomes negligible
when the temperature goes up to 39◦C. This result shows that error rate depends on
environmental variables and cannot be assumed constant at a fixed voltage. Moreover,
this result indicates that a microcontroller can adjust its configuration of flash writes
based on the temperature to save energy.

Experiment: A MSP430F2131 runs a program that writes zeros to all three blocks of
its flash memory. We used the monitoring platform to compute the average error rate
for all bits in the three blocks of memory over 50 trials at a low temperature (25◦C)
and at a high temperature (39◦C).

2.4. Accumulative Memory Behavior
It is helpful to understand a few details of the electrical nature of flash memory in
order to appreciate the expected behavior of conventional digital abstractions when
layered above embedded flash memory. Each flash memory cell is a floating-gate (FG)
transistor made up of a source, drain, control gate, and floating gate. The floating gate
is separated from the source and drain by an insulating oxide layer that makes it
difficult for electrons to travel into or out of the gate. Flash cells rely on this oxide to
maintain logical state in the absence of power, making the memory non-volatile [Pavan
et al. 1997].

To write a memory cell (which has an erased value of 1), the control circuitry applies
a high field to the source. The application of this field greatly increases the probability
that electrons in the floating gate will tunnel to the source. If a sufficient number of
electrons tunnel to the source, the cell is subsequently read as a 0. To erase a cell (that
is to restore a 1), the control circuitry applies a high field to both the source and drain.
This field energizes the electrons currently stored near the source, allowing them to
jump the oxide barrier to the floating gate where they are once again trapped [Pavan
et al. 1997].

Not all electrons must transit in order for a write or erase operation to be successful.
The operation only needs to change the state of some majority of the electrons so that
subsequent read operations detect sufficient charge to discern the intended value. Low-
ering the applied voltage (and thus the field strength) lowers the probability of state
change for each electron but, as noted earlier, electrons that do transit will remain in
place.

1.820 1.825 1.830 1.835 1.840
0

20

40

60

80

Voltage (V)

E
rr

or
 r

at
e

of
 L

S
B

 (
%

)

 data=xxxxxx00, H−Weight(data)=4
data=xxxxxx10, H−Weight(data)=4

Fig. 7. Error rate of a cell is not noticeably influenced by the value of its neighbor. The graph shows that
the value of the second LSB does not greatly affect the error rate of the LSB. The bars show the error rate
of the LSB for writing numbers from the same Hamming-weight equivalence class whose two LSBs are set
to either 00 (dark bars) or to 10 (light bars).

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: May 2011.

A:10 M. Salajegheh et al.

A low-power storage scheme can benefit from this accumulative property by repeat-
ing writes to the same cell. Each write operation will increase the chance of success by
forcing some number of state transitions. In other words, a failed write is still progress
for the analog abstraction.

3. DESIGN OF A LOW-VOLTAGE STORAGE SYSTEM
This section presents our design for a software system that enables reliable flash mem-
ory writes at low voltage. We first present a model that captures the basic character-
istics and behavior of flash memory. We then set design goals for the model under
consideration. We introduce three methods for reliable flash storage, which we refer
to as in-place writes, multiple-place writes, and RS-Berger codes. Each method aims to
meet our design goals for reliable non-volatile storage.

3.1. Modeling Low-Voltage Flash Memory
A NOR flash memory has a set of n cells that are initially set to 1. We represent the
state of the cells by c1, . . . , cn; the value of ci can be 0 or 1. A cell can be set to 0 using
a write operation. The 1 → 0 transition might fail at low voltage while the 1 → 1
will obviously succeed. Flash memory at low voltage, where errors occur only in one
direction, can be modeled as a Z-channel [Klove 1995].

Flash memory is a write-once memory [Rivest and Shamir 1982] and once a cell is
set to 0 (i.e., once it is programmed), it cannot be changed back to 1 without using an
erase operation. In flash memory, cells are organized by blocks, and an erase operation
resets an entire block of cells. Block erasures are costly in terms of time and energy
and they cause wear to flash cells.

Operations: There are two operations in this model: (1) An update operation that
changes a subset of cells to 0 to represent a value, and (2) A decoding operation that
maps cell states (i.e., memory state) to a value. Updating a variable means chang-
ing the values of c1, . . . , cn to c′1, . . . , c

′
n. Assuming that no erase operation occurs, and

therefore no bits are reset to 1 after being set to 0, we have ∀i ∈ {1, . . . , n}, ci ≥ c′i
after an update. If the update operation is performed when operating voltage is below
the nominal minimum required for flash memory, the update operation may not be
error-free.

3.2. Design Goals
Our storage techniques, which aim to provide reliable storage for low-power devices,
are designed with the following metrics in mind:

— Error rate: The first and foremost design goal is to minimize the error rate to provide
applications with reliable non-volatile storage.

— Energy consumption: The energy consumed to achieve an acceptably low error rate
should not exceed the expected energy savings gained by running at a lower voltage.

— Delay: We define delay as the difference between the execution time to store data
reliably at a low voltage and to store the same data at a high voltage. The delay
caused by the storage technique should be reasonably small.

3.3. Proposed Methods
Toward the design goals discussed previously, we propose methods to deal with errors
caused by using flash memory at low voltage.

3.3.1. In-Place Writes. Since the transition of a 1 to a 0 in a NOR flash memory at low
voltage is stochastic rather than guaranteed, the in-place writes method repeats the
write of each byte (to the same memory location) more than once if error occurs, up to a
threshold number of attempts. Algorithm 1 gives the details for ENCODE and DECODE

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: May 2011.

Half-Wits: Software Techniques for Low-Voltage Probabilistic Storage on Microcontrollers with NOR Flash MemoryA:11

procedures for in-place writes. The in-place writes makes an attempt to write a byte
into memory, reads that memory address, and if the read result does not match the
attempted write value, the algorithm makes another attempt to write that value to
the same memory address. The write attempts can be controlled using the threshold .

Algorithm 1 The encoding and decoding algorithms for the in-place writes method to
store data to address by repeating the writes up to a threshold number of attempts if
necessary.
ENCODE(data, address, threshold)
1 WRITE TO FLASH(data ,address)
2 result ← READ FROM FLASH(address)
3 repeat ← 1
4 while (result 6= data) AND (repeat < threshold)
5 do WRITE TO FLASH(data ,address)
6 result ← READ FROM FLASH(address)
7 repeat ← repeat +1

DECODE(address)
1 result ← READ FROM FLASH(address)
2 return result

The reason in-place writes decrease the error rate is that, as explained in Section 2.4,
each write attempt in the same memory location increases the accumulated charge and
therefore raises the probability of storing the intended bit sequence successfully.

3.3.2. Multiple-Place Writes. Another approach to increase the reliability of flash writes
at low voltage is to write a value to more than one location in flash memory if error
occurs up to a threshold number of locations. Later, to retrieve the stored data, the
multiple-place writes method reads the data from the specified address and several
other addresses associated with it, then returns the bitwise AND of all of the stored
values. Algorithm 2 details ENCODE and DECODE procedures of the multiple-place
writes method. The multiple-place writes makes an attempt to write a byte into one
memory address, reads that memory address, and if the read result does not match the
attempted write value, the algorithm makes another attempt to write that value to a
different memory address. The write attempts can be controlled using the threshold .

The reason the multiple-place writes approach can decrease the error rate is as fol-
lows: All cells of flash memory are initially set to 1. An error means that writing a 0
has failed and a bit cell ci has remained untouched (logical 1) although it was intended
to be set to 0. If the cell write in one of the locations has not failed, and cell ci is 0 in at
least one location, getting the AND of the read values from all locations will make cell
ci = 0 in the AND result. The case of writing a 1 to a cell does not cause an error since
it means changing a cell from 1 to 1.

3.3.3. RS-Berger Codes. Our third method to provide reliable flash memory at low
voltage involves data coding. We use the concatenation of Reed-Solomon [Reed and
Solomon 1960] and Berger [Berger 1961] codes—which we call RS-Berger codes—to
detect and correct errors at read time.

Reed-Solomon is a widely used error-correcting code that can correct twice as many
erasures as errors. There are three parameters (n, k, d) accompanying the Reed-
Solomon (RS) code. The parameter n is the total number of symbols in the codeword,

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: May 2011.

A:12 M. Salajegheh et al.

Algorithm 2 The encoding and decoding algorithms for the multiple-place writes
method to store data to address by repeating the writes up to a threshold number of
locations if necessary. The distance between each of these associated locations is offset .
ENCODE(data, addr , threshold , offset)
1 WRITE TO FLASH(data ,addr)
2 result ← READ FROM FLASH(addr)
3 repeat ← 1
4 while (result 6= data) and (repeat < threshold)
5 do phy addr ← addr + (repeat × offset)
6 WRITE TO FLASH(data ,phy addr)
7 n result ← READ FROM FLASH(phy addr)
8 result ← result & n result
9 repeat ← repeat +1

DECODE(addr , threshold , offset)
1 for i← 0 to (threshold −1)
2 do phy ← addr + (i × offset)
3 n result ← READ FROM FLASH(phy)
4 result ← result & n result
5 return result

RS
Encoder

Berger
Encoder

RS
Decoder

Berger
Decoder

bits coded seq.

flash
memory

received seq.bits

Fig. 8. A diagram representing the RS-Berger code. An RS-Berger code is the concatenation of the Reed
Solomon code and a Berger code.

and k is the number of information symbols in the codeword, and the parameter d is
the minimum hamming distance of two codewords in the codebook. These three pa-
rameters should satisfy the following conditions: d = n− k + 1. A (n, k, d)-RS code can
correct up to n−k

2 errors and up to n − k erasures. Therefore, if the locations of errors
are known, an RS code’s error-correcting capacity is improved twofold.

To detect the location of errors and therefore to improve the efficiency of the RS
code, we use a Berger code, an error-detecting code that can detect all asymmetric er-
rors [Berger 1961]. As previously mentioned (Section 3.1), flash memory at low voltage
can be modeled as a Z-channel for which a Berger code is suitable. A Berger codeword
consists of two parts: k information bits and dlog2(k + 1)e check bits. The check bits of
the Berger codeword represents the number of zeros in the k information bits. Berger
code can detect any number of zero-to-one errors, as long as no one-to-zero errors occur
in the same codeword. The Berger code can detect all zero-to-one errors, because the
number of zeros in the information-bit component will always be less than the number
represented by the check-bit component.

We use an (N + 1) × n matrix to represent RS-Berger codes (Figure 9). This matrix
has N RS codewords, each of which has n symbols. Each symbol (m bits) is filled in one
entry of the matrix. Each column of the matrix, consisting of m ×N bits, supplies the

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: May 2011.

Half-Wits: Software Techniques for Low-Voltage Probabilistic Storage on Microcontrollers with NOR Flash MemoryA:13

Symbol-1 in

Codeword-1

Symbol-2 in

Codeword-1

Symbol-n in

Codeword-1

Symbol-1 in

Codeword-2

Symbol-2 in

Codeword-2

Symbol-n in

Codeword-2

Symbol-1 in

Codeword-N

Symbol-2 in

Codeword-N

Symbol-n in

Codeword-N

Check bits for

Column-1

Check bits for

Column-2

Check bits for

Column-n

...

...

...

...

...

Fig. 9. Structure of the input/output sequence of the Berger code.

information bits for one Berger code block. After Berger encoding, the (N + 1)th row
records the check bits for the Berger codes.

Figure 8 shows how the data are encoded and decoded using our RS-Berger code.
When encoding the data, we first use RS code to generate n codewords (rows of the
matrix) and then we apply a Berger code to compute the check bits for each symbol
for all codewords (each column of the matrix). When decoding data, we first use the
Berger decoder to check whether or not each column is erroneous. If one entry in the
column is erroneous, we consider all the symbols in the column erasures; otherwise,
all the symbols in the column are considered correct. Then, once the error locations are
known, we apply RS decoding to correct the erroneous sequences row by row.

4. EVALUATION
Our storage techniques are designed for the resource limitations of low-power de-
vices. In this section, we first evaluate the suitability of the three methods proposed in
Section 3.3 for low-power devices; we then evaluate the hypothesis that for CPU-bound
workloads, operating at low voltage and managing errors is more energy-efficient than
fixing the operating voltage to the maximum of all the components’ nominal minimum
voltages.

Summary of results: For a sensor monitoring application that reads 256 data sam-
ples from flash memory, aggregates data, and stores the results in flash memory, use
of in-place writes at 1.8 V reduces the energy consumption up to 34% versus running
the same application at 2.2 V (minimum voltage requirement for the flash memory).
This sensing application models a common workload for both wireless sensor nodes
and RFID-scale devices.

Experimental setup: We used a consistent experimental setup to measure the
energy consumption and execution time of each program. Using an oscilloscope, we
measured the voltage of a small resistor in series with a MSP430 microcontroller pro-
grammed with a task (e.g., a flash write). The integration of the current (voltage di-
vided by the resistance) over the execution time of the task multiplied by the operating
voltage of the device gives the energy consumption of that task (Energy =

∫
I(t) dt×V).

To facilitate precise identification of the task on the oscilloscope, the microcontroller
toggled a GPIO pin immediately before and after the task.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: May 2011.

A:14 M. Salajegheh et al.

Algorithm 3 The encoding and decoding algorithms for RS-Berger codes write method.
t is the maximum number of errors RS-Berger code can correct.
ENCODE(data1 ,..,N ,n)
1 for i← 1 to N
2 do CWi ← RS ENCODE(datai ,n)
3 WRITE TO FLASH(CWi ,addressi)
4 for i← 1 to n
5 do for j ← 1 to N
6 do symi,j ← CWj(i)
7 chki ← BERGER ENCODE(symi,(1 ,..,N))
8 WRITE TO FLASH(chki ,addressN+1 + i -1)

DECODE(addr1 ,..,(N+1), n, t)
1 for i← 1 to N
2 do chki ← READ FROM FLASH(addrN+1 +i -1)
3 for i← 1 to N
4 do CWi ← READ FROM FLASH(addri)
5 for j ← 1 to n
6 do symi,j ← CWi(j)
7 errors ← {}
8 for i← 1 to n
9 do err ← BERGER DECODE(symi,(1 ,..,N), chki)

10 if err = 0
11 then errors ← errors ∪{i}
12 if |errors| ≤ t
13 then for i← 1 to N
14 do resulti ← RS DECODE(CWi , errors)
15 return result
16 else return “fail to correct errors”

4.1. Comparison of the Proposed Storage Methods
The workload used to measure the performance of each of the proposed methods is
the storage of accelerometer traces—generated using the Intel WISP 4.1’s 10-bit ADC
sensor—to flash memory. The input trace is a series of three-dimensional 16-bit sam-
ples containing ten bits of information. We used a simple data compression method
to store more data in the available flash memory. The compression method involved
reading four samples of data, preparing the first byte of each sample to be stored in
flash memory, then combining the remaining two bits of each sample into one byte of
data. Using this compression scheme, we reduced every four samples (eight bytes) to
five bytes.

The maximum number of write attempts for both in-place writes and multiple-place
writes methods were set to two. The RS-Berger codes used three codewords of size
38 bytes (32 bytes data and 6 bytes parity). These settings enable all three methods
to fit their data in 192 bytes of flash memory. Table III shows the energy consumption
and time taken for the same workload under each method. Both in-place writes and
multiple-place writes consume less energy and finish more quickly at 1.9 V than at
1.8 V. Both of these methods are feedback-based and repeat writes if they detect errors.
Because there is a lower chance of error at 1.9 V, fewer rewrites are required than at
1.8 V, so less energy and time are required.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: May 2011.

Half-Wits: Software Techniques for Low-Voltage Probabilistic Storage on Microcontrollers with NOR Flash MemoryA:15

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

Number of sequential in−place writes

P
er

ce
nt

ag
e

of
 in

co
rr

ec
t b

yt
es

 (
%

)

1.86 V
1.87 V
1.88 V
1.89 V
1.90 V

Fig. 10. Reliability improvement using in-place writes over five different voltages.

The in-place writes method slightly outperforms the multiple-place writes method
at both voltage levels because its decoding procedure is less CPU-intensive. The In-
place writes method has the best Error Correction Rate (ECR in Table III) of all. The
multiple-place writes method seems to be the most suitable when there are some mem-
ory cells that are hard to program and therefore rewriting in those cells is not helpful
(Figure 6 gives an example of such a case). Compared to RS-Berger codes which al-
ways guarantee that a certain number of errors can be corrected, the in-place writes
and multiple-place writes methods are less reliable—they offer no such guarantees.
Therefore, for applications with a hard reliability requirement, RS-Berger codes may
be more suitable if the application knows the error rate in advance and is willing to
incur extra computational costs for RS-Berger encoding and decoding.

Error Correction Rate: As Table III illustrates, the two methods that do not use
coding—in-place writes and multiple-place writes—incur similar energy consumption
costs. We now compare the effectiveness of these two approaches with respect to the
error correction rate.

Figure 10 and Figure 11 demonstrate that flash storage reliability improves as we
increase the number of repeated writes/places at five different voltage levels (all below
the nominal minimum voltage for flash writes).

Experiment: Using our automated testbed, the test platform runs a program that
writes zeros to 192 consecutive bytes of flash memory (using in-place writes and
multiple-place writes methods in two different experiments). We increase the maxi-
mum number of repeated writes from one to ten, one unit at a time. The monitoring
platform counts the number of incorrectly stored bytes (those that are not set to zero
after the experiment). The experiment was repeated for five different voltages (1.86 V–
1.90 V).

Table III. Performance comparison of the proposed methods at 1.8 V and
1.9 V. Error Correction Rate (ECR) shows the effectiveness of the methods.

Method V Time (ms) E (µJ) Error Correction Rate
In-place 1.8 24.16 59 96%
M-place 1.8 25.00 63 84%

RS-B 1.8 334.45 160 0%
In-place 1.9 15.43 38 100%
M-place 1.9 16.85 40̄ 100%

RS-B 1.9 334.73 180 100%

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: May 2011.

A:16 M. Salajegheh et al.

Figure 12 compares the error rate of the in-place and multiple-place write methods.
We choose the same maximum number of repeated writes for both approaches. As the
graph shows, the in-place writes method improves the error rate more dramatically.
We attribute this phenomenon to the fact that electrons accumulate in flash cells with
each programming attempt. Figure 12 also allows us to evaluate hybrids of the in-place
writes and multiple-place writes methods. For example, choosing one place to write the
value and repeating the write up to three times (up to three writes in total) works bet-
ter than repeating the write up to twice in two places (up to four writes in total). This
graph offers evidence that a pure in-place writes approach works better than a hybrid
approach or a pure multiple-place writes approach. However, we do not conclude that
the in-place writes method always outperforms the multiple-place writes. A winning
case for multiple-place writes is when a flash memory has unbalanced blocks (differ-
ent error rates), for example, the chip shown in Figure 6. While the multiple-place
writes method requires more space, it could provide a more reliable storage compared
to in-place writes.

4.2. Half-Wits Versus Wits in Practice
To evaluate our storage schemes, we consider three test cases representing CPU oper-
ations, flash read operations, and flash write operations.

The RC5 [Rivest 1995] test case, a CPU-only workload, is a commonly used encryption
algorithm that can cope with the resource limitations of low-power devices [?; Karlof
et al. 2004]. RC5 was implemented with a 32-bit word size, 18 rounds, and 16 bytes of
secret key.

The retrieve and store test cases are both I/O-bound tasks. One reads and the other
one writes 192 bytes of data from/to flash memory. CPU-bound operations in these test
cases are minimal (essentially only a loop that calls a function to flash memory). The
store program uses in-place writes with a maximum number of three (re)writes to deal
with errors. Because flash read operations are fundamentally simpler than flash write
operations, flash reads are reliable at low voltage.

We run each of the three test cases on a MSP430F2131 microcontroller at four dif-
ferent voltages that are all in the operating range of this microcontroller (1.8 V–3.5 V).
Two voltage levels are below the recommended threshold for flash memory: 1.8 V and
1.9 V. Two voltage levels are at and above the recommended threshold: 2.2 V and
3.0 V. The microcontroller is set to work at its highest possible clock rate for each

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

Number of sequential multiple−place writes

P
er

ce
nt

ag
e

of
 in

co
rr

ec
t b

yt
es

 (
%

)

1.86 V
1.87 V
1.88 V
1.89 V
1.90 V

Fig. 11. Reliability improvement using multiple-place writes over five different voltages.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: May 2011.

Half-Wits: Software Techniques for Low-Voltage Probabilistic Storage on Microcontrollers with NOR Flash MemoryA:17

N
um

be
r o

f i
n-

pl
ac

e
w

rit
es

Number of places

1

2

3

1 2 3

E
rr

or
 ra

te
(%

) a
t 1

.8
6

V

0

20

40

60

80

100

Fig. 12. The in-place writes method reduces the error rate more effectively than do the multiple-place writes
method or a hybrid of both methods.

RC5 Retrieve Store
0

50

100

150

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n

In−place @1.8V
In−place @1.9V
2.2V
3.0V

Fig. 13. Micro-benchmarks: CPU (RC5), read (retrieve), and write (store) normalized energy consumption
measured at four different voltage levels. The energy has been normalized to the energy consumption of
each workload at 3.0 V. Although the RC5 and retrieve test cases consume less energy at low voltage, this
is not the case for the store test case (a write-intensive application) as the savings due to running the chip
at low voltage do not compensate for the energy cost required to correct errors.

voltage level in order to gain the best energy performance. Figure 13 compares the
normalized average energy consumption over five trials of each test case at each volt-
age. The energy has been normalized to the energy consumption of each workload at
3.0 V. By running at 1.8 V (below the nominal minimum voltage for flash writes on the
MSP430F2131), the microcontroller consumes 48% and 33% less energy to finish the
RC5 and retrieve test cases respectively. However, our storage schemes do not seem
beneficial for flash-write-intensive tasks (the store test case).

To evaluate the end-to-end performance of our storage methods, we have tested
a sensor-monitoring application that is CPU-intensive and can benefit from a low-
voltage storage. This application reads from flash memory 256 accelerometer samples
(each ten bits); computes the maximum, minimum, mean, and standard deviation of
the samples; and stores the aggregate information in flash memory. This monitoring
application is a blend of CPU and I/O, but it is still a CPU-intensive workload. Ta-
ble IV shows that providing the system with a low-voltage storage mechanism via our
methods helps to decrease the task’s total energy consumption by 34%.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: May 2011.

A:18 M. Salajegheh et al.

4.3. Finding a Crossover Point
We can empirically find the point at which the energy saved on computation compen-
sates for the added cost of repeated flash writes. We compare a workload executed
at 2.2 V to the same one running at 1.8 V using the in-place writes scheme with the
threshold k set to 2. We make the worst-case assumption that all data must be written
to flash twice (i.e., no bits change on the first attempt). The time spent on flash writes
while running at 1.8 V is then twice the time spent when operating at 2.2 V. We also
assume that the clock rate of the system is set to the highest specified for the CPU at
each voltage. Specifically, the clock rate would be set to 6 MHz at 1.8 V and to 8 MHz
at 2.2 V.

We empirically determined the power consumption of CPU and flash writes with
1.8 V and 2.2 V voltage supplies. PC 1.8 = 1.8 mW , PC 2.2 = 3.4 mW , PF 1.8 = 3.7 mW ,
and PF 2.2 = 5.8 mW . The variables TC and TF are the time spent in computation
and on flash memory respectively. With these assumptions, we can write the following
inequality to determine whether a given workload is likely to result in reduced energy
consumption:

Energy1.8 ≤ Energy2.2 ⇒
PC 1.8 × TC 1.8 + PF 1.8 × k × TF 1.8 ≤

PC 2.2 × TC 2.2 + PF 2.2 × TF 2.2 ⇒
PC 1.8 × 8MHz

6MHz × TC 2.2+PF 1.8 × k × 8MHz
6MHz × TF 2.2 ≤

PC 2.2 × TC 2.2 + PF 2.2 × TF 2.2

The solution with k = 2 is TC 2.2 ≥ 4 × TF 2.2. Therefore, in-place writes are com-
petitive over normal flash writes when the time spent on low-voltage operations like
computation is at least four times greater than the time spent on flash writes.

5. APPLICATIONS
Most battery-powered and batteryless electronic devices use low-power microcon-
trollers. Any embedded device whose CPU and non-volatile storage share the same
power rail might benefit from our low-voltage storage techniques.

5.1. Battery-Powered Electronic Products
We have compiled a list of more than one hundred low-power electronic products that
choose flash memory as their non-volatile storage. By reverse-engineering these de-
vices, we looked at three characteristics: the microcontroller inside, the use of flash
memory, and the operating voltage. These three characteristics of a device determine
if the power consumption can be reduced by operating the device at a lower voltage.
An example of these devices is a smoke detector [Kidde, A UTC Fire & Security Com-
pany] which uses a Microchip PIC16F883 microcontroller [Microchip Technology In-
corporated]. This microcontroller has 4 KB of flash memory that gets used to store
data for legal issues. The flash memory’s nominal minimum voltage is 4.5 V, while the
minimum requirement for the CPU is 2.0 V. The measured operating voltage of the
microcontroller is 4.7 V, which exceeds the minimum requirements of both the CPU
and the flash memory. The high operating voltage might have been chosen for other

Table IV. Energy consumption and execution time for the accelerometer sensor
application. At voltages below the recommended (1.8 V and 1.9 V), the in-place
writes method with a threshold of two is used.

Method In-place 1.8 V In-place 1.9 V None 2.2 V None 3.0 V
Clock rate 6 MHz 6 MHz 8 MHz 14 MHz

Energy(µJ) 270 30̄0 410 760
Time(ms) 151.15 151.32 113.24 64.72

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: May 2011.

Half-Wits: Software Techniques for Low-Voltage Probabilistic Storage on Microcontrollers with NOR Flash MemoryA:19

purposes in addition to flash memory, but it is interesting to consider how the chip
would behave at lower voltages.

5.2. Batteryless RFID-Scale Devices
There is another class of applications which run on batteryless devices that harvest
their energy from a variety of sources—solar [?; Lin et al. 2005; Kansal et al. 2007],
kinetic [Meninger et al. 2001], and RF [?; Buettner et al. 2011]. Energy is a main design
constraint for all of these energy-harvesting devices. Most of these RFID-scale devices
run environmental monitoring applications that are CPU intensive, which makes them
ideal for our low-power storage schemes.

An example of an RFID-scale device is the Intel WISP [Sample et al. 2008], a bat-
teryless RFID tag that sets its operating voltage to 1.8 V to save power. Flash memory
cannot be written on this device since the operating voltage is below its onboard flash
memory’s 2.2 V specified minimum.

6. IMPROVEMENTS AND ALTERNATIVES
This section describes several complementary ways to further improve the perfor-
mance of our schemes.

6.1. Slow Writes:
This method is similar to in-place writes in that it tries to accumulate enough charge
in a cell to present a zero bit. However, instead of writing a bit multiple times, this
method writes a bit once but slowly. The extra time allows for more charge to get
stored in a cell. The idea is similar to Dynamic Voltage and Frequency Scaling (DVFS)
methods [Cheng 2008]. Algorithm 4 details the simple ENCODE and DECODE proce-
dures. One way to improve the slow writes is to choose a frequency level based on
the operating voltage as well as the temperature and then try to adjust the frequency
based on the error rate. If the error rate is too high, the frequency has to be set to a
smaller number to reduce the speed.

Algorithm 4 The encoding and decoding algorithms for the slow writes method to
store data to address by slowing the write threshold number of times.
ENCODE(data, address, threshold)
1 SLOW FLASH CLOCK(threshold)
2 WRITE TO FLASH(data ,address)

DECODE(address)
1 result ← READ FROM FLASH(address)
2 return result

Figure 14 shows the error rate of slow writes based on the voltage level and the
speed of the writes. The speed of the writes has been adjusted by tuning the frequency
of the flash memory. For an operating voltage as low as 1.80 V, the average error rate
eventually drops to about zero percent if the speed is slowed down enough (In the case
of this particular chip when the frequency is set to 285 KHz).

Since low-power embedded devices have a limited amount of energy available, saving
power is usually a higher priority than reducing the delay. Slow writes follows this
principle and reduces the speed of the writes in order to reduce the power consumption
of the device. Slow writes would be beneficial specially for CPU-intensive applications

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: May 2011.

A:20 M. Salajegheh et al.

260 285 369 405 505 553 656 713 857 896 1057 1104
0

20

40

60

80

100

Frequency (KHz)

E
rr

or
 R

at
e

(%
)

1.9 V
1.89 V
1.88 V
1.87 V
1.86 V
1.85 V
1.84 V
1.83 V
1.82 V
1.81 V
1.8 V

Fig. 14. Error rate declines when the writes are performed at a lower frequency. For a voltage level as low
as 1.8 V, the average error rate becomes zero when the writes are performed at 260 Hz while for 1.9 V (still
well below the recommended voltage), the average error rate is zero even if the memory is used at full speed.

in which their frequent use of CPU would cost less power while their rare flash memory
use will be slower.

Experiment: A TI MSP430F2131 microcontroller runs a program that writes zeros to
the data segment of its flash memory (192 bytes). We increased the microcontroller’s
operating voltage in 10-mV steps and increased the frequency of flash writes from
260 KHz to 1104 KHz. We used the monitoring platform to compute the byte error
rates over 50 runs.

6.2. Hardware.
One could add an adjustable voltage regulator [Pillai and Shin 2001] and about a
dozen other analog components such that software could toggle a GPIO for discrete
dynamic voltage scaling. A feedback loop that dynamically adjusts a voltage supply
could help identify the minimum voltage at which no write errors are detected, but
such boundaries can vary with temperature and wear-out. Thus, our coding algorithms
would remain helpful to cope with potential errors. Our work seeks to avoid hardware
modification that would require additional components or design changes to a Printed
Circuit Board (PCB) because embedded applications are often cost-sensitive. Changing
the PCB layout may require a manufacturer to flush its supply chain of parts typically
manufactured in high volume. If an inexpensive, software-only approach with minimal
disturbance to manufacturing can lead to significant savings in energy consumption,
then it is hard to financially justify an expensive hardware approach that offers only
comparable performance.

6.3. Sign Bits and Storing Complements.
As discussed in Section 2.3, one of the major factors influencing the error rate is the
Hamming weight of a number. One way to improve the performance of the low-voltage
storage methods is to store numbers with greater Hamming weights (weight ≥ 4) in
flash memory. If a number is lightweight (weight < 4), the complement of the number
would be stored and a sign bit would be set for future data access. An array of sign bits
can be stored separately from the data to avoid disturbing word alignment. A previ-
ous work [Papirla and Chakrabarti 2009] uses a similar technique for multi-level cell
(MLC) flash memories with four levels; their techniques result in a significant decrease
of energy consumption. Figure 15 shows that using the sign-bit scheme decreases the
error rate at low voltage for the same ECG data used in Section 2. For this specific

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: May 2011.

Half-Wits: Software Techniques for Low-Voltage Probabilistic Storage on Microcontrollers with NOR Flash MemoryA:21

0 20 40 60 80 100 120 140 160
−200

−100

0

100

200

Time (s)
V

ol
ta

ge
 (

m
v)

Fig. 15. ECG data stored in flash memory at 1.89 V (the same chip from Figure 2) improved by using a sign
bit. The light-colored bars show the difference between the ECG stored at low voltage and the original ECG
data.

example, out of 168 bytes of ECG data, 160 bytes are overweight; therefore using the
sign-bit scheme greatly decreased the error rate. The sign-bit approach involves very
lightweight computation (counting the number of ones) and increases the number of
writes by a factor of one-eighth. Therefore, the effect of this improvement on energy
consumption and delay should be comparatively small.

6.4. Memory Mapping Table.
To exploit the fact that numbers with greater Hamming weights have a lower proba-
bility of error, we can also map the most frequently used numbers in the user’s data
to the heavier numbers. The solution we suggest is to preprocess the data to sort num-
bers based on their frequency of use. A simple memory mapping table would map the
most frequent numbers to the heaviest numbers. Such a table could be preloaded in
flash memory so that storing the table would not consume energy at run time. Use
of a memory mapping table would only increase the number of reads and would not
increase the number of writes. Therefore, the energy consumption overhead and the
delay should be smaller than the sign bit method.

6.5. An Ideal, Unrealizable Scheme.
We initially tried to set the voltage to a level lower than recommended but high enough
to avoid errors. This method could not be realized for two reasons: finding a voltage
that satisfies this condition requires a large number of experiments per chip—error
rate varies chip by chip (Figure 4)– and the error rate of flash writes varies depending
on its lifespan and its environment (Section Section 2.3).

7. RELATED WORK
Storage for low-power embedded devices. Recent research focuses on optimizing use

of off-chip flash memory. Off-chip memory allows for special features and larger mem-
ories than found on microcontrollers, but introduces additional costs for components.
Microhash [Zeinalipour-Yazti et al. 2005] is a memory index structure tailored for sen-
sor devices with a large external flash memory. Mathur et al. [Mathur et al. 2006]
perform an extensive study of available flash memory candidates for sensor devices
and demonstrate that an off-chip parallel NAND flash memory decreases the energy
consumption of storage. Considering the off-chip NAND flash memory as the best
candidate for sensor devices, Agrawal et al. [Agrawal et al. 2010] propose a method
that allows sensor devices to exploit their flash memory while adapting to different
amounts of RAM. Newer storage technology such as Phase-change memory (PCM)
or ferro-electric RAM (FRAM) provide low-power non-volatile storage for embedded

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: May 2011.

A:22 M. Salajegheh et al.

devices. However, our storage schemes are designed for already deployed low-power
devices that use on-chip flash memory. Moreover, while devices at the scale of sensor
nodes might switch to block-grained, large off-chip flash memory, RFID-scale platforms
might not benefit from this transition because of their challenging resource limitations
to drive I/O.

Energy proportionality. Our approaches share the philosophy that energy consump-
tion should scale proportionally to utilization or error rates rather than proportional to
a worst-case scenario. Blaauw et al. [Blaauw and Das 2009] reduce power consumption
by lowering the operating voltage of a pipelined CPU. Certain pipeline stages may pro-
duce incorrect computations that require recomputation, but the errors can be made
rare to allow better scalability of power consumption. Misailovic et al. [Misailovic et al.
2010] demonstrate that the programs whose loops perform fewer iterations cause tol-
erable errors while their execution time decreases. Weddle et al. [Weddle et al. 2007]
introduce PARAID, a scheme that scales power based on the user demand while main-
taining the reliability of the system. Their present work also tries to scale power based
on the utilization of flash memory without losing storage reliability. Flikker [Liu et al.
2011] introduces a technique to reduce the DRAM power consumption by setting dif-
ferent data refresh rates based on the importance of the data. EnerJ [Sampson et al.
2011] proposes to save energy by allowing approximate storage, operations, and al-
gorithms for data that have been declared as non-critical. Our approaches share this
philosophy of scaling performance with utilization. Our performance metric is energy
consumption; writes to flash memory represent our utilization; and energy-efficient
error correction is our coping mechanism.

Error correction codes for storage. Most previously published flash error correction
codes [Chen et al. 2008; Fujino and Moshnyaga 2002; Gregori et al. 2003] are designed
for NAND flash memory. Chen et al. [Chen 2007] mention that NOR flash normally
does not require error correction. These techniques consider neither the asymmetry
in low-voltage flash memory nor the resource limitations of low-power embedded de-
vices. Many previous codes [Barg and Mazumdar 2010; Jiang et al. 2010; Zhang et al.
2010; Tamo and Schwartz 2010] leverage the fact that each cell of MLC flash memory
represents more than one bit of information. But the fact that single-level cells (SLC)
are more suitable for embedded devices, in addition to the occurrence of errors in low-
voltage conditions, requires a reconsideration of these codes for SLCs at low voltage.
Zemor et al. [Zemor and Cohen 1991] introduce error-correcting WOM codes for flash
memory. They suggest codes that are able to correct up to one error when the flash
memory is given enough voltage. This work does not account for errors that occur at
low voltage. Godard et al. [Godard et al. 2008] propose hierarchical code correction
and reliability management for NOR flash memory. This work considers on-chip ECCs
such as Hamming and parity codes to correct the errors in NOR flash memory.

8. CONCLUSIONS AND FUTURE WORK
The high voltage requirement of on-chip flash memory is a barrier to reducing the total
energy consumption of low-power devices. This work examines the main factors affect-
ing the behavior of flash memory at low voltage. Based on our observations of flash
memory behavior at low voltage, we proposed three storage schemes—in-place writes,
multiple-place writes, and RS-Berger codes—that aim to make flash memory available
and reliable at low voltage while tolerating the resource limitations of low-power de-
vices. Our evaluation shows that in-place writes can save 34% of energy consumption
for a sensing workload on the MSP430 microcontroller. Our storage techniques enable
battery-powered devices to require fewer or smaller batteries or to become batteryless.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: May 2011.

Half-Wits: Software Techniques for Low-Voltage Probabilistic Storage on Microcontrollers with NOR Flash MemoryA:23

Low-voltage storage would also help increase the lifespan and decreases the manufac-
turing cost of sensor devices.

Future work includes finding more energy-efficient coding schemes to combat flash
write errors caused by low voltage. Currently, the system cannot take full advantage
of dynamic voltage scaling. Another plan is to introduce benchmarks for the storage
systems of low-power devices. The standard benchmarks used to evaluate the storage
systems designed for desktop computers are not immediately applicable to the low-
power domain.

ACKNOWLEDGMENTS

This material is supported by a Sloan Research Fellowship, the Armstrong Fund for Science, and the NSF
under CAREER Award CCF-0747415, CNS-0627476 (prime), CNS-0627529, CAREER Award CNS-0845874,
CNS-0923313, and ECCS-0802107. Any opinions, findings, and conclusions expressed in this material are
those of the authors and do not necessarily reflect the views of the NSF.

We thank Shane Clark, Wendy Cooper, Marc Liberatore, and Benjamin Ransford for feedback on drafts;
Joshua Smith and Alanson Sample at Intel Labs Seattle for providing the WISP for several years; Brian
Noble for shepherding our earlier paper at USENIX FAST; and the anonymous reviewers for their detailed
feedback and guidance. Portions of this work are patent pending in the United States.

REFERENCES
AGRAWAL, D., LI, B., CAO, Z., GANESAN, D., DIAO, Y., AND SHENOY, P. 2010. Exploiting the interplay

between memory and flash storage in embedded sensor devices. In Proceedings of the 16th IEEE Con-
ference on Embedded and Real-time Computing Systems (RTCSA). 227–236.

AKYILDIZ, I. F., SU, W., SANKARASUBRAMANIAM, Y., AND CAYIRCI, E. 2002. Wireless sensor networks: a
survey. Computer Networks 38, 4, 393–422.

ATMEL AVR SOLUTIONS. ATmega128L. http://www.atmel.com/atmel/acrobat/doc2467.pdf.
BARG, A. AND MAZUMDAR, A. 2010. Codes in permutations and error correction for rank modulation. IEEE

Transactions on Information Theory 56, 7, 3158–3165.
BERGER, J. 1961. A note on error detection codes for asymmetric channels. Information and Control 4, 1,

68–73.
BLAAUW, D. AND DAS, S. 2009. CPU, heal thyself. IEEE Spectrum 46, 8, 40–56.
BUETTNER, M., GREENSTEIN, B., SAMPLE, A., SMITH, J. R., AND WETHERALL, D. 2008. Revisiting smart

dust with RFID sensor networks. In Proc. 7th ACM Workshop on Hot Topics in Networks (HotNets-VII).
BUETTNER, M., GREENSTEIN, B., AND WETHERALL, D. 2011. Dewdrop: An energy-aware task scheduler

for computational RFID. In Proc. 8th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI ’11). USENIX Association.

CHEN, B., ZHANG, X., AND WANG, Z. 2008. Error correction for multi-level NAND flash memory using
Reed-Solomon codes. In IEEE Workshop on Signal Processing Systems (SiPS 2008). 94–99.

CHEN, S. 2007. What types of ECC should be used on flash memory?
http://www.spansion.com/Support/AppNotes/Types of ECC Used on Flash AN 01 e.pdf.

CHENG, W. H. 2008. Approaches and designs of dynamic voltage and frequency scaling. M.S. thesis, Uni-
versity of California, Davis, CA, USA. http://www.ece.ucdavis.edu/vcl/pubs/theses/2008-1.

FUJINO, M. AND MOSHNYAGA, V. 2002. An efficient Hamming distance comparator for low-power applica-
tions. In 9th International Conference on Electronics, Circuits and Systems. Vol. 2. 641–644.

GODARD, B., DAGA, J.-M., TORRES, L., AND SASSATELLI, G. 2008. Hierarchical code correction and reli-
ability management in embedded NOR flash memories. In Proceedings of the 2008 13th European Test
Symposium. 84–90.

GOLDBERGER, A. L., AMARAL, L. A. N., GLASS, L., HAUSDORFF, J. M., IVANOV, P. C., MARK, R. G.,
MIETUS, J. E., MOODY, G. B., PENG, C.-K., AND STANLEY, H. E. 2000. PhysioBank, PhysioToolkit, and
PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 101, 23,
e215–e220. Circulation Electronic Pages: http://circ.ahajournals.org/cgi/content/full/101/23/e215.

GREGORI, S., CABRINI, A., KHOURI, O., AND TORELLI, G. 2003. On-chip error correcting techniques for
new-generation flash memories. Proceedings of the IEEE 91, 4, 602–616.

JIANG, A., MATEESCU, R., SCHWARTZ, M., AND BRUCK, J. 2008. Rank modulation for flash memories. In
IEEE International Symposium on Information Theory (ISIT). 1731–1735.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: May 2011.

A:24 M. Salajegheh et al.

JIANG, A., SCHWARTZ, M., AND BRUCK, J. 2010. Correcting charge-constrained errors in the rank-
modulation scheme. IEEE Transactions on Information Theory 56, 5, 2112–2120.

KAHN, J. M., KATZ, R. H., AND PISTER, K. S. J. 1999. Next century challenges: mobile networking for
“Smart Dust”. In Proceedings of the 5th Annual ACM/IEEE International Conference on Mobile Com-
puting and Networking (MobiCom). 271–278.

KANSAL, A., HSU, J., ZAHEDI, S., AND SRIVASTAVA, M. B. 2007. Power management in energy harvesting
sensor networks. ACM Transaction Embedded Computing Systems 6.

KARLOF, C., SASTRY, N., AND WAGNER, D. 2004. TinySec: A link layer security architecture for wireless
sensor networks. In Proceedings of the Second ACM Conference on Embedded Networked Sensor Systems
(SenSys).

KIDDE, A UTC FIRE & SECURITY COMPANY. Fire & Carbon Monoxide Safety Products (USA).
http://www.kidde.com/.

KLOVE, T. 1995. Error correcting codes for the asymmetric channel. Tech. rep., Informatics, University of
Bergen.

LIN, K., HSU, J., ZAHEDI, S., LEE, D. C., FRIEDMAN, J., KANSAL, A., RAGHUNATHAN, V., AND SRIVAS-
TAVA, M. B. 2005. Heliomote: Enabling long-lived sensor networks through solar energy harvesting. In
Proceedings of ACM Sensys.

LIU, S., PATTABIRAMAN, K., MOSCIBRODA, T., AND ZORN, B. G. 2011. Flikker: Saving dram refresh-power
through critical data partitioning. In Proceedings of International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS).

LO, B. P. L., THIEMJARUS, S., KING, R., AND ZHONG YANG, G. 2005. Body sensor network - a wireless
sensor platform for pervasive healthcare monitoring. In Adjunct Proceedings of the 3rd International
Conference on Pervasive Computing (PERVASIVE). 77–80.

MAINWARING, A., CULLER, D., POLASTRE, J., SZEWCZYK, R., AND ANDERSON, J. 2002. Wireless sensor
networks for habitat monitoring. In Proceedings of the 1st ACM International Workshop on Wireless
Sensor Networks and Applications. 88–97.

MALAN, D., FULFORD-JONES, T., WELSH, M., AND MOULTON, S. 2004. Codeblue: An ad hoc sensor network
infrastructure for emergency medical care. In International Workshop on Wearable and Implantable
Body Sensor Networks.

MATHUR, G., DESNOYERS, P., GANESAN, D., AND SHENOY, P. 2006. Ultra-low power data storage for sensor
networks. In Proceedings of the 5th ACM/IEEE International Conference on Information Processing in
Sensor Networks (IPSN). 374–381.

MENINGER, S., MUR-MIRANDA, J. O., AMIRTHARAJAH, R., CHANDRAKASAN, A., AND LANG, J. H. 2001.
Vibration-to-electric energy conversion. IEEE Transactions on Very Large Scale Integration (VLSI) Sys-
tems 9, 1, 64–76.

MICROCHIP. 32-bit PIC MCUs. http://www.microchip.com/en US/family/pic32/.
MICROCHIP TECHNOLOGY INCORPORATED. Microchip eXtreme Low Power Microcontrollers.

http://www.microchip.com/.
MISAILOVIC, S., SIDIROGLOU, S., HOFFMANN, H., AND RINARD, M. 2010. Quality of service profiling. In

Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering (ICSE). 25–34.
PAPIRLA, V. AND CHAKRABARTI, C. 2009. Energy-aware error control coding for flash memories. In Pro-

ceedings of the 46th Annual Design Automation Conference (DAC). ACM/EDAC/IEEE, 658–663.
PAVAN, P., BEZ, R., OLIVO, P., AND ZANONI, E. 1997. Flash memory cells-an overview. Proceedings of the

IEEE 85, 8, 1248–1271.
PILLAI, P. AND SHIN, K. G. 2001. Real-time dynamic voltage scaling for low-power embedded operating

systems. In Proceedings of the eighteenth ACM symposium on Operating systems principles. SOSP ’01.
ACM, 89–102.

POLASTRE, J., SZEWCZYK, R., AND CULLER, D. 2005. Telos: Enabling ultra-low power wireless research.
In Proc. 4th Int’l Symposium on Information Processing in Sensor Networks: Special track on Platform
Tools and Design Methods for Network Embedded Sensors (IPSN/SPOTS ’05). IEEE.

REED, I. S. AND SOLOMON, G. 1960. Polynomial codes over certain finite fields. Journal of the Society for
Industrial and Applied Mathematics 8, 2, 300–304.

RIVEST, R. L. 1995. The RC5 encryption algorithm. In Fast Software Encryption, B. Preneel, Ed. Springer,
86–96. (Proceedings Second Int’l Workshop, Dec. 1994, Leuven, Belgium).

RIVEST, R. L. AND SHAMIR, A. 1982. How to reuse a write-once memory. Information and Control 55, 1–19.
SAMPLE, A. P., YEAGER, D. J., POWLEDGE, P. S., MAMISHEV, A. V., AND SMITH, J. R. 2008. Design of an

RFID-based battery-free programmable sensing platform. IEEE Transactions on Instrumentation and
Measurement 57, 11, 2608–2615.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: May 2011.

Half-Wits: Software Techniques for Low-Voltage Probabilistic Storage on Microcontrollers with NOR Flash MemoryA:25

SAMPSON, A., DIETL, W., FORTUNA, E., GNANAPRAGASAM, D., CEZE, L., AND GROSSMAN, D. 2011. EnerJ:
Approximate data types for safe and general low-power computation. In Proceedings of Conference on
Programming Language Design and Implementation (PLDI).

SHNAYDER, V., CHEN, B.-R., LORINCZ, K., JONES, T. R. F. F., AND WELSH, M. 2005. Sensor networks
for medical care. In Proceedings of the 3rd ACM Conference on Embedded Networked Sensor Systems
(SenSys). 314–314.

STMICROELECTRONICS. 32-bit ST MCUs. http://www.st.com/internet/mcu/product/164481.jsp.
TAMO, I. AND SCHWARTZ, M. 2010. Correcting limited-magnitude errors in the rank-modulation scheme.

IEEE Transaction on Information Theory 56, 6, 2551–2560.
TEXAS INSTRUMENTS INCORPORATED. MSP430 Ultra-Low Power Microcontrollers.

http://www.ti.com/msp430.
WEDDLE, C., OLDHAM, M., QIAN, J., WANG, A.-I. A., REIHER, P., AND KUENNING, G. 2007. PARAID: A

gear-shifting power-aware RAID. ACM Transactions on Storage (TOS) 3, 3, Article 13:1–33.
ZEINALIPOUR-YAZTI, D., LIN, S., KALOGERAKI, V., GUNOPULOS, D., AND NAJJAR, W. A. 2005. Microhash:

An efficient index structure for fash-based sensor devices. In Proceedings of the 4th USENIX Conference
on File and Storage Technologies. 31–44.

ZEMOR, G. AND COHEN, G. D. 1991. Error-correcting WOM-codes. IEEE Transactions on Information The-
ory 37, 3, 730–734.

ZHANG, F., PSTER, H. D., AND JIANG, A. 2010. LDPC codes for rank modulation in flash memories. In Proc.
IEEE International Symposium on Information Theory (ISIT). 859–863.

ZHANG, H., GUMMESON, J., RANSFORD, B., AND FU, K. 2011. Moo: A batteryless computational rfid and
sensing platform. Tech. Rep. UM-CS-2011-020, Department of Computer Science, University of Mas-
sachusetts Amherst, Amherst, MA. June.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: May 2011.

