
Bit-fixing Codes for Multi-level Cells
Anxiao (Andrew) Jiang

Computer Science and Eng. Dept.
Texas A&M University

College Station, TX 77843
ajiang@cse.tamu.edu

Yue Li
Computer Science and Eng. Dept.

Texas A&M University
College Station, TX 77843

yli@cse.tamu.edu

Jehoshua Bruck
Electrical Engineering Dept.

California Institute of Technology
Pasadena, CA 91125

bruck@caltech.edu

Abstract—Codes that correct limited-magnitude errors for
multi-level cell nonvolatile memories, such as flash memories and
phase-change memories, have received interest in recent years.
This work proposes a new coding scheme that generalizes a
known result [2] and works for arbitrary error distributions.
In this scheme, every cell’s discrete level ` is mapped to its
binary representation (bm−1, · · · , b1, b0), where the m bits belong
to m different error-correcting codes. The error ε in a cell
is mapped to its binary representation (em−1, · · · , e1, e0), and
the codes are designed such that every error bit ei only affects
the codeword containing the data bit bi. The m codewords are
decoded sequentially to correct the bit-errors e0, e1, · · · , em−1

in order. The scheme can be generalized to many more numeral
systems for cell levels and errors, optimized cell-level labelings,
and any number of cell levels. It can be applied not only to storage
but also to amplitude-modulation communication systems.

I. INTRODUCTION

Multi-level cell (MLC) nonvolatile memories have become
increasing important for storage in recent years. A well-
known example is flash memory, where cells with q = 4
and 8 levels are already widely used. Emerging nonvolatile
memories, such as phase-change memory, are also embracing
the MLC technology. Generally speaking, every cell has an
analog value that represents the cell’s state. For flash memory,
the value is the threshold voltage of the cell; and for phase-
change memory, it is the electrical resistance of the cell. The
values of cells are quantized into q discrete levels, which
can store log2 q bits. MLCs with more and more levels are
actively developed for higher storage capacity. For example,
flash memories of q = 16 levels have been demonstrated.

It is important to design error-correcting codes (ECCs) that
consider the many properties of MLC memories. Errors often
have limited magnitudes and non-symmetric distributions, due
to the memories’ unique disturb and noise mechanisms. Also,
current MLCs are restricted by q, the number of levels, being
a power of 2. Coding schemes that can map cells to binary
codes conveniently for an arbitrary number of levels are worth
studying. All these will be addressed in this paper.

There are different approaches to map cell levels to binary
codes when q is a power of 2, including binary representation
and Gray codes. Consider n cells; and for i = 1, · · · , n, let
`i ∈ {0, 1, · · · , q − 1} be the level of the ith cell. Let m =
log2 q. And let Bm(`i) , (bi,m−1, · · · , bi,1, bi,0) ∈ {0, 1}m be
the binary representation of `i, namely, `i =

∑m−1
j=0 bi,j · 2j .

Since the m bits in a cell have different error probabilities, in
a basic binary-representation approach, m ECCs of different
rates are used. Specifically, for j = 0, 1, · · · ,m − 1, we let

(b1,j , · · · , bn,j) be a separate ECC. To further reduce error
probabilities, a more common approach is to represent the
bits in a cell using Gray codes, and then apply m ECCs.

In addition to the above approaches, ECCs for limited-
magnitude errors have received interest recently. In [2], a
new coding scheme with applications to flash memories, etc.,
was presented. To correct t asymmetric errors of maximum
magnitude τ , it takes the modulo τ + 1 of the cell levels
(`1, · · · , `n) and applies to it an ECC of alphabet size τ + 1
that corrects t errors. The scheme substantially extends the
interesting study in [1] and can be generalized to bidirectional
errors. In [5], the study was extended to errors of graded
magnitude, and nice results were presented. The work focused
on a generalized error model in which at most t1 asymmetric
errors of maximum magnitude τ1 and at most t2 asymmetric
errors of maximum magnitude τ2, with τ1 < τ2, may occur.
More codes for limited-magnitude errors have been presented
recently. In particular, optimal systematic ECCs for both
asymmetric and symmetric errors were presented in [3], [4].

In this paper, we propose an alternative coding scheme
named bit-fixing code. Its main idea is to sequentially correct
the bits in the binary representation of errors. And it can
be generalized to more numeral systems. When q = 2m,
let εi ∈ {−`i, · · · , 0, · · · , q − 1 − `i} denote the additive
error in the ith cell’s level `i, and let Bm(εi mod q) ,
(ei,m−1, · · · , ei,0) ∈ {0, 1}m be the binary representation of
εi mod q. For j = 0, · · · ,m − 1, let (b1,j , · · · , bn,j) be a
binary ECC Cj. The scheme has the nice property that the error
bits (e1,j , · · · , en,j) only affect the code Cj . (Note that this
property does not hold for the binary-representation scheme
introduced above.) That enables us to allocate redundancy
appropriately and decode C0, · · · , Cm−1 sequentially.

The bit-fixing coding scheme can be applied to arbitrary er-
ror distributions, including both asymmetric and bidirectional
errors. It can be generalized from the binary representation to
many more numeral representations, including k-ary numbers
(for any integer k ≥ 2) and mixed-radix numeral systems such
as factoradic systems. It can also be extended to an arbitrary
number of cell levels, which means q can be any integer
instead of a power of 2 and binary codes can still be used. The
coding scheme in fact contains the ECC for asymmetric errors
of limited magnitude in [2] as a special case. It is also related
to the codes in [5], but is more specific in its construction
and more general in various ways. It can be applied not only
to storage but also to amplitude-modulation communication
systems. (Due to space limitation, we skip some details.)

II. BIT-FIXING CODING SCHEME

A. Numeral Systems for Cell Levels and Errors

Consider n memory cells of q levels. For i = 1, · · · , n, let
`i ∈ {0, 1 · · · , q − 1} be the written level of the ith cell, and
let εi ∈ {−`i, · · · , 0, · · · , q − 1− `i} be the additive error in
the ith cell. Then the noisy cell level – the level we read – of
the ith cell is `′i = `i + εi ∈ {0, 1, · · · , q − 1}.

Given a non-negative integer x, let Bi(x) denote the last
i bits in the binary representation of x. That is, if Bi(x) =
(yi−1, · · · , y1, y0) ∈ {0, 1}i, then

(
x mod 2i

)
=
∑i−1
j=0 yj ·

2j . For example, B3(5) = (1, 0, 1) and B2(5) = (0, 1). Let
m = dlog2 qe. Let (bi,m−1, · · · , bi,1, bi,0) , Bm(`i) be the
last m bits in the binary representation of the cell level `i, and
let (ei,m−1, · · · , ei,1, ei,0) , Bm(εi mod 2m) be the last m
bits in the binary representation of εi mod 2m. Note that if
errors are asymmetric, – say they are upward errors, namely
∀ i, εi ≥ 0, – then (ei,m−1, · · · , ei,1, ei,0) = Bm(εi).

We can extend the representation of cell levels and er-
rors from binary representation to more general numeral
systems. Let c1, c2, · · · , cm′ be positive integers such that∏m′

i=1 ci ≥ q. Then in a mixed-radix numeral system with
bases (c1, c2, · · · , cm′), every integer x ∈ {0, 1, · · · , q−1} has
a unique representation R(x) = (ym′−1, · · · , y1, y0) – where
for i = 0, · · · ,m′ − 1, the digit yi ∈ {0, 1, · · · , ci+1 − 1}
– that satisfies the condition x = y0 + y1c1 + y2c1c2 +
· · ·+ ym′−1c1c2 · · · cm′−1. Note that the mixed-radix numeral
system contains several common numeral systems as special
cases: (1) If c1 = c2 = · · · = cm′ = 2, it becomes the binary
representation; (2) More generally, if c1 = c2 = · · · = cm′ =
k for some integer k ≥ 2, it becomes the k-ary representation;
(3) If ci = i + 1, it becomes the factorial number system.
As we will see, for the bit-fixing coding scheme, given q,
it is beneficial to choose the bases ci (for i = 1, · · · ,m′)
with two properties: First, good ECCs for alphabet size ci can
be designed; Second, the representations of errors (modulo
c1c2 · · · cm′) contain as few non-zero digits as possible.

B. Bit-fixing Coding Scheme for Binary Representation

We first present the bit-fixing coding scheme for the case
where q is a power of 2 and binary representations are used.
It will be extended to general cases later.

Construction 1. ENCODING OF BIT-FIXING SCHEME
For j = 0, 1, · · · ,m−1, let Cj be an (n, kj) binary ECC that

can correct tj errors. We store k0+k1+· · ·+km−1 information
bits in n cells of q = 2m levels as follows. First, we partition the
information bits intom chunks, where for j = 0, · · · ,m−1, the
jth chunk has kj information bits: dj = (dj,1, dj,2, · · · , dj,kj).
Next, for j = 0, · · · ,m − 1, we use Cj to encode dj into a
codeword bj = (b1,j , b2,j , · · · , bn,j). Then, for i = 1, · · · , n,
let `i =

∑m−1
j=0 bi,j · 2j , and we write the ith cell’s level as `i.

After cells are written, additive errors ε1, · · · , εn will appear
and change cell levels to `′1 = `1 + ε1, · · · , `′n = `n + εn.

Construction 2. DECODING OF BIT-FIXING SCHEME

Let `′1, · · · , `′n be the noisy cell levels we read. As the
initialization step, for i = 1, · · · , n, let ˆ̀i = `′i.

For j = 0, 1, · · · ,m− 1, carry out these three steps:
1) For i = 1, · · · , n, let (b̂i,m−1, · · · , b̂i,1, b̂i,0) = Bm(ˆ̀i)

be the binary representation of the estimated cell level ˆ̀i.
2) Use code Cj to decode the codeword (b̂1,j , · · · , b̂n,j), and

let (ê1,j , · · · , ên,j) be the discovered error vector. (That
is, the recovered codeword is (b̂1,j⊕ê1,j , · · · , b̂n,j⊕ên,j),
where “⊕” is the exclusive-OR operation.)

3) For i = 1, · · · , n, update the estimated cell level ˆ̀
i as

follows: ˆ̀i ←
(
ˆ̀
i − êi,j · 2j mod q

)
.

Now ˆ̀
1, · · · , ˆ̀n are our recovered cell levels. From them, the

information bits can be readily obtained.

In the above decoding algorithm, m ECCs C0, C1, · · · , Cm−1
are decoded sequentially. There is a nice mapping: The
codeword of each Ci is (b1,i, · · · , bn,i), which are the bits
at position i in the binary representations of cell levels
(`1, · · · , `n); and as will be shown later, the binary errors
in that codeword are (e1,i, · · · , en,i), which are the bits at
position i in the binary representations of (the modulo q of)
the errors (ε1, · · · , εn). However, note that the error vectors
(e1,i, · · · , en,i) cannot be obtained directly from the binary
representations of the noisy cell levels (`′1 = `1+ε1, · · · , `′n =
`n+εn) (except for i = 0). Instead, they are obtained gradually
as more and more ECCs are decoded and the estimations of
cell levels are made closer and closer to their true values.

Example 3. Consider n cells of q = 8 levels. Then m =
log2 q = 3. Assume C0, C1, C2 can correct no less than 3, 1,
and 2 errors, respectively. Without loss of generality (WLOG),
suppose that after cells are written, errors appear in cells 1, 2
and 3, respectively. Let `1 = 3, `2 = 1, `3 = 2 be their original
levels, and let ε1 = 1, ε2 = 5, ε3 = −1 be their errors. Then
their noisy levels are `′1 = 4, `′2 = 6, `′3 = 1, respectively. (See
Fig. 1 and the following table for an illustration.)

Cell 1 Cell 2 Cell 3
Original level 3: (0,1,1) 1: (0,0,1) 2: (0,1,0)

Error 1: (0,0,1) 5: (1,0,1) -1: (1,1,1)
Noisy level 4: (1,0,0) 6: (1,1,0) 1: (0,0,1)

Level after decoding C0 3: (0,1,1) 5: (1,0,1) 0: (0,0,0)
Level after decoding C1 3: (0,1,1) 5: (1,0,1) 6: (1,1,0)
Level after decoding C2 3: (0,1,1) 1: (0,0,1) 2: (0,1,0)

In the decoding process, we first decode C0, where the noisy
codeword is (0, 0, 1, · · ·). (It is because the least-significant bits
(LSB) of (Bm(`′1),Bm(`′2),Bm(`′3), · · ·) are (0, 0, 1, · · ·).) By
decoding it, we find its error vector (e1,0, e2,0, e3,0, · · ·) =
(1, 1, 1, · · ·). So we change the cell levels to (4 − e1,0
mod 8, 6− e2,0 mod 8, 1− e3,0 mod 8) = (3, 5, 0).

Next, we decode C1, where the noisy codeword
is (1, 0, 0, · · ·). (It is because the middle bits of
(Bm(3),Bm(5),Bm(0), · · ·) are (1, 0, 0, · · ·).) By decoding it,
we find its error vector (e1,1, e2,1, e3,1, · · ·) = (0, 0, 1, · · ·). So
we change the cell levels to (3 − e1,1 · 2 mod 8, 5 − e2,1 · 2
mod 8, 0− e3,1 · 2 mod 8) = (3, 5, 6).

We then decode C2, where the noisy codeword is
(0, 1, 1, · · ·). (It is because the most-significant bits (MSB) of
(Bm(3),Bm(5),Bm(6), · · ·) are (0, 1, 1, · · ·).) By decoding it,
we find its error vector (e1,2, e2,2, e3,2, · · ·) = (0, 1, 1, · · ·). So
we change the cell levels to (3− e1,2 · 22 mod 8, 5− e2,2 · 22
mod 8, 6− e3,2 · 22 mod 8) = (3, 1, 2). They are the original
cell levels, from which we can recover information bits. 2

0

1

2

3

4

5

6

7

Level

(0,0,0)

(0,0,1)

(0,1,0)

(0,1,1)

(1,0,0)

(1,0,1)

(1,1,0)

(1,1,1)

Binary
Representation

0

Cell 1

0

2

Cell 2

error error

original
level

noisy
level

original
level

noisy
level

original
level

error

noisy
level 0

1

2

Cell 3

Fig. 1. Decoding process of bit-fixing scheme. Here thick solid arrows show
how errors change cell levels to noisy levels. And thin dotted arrows show how
decoding changes the noisy levels back to the original levels. For i = 0, 1, 2,
the thin dotted arrows labeled by i correspond to the decoding of Ci.

We now prove the number of errors of variable magnitudes
the bit-fixing coding scheme can correct. Given a vector
v = (vk−1, · · · , v1, v0) ∈ {0, 1}k, define its support as
support(v) , {i|i ∈ {0, 1, · · · , k − 1}, vi = 1}. Given
i ∈ {0, 1, · · · ,m−1}, we define the cross of i as crossm(i) ,

{j|j ∈ {0, 1, · · · , 2m − 1}, i ∈ support(Bm(j))}.

Namely, crossm(i) is the set of integers in {0, 1, · · · , 2m−1}
whose binary representations have 1 in the ith position.

Example 4. Let m = 3. Since Bm(j) = (0, 0, 0), (0, 0, 1),
(0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1) for j =
0, · · · , 7 respectively, we have crossm(0) = {1, 3, 5, 7},
crossm(1) = {2, 3, 6, 7}, crossm(2) = {4, 5, 6, 7}. 2

For i = 0, 1, · · · , q − 1, define γi ,
|{j|j ∈ {1, · · · , n}, εj ≡ i mod q}|. That is, there are
γi cells with errors of magnitude exactly i (mod q).

Theorem 5. The bit-fixing coding scheme can recover all in-
formation bits if for j = 0, 1, · · · ,m − 1, the binary error-
correcting code Cj can correct

∑
k∈crossm(j) γk binary errors.

Proof: The decoding algorithm in Construction 2 decodes
C0, · · · , Cm−1 sequentially and updates the cell-level estima-
tion ˆ̀

i (for i = 1, · · · , n) along the way. We prove this claim
by induction: For j = 0, 1, · · · ,m − 1, after Cj is decoded,
each ˆ̀

i is updated as `i +
∑m−1
k=j+1 ei,k · 2k mod q.

First consider the base case j = 0. The noisy codeword for
C0 is (`′1 mod 2, · · · , `′n mod 2). Since for i = 1, · · · , n,

`′i ≡ `i + εi ≡
∑m−1
k=0 bi,k · 2k +

∑m−1
k=0 ei,k · 2k mod q, the

noisy codeword is (b1,0⊕e1,0, · · · , bn,0⊕en,0). The Hamming
weight of the error vector (e1,0, · · · , en,0) is

∑
k∈crossm(0) γk,

so C0 can correct all those errors. Then ˆ̀
i is updated as (`′i−

ei,0 mod q) = (`i +
∑m−1
k=1 ei,k · 2k mod q).

Now suppose the claim holds for j = 0, 1, · · · , j′ <
m − 1. Consider j = j′ + 1. The noisy codeword for Cj is
(b̂1,j , · · · , b̂n,j), where b̂i,j is the (j +1)th LSB in the binary
representation of ˆ̀

i and equals
(

ˆ̀
i−(ˆ̀i mod 2j)

2j mod 2
)

. By

induction assumption, ˆ̀
i = (`i +

∑m−1
k=j ei,k · 2k mod q) =

(
∑m−1
k=0 bi,k ·2k+

∑m−1
k=j ei,k ·2k mod q). So b̂i,j = bi,j⊕ei,j .

So the noisy codeword is (b1,j ⊕ e1,j , · · · , bn,j ⊕ en,j), which
has

∑
k∈crossm(j) γk errors. So Cj can correct all those errors.

Then ˆ̀
i is updated as ((`i +

∑m−1
k=j ei,k · 2k) − ei,j · 2j

mod q) = (`i +
∑m−1
k=j+1 ei,k · 2k mod q).

So after C0, · · · , Cm−1 are all decoded, each estimated cell
level ˆ̀

i equals the original level `i, from which information
bits can be recovered.

C. Bit-fixing Coding Scheme for General Numeral Systems

The above bit-fixing coding scheme can be generalized
to mixed-radix numeral systems. Let m and c1, c2, · · · , cm
be positive integers, and let q = c1c2 · · · cm. Given n cells
of q levels, for i = 1, · · · , n, we can represent the cell
level `i as R(`i) = (bi,m−1, · · · , bi,1, bi,0) ∈ {0, · · · , cm −
1} × · · · × {0, · · · , c2 − 1} × {0, · · · , c1 − 1} using the
mixed-radix numeral system with bases (c1, c2, · · · , cm). Sim-
ilarly, we can represent the error εi as R(εi mod q) =
(ei,m−1, · · · , ei,1, ei,0). We can then encode data in the
same way as Construction 1, except that each Cj (for j =
0, 1, · · · ,m − 1) is an ECC of alphabet size cj+1. We can
decode data in the same way as Construction 2, except that the
“⊕” (exclusive-OR) operation is replaced by the “mod cj+1”
operation and after Cj is decoded (for j = 0, 1, · · · ,m−1), the
estimated cell level ˆ̀i is updated as ˆ̀

i− êi,j
∏j
k=1 ck mod q.

Given a vector v = (vm−1, · · · , v1, v0) ∈ {0, · · · , cm−1}×
· · · × {0, · · · , c2 − 1} × {0, · · · , c1 − 1}, define its support
as support(v) , {i|i ∈ {0, 1, · · · ,m − 1}, vi 6= 0}. Given
i ∈ {0, 1, · · · ,m− 1}, we define the cross of i as cross(i) ,

{j|j ∈ {0, 1, · · · , q − 1}, i ∈ support(R(j))}.

Theorem 6. The bit-fixing coding scheme (for the general
mixed-radix numeral system) can recover all information bits
if for j = 0, 1, · · · ,m − 1, the cj+1-ary error-correcting code
Cj can correct

∑
k∈cross(j) γk Hamming errors.

Note that if C0 is an ECC and C1, · · · , Cm−1 contain no
redundancy, the scheme here is reduced to the main code
construction (Construction 1) in [2] for asymmetric errors of
maximum magnitude c1 − 1.

D. Achievable Rate of Bit-fixing Coding Scheme

We now analyze the achievable rates of the bit-fixing coding
scheme. For simplicity, we present the case in which q is a

power of 2 and binary representations are used. The analysis
can be extended naturally to more general cases.

Consider a cell of level ` ∈ {0, 1, · · · , q − 1}. Let
`′ = ` + ε ∈ {0, 1 · · · , q − 1} denote the noisy cell level,
where ε ∈ {−`, · · · , 0, · · · , q − 1 − `} is the error. We
assume the errors in different cells are i.i.d. Due to the
complex mechanisms for errors (e.g., disturbs and charge
leakage, cell-level drifting and different memory manufactur-
ing processes), it is hard to model errors with a universal
model. So in this paper, we consider a general model: “∀
i, j ∈ {0, 1, · · · , q − 1}, let pi,j , Pr{ε ≡ j mod q|` = i}
be a known distribution.” Let Bm(`) = (bm−1, · · · , b1, b0)
and Bm(ε mod q) = (em−1, · · · , e1, e0). Here b0, · · · , bm−1
are m bits that belong to m different codes C0, · · · , Cm−1;
and we let them be independent. For i = 0, 1, · · · ,m − 1,
let βi , Pr{bi = 0}; let αi,0 , Pr{ei = 1|bi = 0}
and αi,1 , Pr{ei = 1|bi = 1} denote the cross-over
probabilities in the binary channel corresponding to bi; and
define crossm(i) , {0, 1, · · · , q − 1} − crossm(i).

We can derive the cross-over probabilities: Pr{ei =
1|bi = 0} =

∑
(dm−1,··· ,d1,d0):B−1

m ((dm−1,··· ,d1,d0))∈crossm(i)∑
k∈crossm(i)

(∏
x∈{0,1,··· ,m−1}−{i} β

1−dx
x (1− βx)dx

)
·pB−1

m ((dm−1,··· ,d1,d0)),k, and Pr{ei = 1|bi = 1} =∑
(dm−1,··· ,d1,d0):B−1

m ((dm−1,··· ,d1,d0))∈crossm(i)∑
k∈crossm(i)

(∏
x∈{0,1,··· ,m−1}−{i} β

1−dx
x (1− βx)dx

)
·pB−1

m ((dm−1,··· ,d1,d0)),k. When n→∞, for i = 0, · · · ,m− 1,
the code Ci can achieve rate I(bi; bi ⊕ ei) =
H(βi(1−αi,0)+(1−βi)αi,1)−βiH(αi,0)−(1−βi)H(αi,1),
where H is the entropy function. The bit-fixing scheme can
achieve rate maxβ0,β1,··· ,βm−1∈[0,1]

∑m−1
i=0 H(βi(1 − αi,0) +

(1− βi)αi,1)− βiH(αi,0)− (1− βi)H(αi,1) bits per cell.

III. OPTIMAL LABELING OF CELL-LEVELS

In this section, we present a new technique, labeling of
cell levels, for better performance. So far, we have not yet
differentiated the physical state of a cell from the labeled
level of the cell. We have used ` to denote both, and the
greater ` is, the higher the “physical state” of the cell (e.g.,
threshold voltage for a flash memory cell) is. However, the
bit-fixing scheme presented earlier works for any labeling
of cell levels. And this freedom in labeling enables the
further optimization of performance. So in this section, we
differentiate the physical state s ∈ {0, 1, · · · , q − 1} from the
labeled level ` ∈ {0, 1, · · · , q − 1} of a cell.

Let π : {0, 1, · · · , q−1} → {0, 1, · · · , q−1} be a permuta-
tion function that maps every physical state s to its correspond-
ing level π(s). Let s ∈ {0, 1, · · · , q − 1} denote the original
physical state of a cell, let δ ∈ {−s, · · · , 0, · · · , q − 1 − s}
denote the physical error in it, and let s′ = s + δ denote its
noisy physical state. Correspondingly, let ` = π(s) denote its
original level, let `′ = π(s′) denote its noisy level, and let
ε = `′ − ` denote the error in the cell level.

The objective of a good labeling is to decrease the number
of bit-errors in C0, · · · , Cm−1 caused by physical errors, and

maximize the overall code rate. In the following, for simplicity,
assume q = 2m and binary representations are used.

Example 7. Let q = 16. Three labelings are shown in Fig. 2,
which perform differently. For example, consider an error δ that
changes the physical cell state from s = 5 to s′ = 4, namely
δ = −1. In Fig. 2 (a) (or (b)), with the straightforward (or Gray-
code) labeling, the level is changed from ` = 5 to `′ = 4 (or
from ` = 7 to `′ = 6), and the error in level is ε = `′− ` = −1.
Since Bm(−1 mod 16) = (1, 1, 1, 1), 4 bit-errors are caused.
In Fig. 2 (c), however, the same physical error changes the level
from ` = 10 to `′ = 2, so ε = `′ − ` = −8. Since Bm(−8
mod 16) = (1, 0, 0, 0), only 1 bit-error is caused.

Consider physical errors of magnitude one, which are very
common for bidirectional errors. Since q = 16, there are 30
such errors. It can be shown that on average, for such a physical
error, the simple labeling in Fig. 2 (a) introduces 2.5 bit-errors,
the Gray-code labeling in Fig. 2 (b) introduces 2.13 bit-errors,
and the labeling in Fig. 2 (c) introduces only 1.37 bit-errors. 2

0

2

4

6

8

10

12

14

Physical
state

(0,0,0,1)

Binary
Representation

of levelLevel

1

5

3

7

9

11

13

15

0

2

4

6

8

10

12

14

1

5

3

7

9

11

13

15

(0,0,0,0)

(0,0,1,0)
(0,0,1,1)
(0,1,0,0)
(0,1,0,1)
(0,1,1,0)
(0,1,1,1)
(1,0,0,0)
(1,0,0,1)
(1,0,1,0)
(1,0,1,1)
(1,1,0,0)
(1,1,0,1)
(1,1,1,0)
(1,1,1,1)

(a)

0

2

4

6

8

10

12

14

Physical
state

(0,0,0,1)

Binary
Representation

of levelLevel

1

5

3

7

9

11

13

15

0

3

6

5

12

15

10

9

1

7

2

4

13

14

11

8

(0,0,0,0)

(0,0,1,1)
(0,0,1,0)
(0,1,1,0)
(0,1,1,1)
(0,1,0,1)
(0,1,0,0)
(1,1,0,0)
(1,1,0,1)
(1,1,1,1)
(1,1,1,0)
(1,0,1,0)
(1,0,1,1)
(1,0,0,1)
(1,0,0,0)

(b)

0

2

4

6

8

10

12

14

Physical
state

(1,0,0,0)

Binary
Representation

of levelLevel

1

5

3

7

9

11

13

15

0

4

2

6

1

5

3

7

8

10

12

14

9

13

11

15

(0,0,0,0)

(0,1,0,0)
(1,1,0,0)
(0,0,1,0)
(1,0,1,0)
(0,1,1,0)
(1,1,1,0)
(0,0,0,1)
(1,0,0,1)
(0,1,0,1)
(1,1,0,1)
(0,0,1,1)
(1,0,1,1)
(0,1,1,1)
(1,1,1,1)

(c)

Fig. 2. Labeling physical cell states with levels. (a) A straightforward
labeling, where every physical state s ∈ {0, 1, · · · , 15} is labeled by level
` = s. (b) A Gray-code labeling. (c) A new labeling.

In practice, physical errors of smaller magnitudes are usu-
ally more likely than larger ones. Let us focus on physical er-
rors of magnitude one now, which are often the most probable
errors. Given a vector v = (v1, · · · , vk) ∈ {0, 1}k, its Ham-
ming weight is defined as wH(v) , {i|i ∈ {1, · · · , k}, vi =
1} = |support(v)|. A physical error δ changes the physical
cell state from s to s′ = s + δ, and the number of bit-
errors it introduces is W (s, δ) , wH(Bm(ε mod 2m)) =
wH(Bm(`′ − ` mod 2m)) = wH(Bm(π(s + δ) − π(s)
mod 2m)). Let us call a labeling π Order-one Optimal if
it minimizes the total number of bit-errors introduced by
magnitude-one (including +1 and -1) physical errors. That is,
it minimizes Wtotal ,

∑q−2
i=0 W (i, 1) +W (i+ 1,−1). In the

following, we present such an optimal labeling.

Construction 8. A METHOD FOR CELL-LEVEL LABELING
Let π(0) = 0. For i = 1, 2, · · · ,m and j = 2i−1, 2i−1 +

1, · · · , 2i − 1, let π(j) = π(j − 2i−1) + 2m−i. 2

Construction 8 generalizes Fig. 2 (c). (Actually, it can be
further generalized to the case where for i = 0, 1, · · · ,m and

j = 0, 1, · · · , 2m−i − 1, {π(j · 2i + k)|k ∈ {0, 1, · · · , 2i −
1}} = {k · 2m−i + z | k ∈ {0, 1, · · · , 2i − 1}} for some
z ∈ {0, 1, · · · , 2m−i − 1}.) We now prove that it is order-one
optimal. For any i ∈ {−2m + 1, · · · ,−2,−1, 1, 2, · · · , 2m −
1}, define χ(i) , max{j|j ∈ {0, 1, · · · ,m − 1}, (i
mod 2m) is a multiple of 2j}. Note that in the binary repre-
sentation of (i mod 2m), – namely Bm(i mod 2m), – the
χ(i) least significant bits are all 0s, and the (χ(i) + 1)th
least significant bit is 1. For convenience, let us define
W (2m − 1, 1) , wH(Bm(π(0)− π(2m − 1) mod 2m)), and
define W (0,−1) , wH(Bm(π(2m − 1)− π(0) mod 2m)).

Lemma 9. Given a labeling π : {0, 1, · · · , 2m − 1} →
{0, 1, · · · , 2m − 1}, for any i ∈ {0, 1, · · · , 2m − 1}, we have
χ(π(i+ 1 mod 2m)− π(i)) = χ(π(i)− π(i+ 1 mod 2m))
and W (i, 1) + W (i + 1 mod 2m,−1) = m − χ(π(i + 1
mod 2m)− π(i)) + 1.

Corollary 10. For i = 0, 1, · · · , 2m−1, we have 2 ≤W (i, 1)+
W (i+ 1 mod 2m,−1) ≤ m+ 1.

Lemma 11. For j = 2, 3, · · · ,m,

|{i|0 ≤ i ≤ 2m − 1,W (i, 1) +W (i+ 1 mod 2m,−1) ≤ j}|
≤
∑
k=m−1,m−2,··· ,m−j+1 2

k = 2m−j+1(2j−1 − 1).

Theorem 12. Construction 8 is an order-one optimal labeling.
Sketch of proof: For j = 2, 3, · · · ,m + 1, define count(j) ,
|i|0 ≤ i ≤ 2m − 1,W (i, 1) +W (i+ 1 mod 2m,−1) = j|.
In Construction 8, count(k) = 2m−k+1 for
k = 2, · · · ,m, and count(m + 1) = 2. It minimizes∑m+1
j=2 j · count(j)− [W (2m − 1, 1) +W (0,−1))] =Wtotal.

IV. CODING FOR ANY NUMBER OF CELL LEVELS

The bit-fixing scheme can be generalized to any q levels.
For simplicity, we show the case where binary representations
are used but q is not a power of 2. The idea is to first store data
in n “virtual cells” of 2m levels – where m = dlog2 qe – in
the same way as before. Let `∗ ∈ {0, 1, · · · , 2m − 1} denote
a virtual cell’s level, and let ` ∈ {0, 1, · · · , q − 1} denote
the corresponding real cell’s level. Then if `∗ ≥ q, we let
` = `∗ − 2m−1; otherwise, we let ` = `∗. (This linear folding
has the property that if ` 6= `∗, their binary representations
differ only in the MSB.) It can be shown that C0, · · · , Cm−2
can be decoded the same way as before. And for Cm−1, for
its codeword bits, the channel model is a combination of a
partial erasure channel (corresponding to the linear folding)
and noise. And it can be designed and decoded accordingly.
Due to the space limitation, we skip the details.

V. PERFORMANCE EVALUATION

We have evaluated the performance of the bit-fixing
scheme, and compared it to the commonly used basic binary-
representation scheme and the Gray-code based scheme
(which were introduced in Section I). It usually performs
better than the former and is comparable to (and sometimes

better than) the latter. In the following, we introduce one such
comparison on achievable rates given the space limitation.

We consider errors of magnitude range [−L−, L+], modeled
as follows. Let there be n → ∞ cells of q = 2m levels,
whose errors are i.i.d. Let p ∈ [0, 1] be a parameter, let
L+ and L− be non-negative integers (with L+ + L− > 0),
and let δ̃ ∈ {−L−, · · · , 0, · · · , L+} be a random variable
with this distribution: Pr{δ̃ = 0} = 1 − p; and ∀ i ∈
{−L−, · · · ,−1, 1, · · · , L+}, Pr{δ̃ = i} = p/(L− + L+).
For a cell of original physical state s ∈ {0, 1, · · · , q − 1},
the noise δ̃ is added to it. If δ̃ > 0, the noisy physical
level s′ becomes min{s + δ̃, q − 1}; otherwise, s′ becomes
max{s+ δ̃, 0}. (It is modeled this way because a cell’s state
must be in {0, 1, · · · , q−1}. And given a labeling π, the error
changes the level from ` = π(s) to `′ = π(s′).)

We consider the practical case where Pr{bi = 0} = 1/2 for
i = 0, 1, · · · ,m−1, for the reason that in most practical ECCs,
codeword bits are (nearly) equally likely to be 0s and 1s. (This
constraint can reduce achievable rates, however.) Some results
on achievable rates are shown in Fig. 3, with q = 16, p = 0.01,
and L+ changing from 1 to 6. Fig. 3 (a) shows a case for
asymmetric errors, where L− = 0 and the bit-fixing scheme
uses the simple labeling ` = s. Fig. 3 (b) shows a case for
bidirectional errors, where L− = 3 and the bit-fixing scheme
uses the labeling in Construction 8. It can be seen that the
bit-fixing coding scheme compares favorably with the basic
binary-representation scheme, and is comparable to the Gray-
code based scheme.

 3.72

 3.74

 3.76

 3.78

 3.8

 3.82

 3.84

 3.86

 3.88

 3.9

 1 2 3 4 5 6

R
at

e
pe

r C
el

l

L+

Bit-Fixing
Binary

Gray

 3.74

 3.75

 3.76

 3.77

 3.78

 3.79

 3.8

 3.81

 3.82

 3.83

 1 2 3 4 5 6

R
at

e
pe

r C
el

l

L+

Bit-Fixing
Binary

Gray

(a) (b)

Fig. 3. Comparison of achievable rates (number of stored bits per cell). Here
q = 16, p = 0.01, and L+ increases from 1 to 6. (a) Asymmetric errors,
where L− = 0. (b) Bidirectional errors, where L− = 3.

ACKNOWLEDGMENT
This work was supported in part by the NSF CAREER

Award CCF-0747415 and an NSF-NRI award.

REFERENCES

[1] R. Ahlswede, H. Aydinian and L. Khachatrian, “Unidirectional error
control codes and related combinatorial problems,” in Proc. Eighth Int.
Workshop Algebr. Combin. Coding Theory, pp. 6-9, 2002.

[2] Y. Cassuto, M. Schwartz, V. Bohossian and J. Bruck, “Codes for
asymmetric limited-magnitude errors with application to multilevel flash
memories,” in IEEE Trans. Inf. Theory, vol. 56, no. 4, pp. 1582–95, 2010.

[3] N. Elarief and B. Bose, “Optimal, systematic, q-ary codes correcting all
asymmetric and symmetric errors of limited magnitude,” IEEE Trans.
Inform. Theory, vol. 56, no. 3, pp. 979–983, March 2010.

[4] T. Klove, B. Bose and N. Elarief, “Systematic single limited magnitude
asymmetric error correcting codes,” Proc. ITW, Cairo, Egypt, 2010.

[5] E. Yaakobi, P. H. Siegel, A. Vardy, and J. K. Wolf, “On codes that correct
asymmetric errors with graded magnitude distribution,” in Proc. ISIT. pp.
1021–1025, St. Petersburg, Russia, August 2011.

