
Content-assisted File Decoding for
Nonvolatile Memories

Yue Li, Yue Wang, Anxiao (Andrew) Jiang
Department of Computer Science and Engineering

Texas A&M University
College Station, TX 77843

{yli, yuewang, ajiang}@cse.tamu.edu

Jehoshua Bruck
Department of Electrical Engineering

California Institute of Technology
Pasadena, CA 91125
bruck@caltech.edu

Abstract—Nonvolatile memories (NVMs) such as flash memo-
ries play a significant role in meeting the data storage require-
ments of today’s computation activities. The rapid increase of
storage density for NVMs however brings reliability issues due
to closer alignment of adjacent cells on chip, and more levels that
are programmed into a cell. We propose a new method for error
correction, which uses the random access capability of NVMs
and the redundancy that inherently exists in information content.
Although it is theoretically possible to remove the redundancy
via data compression, existing source coding algorithms do not
remove all of it for efficient computation. We propose a method
that can be combined with existing storage solutions for text files,
namely content-assisted decoding. Using the statistical properties
of words and phrases in the text of a given language, our
decoder identifies the location of each subcodeword representing
some word in a given input noisy codeword, and flips the bits
to compute a most likely word sequence. The decoder can
be adapted to work together with traditional ECC decoders
to keep the number of errors within the correction capability
of traditional decoders. The combined decoding framework is
evaluated with a set of benchmark files.

I. INTRODUCTION

Nonvolatile memories (NVMs), such as flash memories,
have excellent speed and storage capacity. They have emerged
as a crucial technology for storage systems. However, accom-
panying the improvement in data density, the reliability issue
of NVMs are attracting more and more attention [1]. In this
paper, we propose a new method for error correction named
content-assisted decoding. Our method uses the fast random
access capability of NVMs and the redundancy that inherently
exists in information content. Although it is theoretically
possible to remove the redundancy via data compression,
existing source coding algorithms do not remove all of it for
efficient computation. Our method can be combined with ex-
isting storage solutions for text files. With dictionaries storing
the statistical properties of words and phrases of the same
language, our decoder first breaks the input noisy codeword
into subcodewords, with each subcodeword corresponding to
a set of possible words. The decoder then flips the bits in
each noisy subcodeword to select a most likely word sequence
as the correction. Consider the example in Figure 1. The
English text “I am” is stored using the Huffman coding:

This work was supported in part by the NSF CAREER Award CCF-
0747415 and the NSF grant CCF-1217944.

Codeword Text
Huffman encoding (1, 0, 0, 0, 0, 1, 1, 1) I am

ECC encoding (1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1) I am
Noise received (1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1) IIaa

ECC decoding failure (1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1) IIaa
Content-assisted decoding (1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1) I am

ECC decoding success (1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1) I am
Fig. 1. An example on correcting errors in the codeword of a text.

{I → (1, 0),t → (0, 0), a → (0, 1), m → (1, 1)}, where t
denotes a space mark. The information bits are encoded with
a (12, 8)-shortened Hamming code which corrects single bit
errors (the bold bits denote the parity check bits). Assume
that three errors (marked by the underlines) are received
by the codeword. The number of errors exceeds the code’s
correction capability, and ECC decoding fails. Our decoder
takes in the noisy codeword, and corrects the errors in the
information symbols by looking up a dictionary which con-
tains two words {I, am}. This brings the number of errors
down to one. Therefore, the second trial of ECC decoding
succeeds, and all the errors are corrected. Our approach is
suitable for natural languages, and can potentially be extended
to other types of data where the redundancy in information
content is not fully removed by data compression. The scheme
takes advantage of the fast random access speed provided
by flash memories for fast dictionary look-up and content
verification. For performance evaluation, we have tested a
decoding framework that combines a soft decision decoder of
low-density parity-check (LDPC) codes and our scheme with
a set of text file benchmarks. Experimental results show that
our decoder indeed increases the correction capability of the
LDPC decoder.

The rest of the paper is organized as follows. Section II
presents the preliminaries, and defines the text file decoding
problem. Section III specifies the algorithms of the content-
assisted file decoder. Section IV discusses implementation
details and experimental results.

II. THE MODELS OF FILE DECODING

We first define a few notations used throughout this pa-
per. Let x denote a binary codeword (x1, x2, · · · , xn) ∈
{0, 1}n, and we use x[i : j] to represent the subcodeword
(xi, xi+1, · · · , xj). Let the function length(x) compute the
length of a codeword x, and we use dH(x1, x2) for computing

937978-1-4673-5051-8/12/$31.00 ©2012 IEEE Asilomar 2012

the Hamming distance between two codewords of the same
length. Let A be an alphabet set, and let s ∈ A be a symbol.
We denote a space mark by t ∈ A. A word w , (s1, · · · , sn)
of length n is a finite sequence of symbols without any space.
A phrase p , (w1,t, w2) is defined as a combination of
two words separated by a space mark. Define a text t ,
(w1,t, w2,t, · · · ,t, wn) as a sequence of words separated
by t. A word dictionary Dw , {[w1 : p1], [w2 : p2], · · · }
is a finite set of records where a record [w : p] has a key
w and a value p > 0. The value p is a probability that the
word w occurs in any text. In our scheme, it refers to the
set of valid words used in files. Similarly, a phrase dictionary
Dp , {[p1 : p1], [p2 : p2], · · · } stores the probabilities that
a set of phrases appear in any given text. In our scheme, it
refers to the set of valid phrases (“word combinations") used
in files. The dictionary look-up operations denoted by Dw[w]
and Dp[p] return the probabilities of words and phrases,
respectively. We use the notation w . Dw (or p . Dp) to
indicate that there is a record in Dw (or Dp) with key w (or
p). Let πs be a bijective mapping from a symbol to a binary
codeword, and let xs = πs(t). In this paper, the mapping πs
is used during the data compression before ECC encoding, and
it encodes each symbol separately. In the example of Section I,
πs refers to the Huffman codebook. The bijective mapping
from a word w = (s1, · · · , sn) to its binary codeword is
defined as πw(w) , (πs(s1), · · · , πs(sn)), and the bijective
mapping from a text to its binary representation is defined as
πt(t) , (πw(w1), xs, · · · , xs, πw(wn)) where xs = πs(t).
We use π−1

s , π−1
w and π−1

t to denote the corresponding
inverse mappings.

The model of the data storage channel is shown in Figure 2.
A text t is generated from the source. The text is compressed

Source
Encoder

Channel
Encoder

Channel
Decoder

Source
DecoderSource

Noise

Fig. 2. The channel model for data storage.

by the source encoder, producing a binary codeword y =
πt(t) ∈ {0, 1}k. The compressed bits are feed to a channel
encoder, obtaining an ECC codeword x = ψ(y) ∈ {0, 1}n

where n > k. Here we assume a systematic ECC is used. The
codeword is then stored by memory cells, and receives an
additive error e ∈ {0, 1}n. In this paper, a binary symmetric
channel (BSC) with bit-flipping rate f is assumed. When
the cells are read, the channel outputs a noisy codeword
x′ = x ⊕ e where ⊕ is the bit-wise exclusive-OR over
codewords. The noisy codeword is first corrected by a channel
decoder, producing an estimated ECC codeword ŷ = ψ−1(x′).
The source decoder decompresses the corrected codeword, and
returns an estimated text t̂ = π−1

t (ŷ) upon success.
This work focuses on designing better channel decoders

ψ−1 for correcting bit errors in text files. We propose a
new decoding framework which connects a traditional ECC
decoder with a content-assisted decoder (CAD) as shown
in Figure 3. A noisy codeword is first passed into an ECC

ECC Decoder

Content-assisted
DecoderChannel Decoder

Y

N

Succeeds or
Reaches Iteration

Limit ?

Fig. 3. The work-flow of a channel decoder with content-assisted decoding.

decoder. If decoding fails, the decoding output is passed to
CAD. With the statistical information stored in Dw and Dp,
the CAD selects a word for each subcodeword to form a likely
text as the correction for the noisy codeword. The corrected
text is feed back to the ECC decoder. The iteration continues
until either the ECC decoder succeeds or an iteration limit
is reached. The text file decoding problem for our CAD is
defined as follows.
Definition 1. Let t be some text generated from the source, and
let x′ ∈ {0, 1}n be a noisy channel output codeword of t. Given
two dictionaries Dw and Dp, the text file decoding problem for
the CAD is to find an estimated text t̂ which is the most likely
correction for x′, i.e.

argmax
t̂

Pr{t̂ | x′, Dp, Dw}.

III. THE CONTENT-ASSISTED DECODING ALGORITHMS

The CAD approximates the solution to the problem in
Definition 1 by three steps: (1) estimate space positions in the
noisy codeword to divide the codeword into subcodewords,
with each subcodeword representing a set of words in Dw. (2)
Resolve ambiguity by selecting a word for each subcodeword
to form a most likely sequence. (3) Perform post-processing to
revert the aggressive bit flips done in (1) and (2). We describe
the algorithm of each step in this section.

A. Creating dictionaries

The dictionaries Dw and Dp are used in our decoding
algorithms. To create the dictionaries, we simply count the
frequencies of words and phrases of two words which appears
in a relatively large set of different texts in the same language
as the texts generated by the source. Fast dictionary look-up is
achieved by storing the dictionaries in a content-addressable
way thanks to the random access in flash memories, i.e., the
probability in a dictionary record is addressed by the value
of the corresponding word or phrase. As we show later in
section IV, the completeness of the dictionaries effects the
decoding performance.

B. Codeword segmentation
The codeword segmentation function σ takes in a noisy

codeword and a word dictionary, then flips the minimum
number of bits to make the corrected codeword represent a
text, e.g., a sequence of valid words separated by space marks.
If σ(x, Dw) = ((x1, x2, · · · , xk), (i1, i2, · · · , ik−1)), where
the number of records |Dw| is bounded by some constant K,
and ij ∈ N is the index of the first bit of the j-th space
in x, the subcodeword x1 = x[1 : i1 − 1], xk = x[ik−1 +
length(xs) : length(x)], and xj = x[ij−1 + length(xs) :
ij − 1] for j ∈ {2, 3, · · · , k− 1}. The mapping σ is required
to satisfy the following properties: (1) for each subcodeword

938

xj, ∃w . Dw such that length(xj) = length(πw(w)). (2)
dH(x, (x1, xs, x2, xs, · · · , xs, xk)) is minimized. Intuitively, as
the bit-flip rate f is very small (which is common for NVM
channels), the segmentation function is a maximum likelihood
decoder which flips the minimum number of bits of the
codeword. Let the cost function c(i, j) return the minimum
number of flips taken to convert the subcodeword x[i : j] to
represent a text. We have the following recurrence:

c(i, j) ,

{
min{g(i, j), h(i, j)} if i < j
∞ otherwise

,

where

g(i, j) ,minw.Dw dH(πw(w), x[i : j]),

h(i, j) ,mink∈[i+1,j−length(xs)]

c(i, k− 1) + c(k + length(xs), j)+
dH(x[k : k + length(xs)− 1], xs).

The function g(i, j) computes the minimum number of flips
taken to turn x[i : j] into the codeword of a word in Dw.
The function h(i, j) computes the minimum flip cost taken to
obtain a codeword representing a text with at least two words.

Example 2. Consider the example in section I. The input noisy
codeword x′ = (1, 0, 1, 0, 0, 1, 0, 1), and the word dictionary
Dw = {[I : 0.5], [am : 0.5]}. We have σ(x′, Dw) =
(((1, 0), (0, 1, 0, 1)), (3)). Starting from c(1, 8), we recursively
c(i, j) for all i < j. The results are shown in Figure 4(b). For
instance, to compute c(5, 8), we first compute g(5, 8) = 1
as the subcodeword can be turned to represent the word “I”
with 1 bit-flip. We then compute h(5, 8) = ∞. This is because
length(xs) = 2, and the minimum codeword length of a word
in Dw is 2, it is impossible to split the subcodeword (0, 1, 0, 1)
by a space. Therefore c(5, 8) = min(1, ∞) = 1.

Our objective is to compute the c(1, n) given an input
codeword of length n, and find out the space positions which
help achieve the minimum cost. When c(i, j) is computed
recursively starting from c(1, n), some entries will be recom-
puted unnecessarily. For instance, in example 2, the entry
c(4, 5) needs to be computed when we compute c(1, 7) and
c(2, 8). A good way for speeding up such computation is
to use dynamic programming techniques shown in Algo-
rithm 1, which computes the final result iteratively starting
from c(1, 2), an entry computed in the previous iteration is
saved for later iterations. The algorithm treats c(i, j) as the
entries of a two dimensional table. Starting from c(1, 2), the
table the algorithm fills each entry diagonally across the table
as shown in Figure 4(a). The corresponding space locations
for breaking the subcodeword x[i : j], or the set of words
that x[i : j] can be flipped to represent is recorded using
a two dimensional table m. In practice, as f is close to 0,
the average number of errors in the codeword of a word is
small. Computing for the set of possible words Sw for a given
noisy codeword can be accelerated by passing an additional
Hamming distance limit d to reduce the search space, i.e.
instead of searching the whole Dw as in g(i, j), we search
the set {w | w . Dw, dH(πw(w), x[i : j]) < d} to skip the
words which are too far from the noisy codeword in terms of

Algorithm 1 CodewordSegmentation(x, Dw)

n← length(x), l ← length(xs)
Let c and m be two n× n tables
Let wordSets and spaces be two empty lists
for t from 1 to n do

for i from 1 to n− t + 1 do
j← i + t− 1
dmin ← minw.Dw dH(πw(w), x[i : j])
Sw ← {w | w . Dw, dH(πw(w), x[i : j]) = dmin}
k′ ← 0
for k from i + 1 to j− l do

d′ ← c(i, k) + c(k + l, j) + dH(xs, x[k : k + l − 1])
if d′ < dmin then

dmin ← d′
k′ ← k

if k′ = 0 then
m(i, j).words← Sw

else
m(i, j).words← ∅
m(i, j).space← k′

c(i, j)← dmin
TraceBack(1, n, spaces, wordSets, m, l)
return wordSets and spaces

Algorithm 2 TraceBack(i, j, spaces, wordSets, m, l)
if m(i, j).words = ∅ then

k← m(i, j).space
TraceBack(i, k− 1, spaces, m, l)
spaces. append(k)
TraceBack(k + l, j, spaces, m, l)

else
wordSets. append(m(i, j).words)

d and Hamming distance metric. As we are more interested in
the space locations than the value of c(i, j), after the entries of
c and m have been filled, Algorithm 2 is used to recursively
trace back the solution path recorded in m. The results are
the ordered space locations and the sets of words for the
codewords between the spaces. Assume the input codeword
length N is much greater than K, and we treat K as a constant,
we also assume that the codeword of each word has limited
length bounded by some constant. The time complexity of
our dynamic programming algorithm is O(n). This is because
only O(n) entries need to be computed and each computation
takes O(1) time. The algorithm requires O(n2) space is used
for storing the tables c and m.

Example 3. For the example in section I, the tables c and m
computed by Algorithm 1 are shown in Figure 4(b) and 4(c).
The minimum flipping cost is c(1, 8) = 2, and the index of
the estimated space is m(1, 8).space = 3. With the estimated
space, the subcodeword x[1 : 2] = (1, 0) can be flipped to
denote a word in the set {I}, and the subcodeword x[5 : 8] =
(0, 1, 0, 1) can be flipped to denote a word in the set {am}.

C. Ambiguity resolution

Given the subcodewords (x1, x2, · · · , xk) between the es-
timated spaces, and a list of word sets (W1, W2, · · · , Wk)
computed from the codeword segmentation algorithm, for
i ∈ {1, · · · , k} we select a word wi from Wi to form a most

939

ij

1

n-1

n

2

(a) Iterative table filling.

ij

18

2
0

∞
2

3
∞

0

∞
2

∞
1

3
∞

3
∞

2

∞
2

∞
2

∞
0

2
∞

3
∞

1
∞

2
7

(b) Table c.

ij

18

2
{I}

X
{I}

X
{I}

X

X
{I}

3
X

X
{I}

X
4

X

X
{I}

3
X

5
X

X
{I}

7
{am} {am} {am} {am} {am}

(c) Table m.
Fig. 4. The examples of codeword segmentation. In Figure (c): A number in the table denotes the index of the first bit of an estimated space; a set of word
means the subcodeword can be flipped to any of the word in the set. The cross × means a subcodeword can neither be flipped to represent a word nor to a
text with at least two words.

probable text t̂ = (w1,t, w2,t, · · · ,t, wk). The codeword
πt(t̂) is a correction for the input noisy codeword. Specifically,
this step is to compute

argmax(w1,w2,··· ,wk)∈W1×W2···×Wk

Pr{(w1, w2, · · · , wk), (x1, x2, · · · , xk)}.

Let the function P(wi) compute the maximal joint probability
when some word wi is selected from Wi and appended to the
previously selected word sequence (w1, w2, · · · , wi−1). For
i ∈ [2, k], we have

P(wi) ,max(w1,··· ,wi−1)∈W1×···×Wi−1

Pr{(w1, · · · , wi), (x1, · · · , xi)}.

Assume the words in a text form a one-step Markov chain, i.e.,
for i ≥ 2, Pr{wi | (w1, w2, · · · , wi−1)} = Pr{wi | wi−1}.
Therefore, we rewrite the equation above as:

P(wi)

=max(w1,··· ,wi−1)∈W1×···×Wi−1
Pr{wi | wi−1}Pr{xi | wi}

Pr{w1}Pr{w2 | w1} · · ·Pr{wi−1 | wi−2}∏i−1
k=1 Pr{xk | wk}

=max(w1,··· ,wi−1)∈W1×···×Wi−1
Pr{wi | wi−1}Pr{xi | wi}

Pr{(w1, · · · , wi−1), (x1, · · · , xi−1)}
=maxwi−1∈Wi−1 Pr{xi | wi}Pr{wi|wi−1}

max(w1,··· ,wi−2)∈W1×···×Wi−2

Pr{(w1, · · · , wi−1), (x1, · · · , xi−1)}
=maxwi−1∈Wi−1 Pr{xi | wi}Pr{wi|wi−1}P(wi−1).

(1)

and P(w1) = Pr{w1}Pr{x1 | w1}. The conditional proba-
bility Pr{xk | wk} is computed from the channel statistics by
Pr{xk | wk} = f dH(πw(wk),xk)(1− f)length(xk)−dH(πw(wk),xk).
The probabilities Pr{w1} = Dw[w1] and Pr{wk | wk−1} =
Dp[(wk−1,t, wk)] are looked-up from the dictionaries:

The derived recurrence suggests that the optimization prob-
lem can be mapped to the problem of trellis decoding, which
is again solved by dynamic programming. The trellis for our
problem has k time stages. The observed codeword at the i-
th stage is xi for i ∈ {1, · · · , k}. There are |Wi| vertices at
stage i with each representing an element w of Wi and being
associated with the conditional probability Pr{w | xi}. The
weight of the directed edge from a vertex at stage i with word
wx to a vertex of stage i + 1 with word wy is the conditional
probability Pr{wy | wx}. An example of the mapping is
shown in Figure 5. Our target is to compute the sequence
which achieves maxwk∈Wk P(wk), which leads to the Viterbi
path in the corresponding trellis starting from a vertex in stage

1 and ending at a vertex in stage k.

w1,1

w1,2

w2,1

w2,2

w2,3

w3,1

w3,2

w3,3

w4,1

w4,2

Fig. 5. Example of the mapping to trellis decoding. The word sets W1 =
{w1,1, w1,2}, W2 = {w2,1, w2,2, w3,2}, W3 = {w3,1, w3,2, w3,3} and W4 =
{w4,1, w4,2} respectively corresponds to the subcodewords x1, x2, x3 and x4.

The dynamic programming algorithm for solving our trel-
lis decoding problem is specified in Algorithm 3, which is
adapted from the Viterbi decoding [2]. The final solution is
computed iteratively, starting form P(w1) according to the
recurrence. When the last iteration is finished, we trace back

Algorithm 3 Viterbi((W1, · · · , Wk), (x1, · · · , xk), f , Dw, Dp)

n← maxl∈[1,k] |Wl |
Let p and s be two n× k tables
pmax ← 0, index ← 0
for t from 1 to k do

for i from 1 to |Wt| do
p′ ← f dH(πw(Wt [i]),xt)(1− f)length(xt)−dH(πw(Wt [i]),xt)

if t = 0 then
p(i, t)← p′ · Dw[Wt[i]]

else
pmax ← 0, index ← 0
for j from 1 to |Wt−1| do

p′′ ← p′ · Dp[(Wt−1[j],t, Wt[i])] · p[j, t− 1]
if p′′ > pmax then

pmax ← p′′
index ← j

p(i, t)← pmax
s(i, t)← index

words← [Wk[index]]
for t from k to 2 do

i← s(index, t)
words. appendToFront(Wt−1[i])
index ← i

return words

along the Viterbi path recorded in the table s, collecting
the selected words to form an estimated text t̂. The com-
plexity of the Viterbi decoding algorithm is O(n2k) where
k = O(N) is the length of the input codeword list, and
n = maxi∈[1,k] |Wi| = O(K) is the cardinality of the biggest
input word set. As K is a constant which is much smaller
than N, the Viterbi decoding for our case has time complexity

940

O(N). The algorithm requires O(nk) = O(N) space for
storing the tables p and s.

D. Post-processing

Additional errors may be introduced during codeword seg-
mentation and ambiguity resolution if unknown words or
phrases occur in the input codeword. Unknown words (phrase)
refers to new or rare words (phrases) which are not in-
cluded in Dw (Dp). Upon meeting an unknown word, the
codeword segmentation algorithm tends to split its codeword
into subcodewords representing known words with the space
symbol. Such segmentation introduces additional bit errors.
We use a simple post-processing step which undoes the bit-
flips issued by such aggressive segmentation. The idea is to
use the phrase dictionary Dp to check whether two adjacent
words returned by the Viterbi decoder is known to Dp. If so,
the post-processor simply accepts the segmentation, otherwise
the corresponding bits in the initial noisy codeword are used
to replace the codewords for those unknown phrases. The
complexity of this step is O(k) = O(N).

IV. EXPERIMENTS

A. Implementation detail

Our implementation supports the use of basic punctuation
in the input text files which includes ‘,’, ‘.’, ‘?’ and ‘!’. This
is done by adding another function in the definition of c(i, j)
when i < j. The function measures the number of flips taken
to turn a subcodeword to represent a word followed by a
punctuation. During ambiguity resolution, overflow may occur
in the multiplications of probabilities when N is large. We use
a logarithmic version of Eq.(1). Using additions instead of
multiplications of floating point numbers significantly delays
the overflow. A smoothing technique is used for computing
Pr{wi | wi−1}. The probability Pr{wi} will be used if the
phrase (wi−1,t, wi) is unknown to Dp. The reason is that
returning 0 for unknown phrases suddenly makes the whole
joint probability be 0 in Eq.(1) and cancels the path.

B. Evaluation

We evaluated decoding performance of the channel decoder
combining the LDPC sum-product decoder and the CAD. We
compared the bit error rates (BER) of the combined channel
decoder with those of the scheme using the LDPC sum-
product decoding alone. The test inputs include 2 self-collected
paragraphs and 8 paragraphs randomly extracted from the
Canterbury Corpus, the Calgary Corpus, the Large Corpus [3],
and the large text compression benchmark [4] (see Table I).
The dictionaries are built using the books randomly extracted
from Project Gutenberg [5]. The functions πs and π−1

s are
implemented with Huffman coding. A (3584, 3141)-random
LDPC code is used as the ECC. The iteration limit of the
sum-product decoder is 32. The iteration threshold for the
LDPC-CAD exchange is 3. The bit-flip rate of the BSC is
0.012, which makes the sum-product decoder fail to converge
with high probability. The decoding BERs for complete and
incomplete dictionaries are shown in Table I and Table II,

TABLE I
THE DECODING BERS WHEN THE DICTIONARIES ARE COMPLETE

Name Category From ECC only Combined
email Email discussion Calgary 8.6× 10−3 1.9× 10−6

lcet Lecture notes Canterbury 8.4× 10−3 0.0
alice Novel Canterbury 8.3× 10−3 2.6× 10−6

confintro Call for paper Self-made 8.7× 10−3 0.0
bible The bible Large 8.3× 10−3 3.2× 10−6

asyoulike Shakespeare play Canterbury 8.9× 10−3 3.8× 10−6

plrabn Poetry Canterbury 8.6× 10−3 0.0
news Web news Self-made 8.6× 10−3 8.4× 10−6

enwiki Wikipedia texts Large text 8.3× 10−3 0.0
world192 The world fact book Large 8.3× 10−3 4.9× 10−5

respectively. The BERs for each benchmark are averaged from
1000 experiments. In Table I, the combined channel decoder
significantly outperforms the traditional decoder thanks to
the completeness of the dictionaries. The performance for
the benchmark world192 is not as good as others. This is
because world192 has much more punctuations but much less
words than other benchmarks do, and more errors occur in
the punctuations which the CAD is not good at correcting.
In Table II, to see the effectiveness of the post-processor,
we also show the performance of the combined decoder
without the post-processor. The completeness of the dictio-

TABLE II
THE DECODING BERS WHEN THE DICTIONARIES ARE INCOMPLETE.

Name ECC only Combined After PP UW% UP%
email 8.6× 10−3 1.2× 10−3 6.0× 10−4 0 14
lcet 8.4× 10−3 9.3× 10−4 1.2× 10−3 0 24
alice 8.3× 10−3 7.6× 10−5 0.0 0 2

confintro 8.7× 10−3 5.1× 10−5 3.5× 10−3 0.9 41
bible 8.3× 10−3 7.5× 10−4 1.1× 10−3 0.7 29

asyoulike 8.9× 10−3 4.1× 10−4 9.6× 10−4 0.8 15
plrabn 8.6× 10−3 7.2× 10−3 5.0× 10−3 2 33
news 8.6× 10−3 1.2× 10−3 2.1× 10−3 2 29
enwiki 8.3× 10−3 1.6× 10−2 4.0× 10−3 11 34
world192 8.3× 10−3 2.6× 10−2 9.2× 10−3 25 31

naries determines the decoding performance. For instance, the
benchmarks world192 and enwiki have considerable amount
of words and phrases which are unknown to our dictionaries.
The combined decoder without post-processing introduces
additional errors by aggressively breaking the codewords of
the unknown words into subcodewords separated with spaces.
In such cases, the post-processor is able to recognize and revert
most of the over-aggressive bit-flips. This greatly reduces the
number of additional errors introduced due to the “ignorance”
of the CAD. For the benchmark confintro, the performance
of the decoder without post-processing is much better than
that of the decoder using post-processing. This is because
confintro only has quite a few unknown words but many
technical phrases which are unknown to Dp. The unknown
phrases makes the post-processor tend to revert reasonable
corrections done in the previous steps.

REFERENCES

[1] L. M. Grupp, J. D. Davis, and S. Swanson, “The bleak future of nand
flash memory,” in Proceedings of the 10th USENIX conference on File
and Storage Technologies, Berkeley, CA, USA, 2012.

[2] A. Viterbi, “Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm,” IEEE Transactions on Information Theory,
vol. 13, no. 2, pp. 260–269, april 1967.

[3] The Canterbury Corpus: http://corpus.canterbury.ac.nz, 2012.
[4] Large Text Compression Benchmark: http://mattmahoney.net/dc/text.html,

2012.
[5] Project Gutenberg: http://www.gutenberg.org, 2012.

941

