
Correcting Errors in MLCs with Bit-fixing Coding
Anxiao (Andrew) Jiang†, Yue Li†, and Jehoshua Bruck∗

†Department of Computer Science and Engineering, Texas A&M University, College Station, TX 77843
∗Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125

†{ajiang, yli}@cse.tamu.edu ∗bruck@caltech.edu

I. INTRODUCTION

Multi-level cell (MLC) nonvolatile memories have become
increasing important for storage in recent years. A well-known
example is flash memory, where cells with q = 4 and 8
levels are already widely used. It is important to design error-
correcting codes (ECCs) that consider the many properties of
MLC memories. Errors often have limited magnitudes and
non-symmetric distributions, due to the memories’ unique dis-
turb and noise mechanisms. Also, current MLCs are restricted
by q, the number of levels, being a power of 2. Coding
schemes that can map cells to binary codes conveniently for
an arbitrary number of levels are worth studying. All these
will be addressed in this paper.

There are different approaches to map cell levels to binary
codes when q is a power of 2, including binary representation
and Gray codes. Consider n cells; and for i = 1, · · · , n, let
`i ∈ {0, 1, · · · , q− 1} be the level of the ith cell. Let m =
log2 q. And let Bm(`i) , (bi,m−1, · · · , bi,1, bi,0) ∈ {0, 1}m

be the binary representation of `i, namely, `i = ∑m−1
j=0 bi,j · 2j.

Since the m bits in a cell have different error probabilities, in
a basic binary-representation approach, m ECCs of different
rates are used. Specifically, for j = 0, 1, · · · , m − 1, we let
(b1,j, · · · , bn,j) be a separate ECC. To further reduce error
probabilities, a more common approach is to represent the
bits in a cell using Gray codes, and then apply m ECCs.

In this paper, we propose an alternative coding scheme
named bit-fixing code. Its main idea is to sequentially correct
the bits in the binary representation of errors. And it can
be generalized to more numeral systems. When q = 2m,
let εi ∈ {−`i, · · · , 0, · · · , q − 1 − `i} denote the additive
error in the ith cell’s level `i, and let Bm(εi mod q) ,
(ei,m−1, · · · , ei,0) ∈ {0, 1}m be the binary representation of εi
mod q. For j = 0, · · · , m− 1, let (b1,j, · · · , bn,j) be a binary
ECC C j. The scheme has the nice property that the error bits
(e1,j, · · · , en,j) only affect the code Cj. (Note that this property
does not hold for the binary-representation scheme introduced
above.) That enables us to allocate redundancy appropriately
and decode C0, · · · , Cm−1 sequentially.

The bit-fixing coding scheme can be applied to arbitrary er-
ror distributions, including both asymmetric and bidirectional
errors. It can be generalized from the binary representation to
many more numeral representations, including k-ary numbers
(for any integer k ≥ 2) and mixed-radix numeral systems such

This work was supported in part by the NSF CAREER Award CCF-
0747415, an NSF-NRI award, and NSF grant CCF-1217944.

as factoradic systems. It can also be extended to an arbitrary
number of cell levels, which means q can be any integer
instead of a power of 2 and binary codes can still be used. The
coding scheme in fact contains the ECC for asymmetric errors
of limited magnitude in [1] as a special case. It is also related
to the codes in [2], but is more specific in its construction
and more general in various ways. It can be applied not only
to storage but also to amplitude-modulation communication
systems. Due to space limitation, readers are referred to the
full version [3] of this paper for more details.

II. BIT-FIXING CODING SCHEME

We present the bit-fixing coding scheme for the case where
q is a power of 2 and binary representations are used. The
extension to general cases is presented in [3].

Construction 1. ENCODING OF BIT-FIXING SCHEME

For j = 0, 1, · · · , m − 1, let Cj be an (n, k j) binary ECC
that can correct tj errors. We store k0 + k1 + · · · + km−1
information bits in n cells of q = 2m levels as follows. First,
we partition the information bits into m chunks, where for
j = 0, · · · , m − 1, the jth chunk has k j information bits:
dj = (dj,1, dj,2, · · · , dj,kj

). Next, for j = 0, · · · , m − 1, we
use Cj to encode dj into a codeword bj = (b1,j, b2,j, · · · , bn,j).
Then, for i = 1, · · · , n, let `i = ∑m−1

j=0 bi,j · 2j, and we write
the ith cell’s level as `i.

After cells are written, additive errors ε1, · · · , εn will appear
and change cell levels to `′1 = `1 + ε1, · · · , `′n = `n + εn.

Construction 2. DECODING OF BIT-FIXING SCHEME

Let `′1, · · · , `′n be the noisy cell levels we read. As the
initialization step, for i = 1, · · · , n, let ˆ̀ i = `′i.

For j = 0, 1, · · · , m− 1, carry out these three steps:
1) For i = 1, · · · , n, let (b̂i,m−1, · · · , b̂i,1, b̂i,0) = Bm(ˆ̀ i)

be the binary representation of the estimated cell level ˆ̀ i.
2) Use code Cj to decode the codeword (b̂1,j, · · · , b̂n,j), and

let (ê1,j, · · · , ên,j) be the discovered error vector. (That is,
the recovered codeword is (b̂1,j ⊕ ê1,j, · · · , b̂n,j ⊕ ên,j),
where “⊕” is the exclusive-OR operation.)

3) For i = 1, · · · , n, update the estimated cell level ˆ̀ i as
follows: ˆ̀ i ←

(
ˆ̀ i − êi,j · 2j mod q

)
.

Now ˆ̀1, · · · , ˆ̀n are our recovered cell levels. From them, the
information bits can be readily obtained.

Example 3. Consider n cells of q = 8 levels. Then m =
log2 q = 3. Assume C0, C1, C2 can correct no less than 3, 1,
and 2 errors, respectively. Without loss of generality, suppose
that after cells are written, errors appear in cells 1, 2 and 3,
respectively. Let `1 = 3, `2 = 1, `3 = 2 be their original levels,
and let ε1 = 1, ε2 = 5, ε3 = −1 be their errors. Then their
noisy levels are `′1 = 4, `′2 = 6, `′3 = 1, respectively.

Cell 1 Cell 2 Cell 3
Original level 3: (0,1,1) 1: (0,0,1) 2: (0,1,0)

Error 1: (0,0,1) 5: (1,0,1) -1: (1,1,1)
Noisy level 4: (1,0,0) 6: (1,1,0) 1: (0,0,1)

Level after decoding C0 3: (0,1,1) 5: (1,0,1) 0: (0,0,0)
Level after decoding C1 3: (0,1,1) 5: (1,0,1) 6: (1,1,0)
Level after decoding C2 3: (0,1,1) 1: (0,0,1) 2: (0,1,0)

In the decoding process, we first decode C0, where the noisy
codeword is (0, 0, 1, · · ·). (It is because the least-significant bits
(LSB) of (Bm(`′1),Bm(`′2),Bm(`′3), · · ·) are (0, 0, 1, · · ·).) By
decoding it, we find its error vector (e1,0, e2,0, e3,0, · · ·) =
(1, 1, 1, · · ·). So we change the cell levels to (4 − e1,0
mod 8, 6− e2,0 mod 8, 1− e3,0 mod 8) = (3, 5, 0). Next,
we decode C1, where the noisy codeword is (1, 0, 0, · · ·).
(It is because the middle bits of (Bm(3),Bm(5),Bm(0), · · ·)
are (1, 0, 0, · · ·).) By decoding it, we find its error vector
(e1,1, e2,1, e3,1, · · ·) = (0, 0, 1, · · ·). So we change the cell
levels to (3− e1,1 · 2 mod 8, 5− e2,1 · 2 mod 8, 0− e3,1 · 2
mod 8) = (3, 5, 6). We then decode C2, where the noisy
codeword is (0, 1, 1, · · ·). (It is because the most-significant
bits (MSB) of (Bm(3),Bm(5),Bm(6), · · ·) are (0, 1, 1, · · ·).)
By decoding it, we find its error vector (e1,2, e2,2, e3,2, · · ·) =
(0, 1, 1, · · ·). So we change the cell levels to (3 − e1,2 · 22

mod 8, 5− e2,2 · 22 mod 8, 6− e3,2 · 22 mod 8) = (3, 1, 2).
They are the original cell levels, from which we can recover
information bits. 2

Given a vector v = (vk−1, · · · , v1, v0) ∈ {0, 1}k, de-
fine its support as support(v) , {i|i ∈ {0, 1, · · · , k −
1}, vi = 1}. Given i ∈ {0, 1, · · · , m − 1}, we define the
cross of i as crossm(i) , {j|j ∈ {0, 1, · · · , 2m − 1}, i ∈
support(Bm(j))}. Namely, crossm(i) is the set of integers
in {0, 1, · · · , 2m − 1} whose binary representations have 1
in the ith position. For i = 0, 1, · · · , q − 1, define γi ,∣∣{j|j ∈ {1, · · · , n}, ε j ≡ i mod q}

∣∣. That is, there are γi
cells with errors of magnitude exactly i (mod q).

Theorem 4. The bit-fixing coding scheme can recover all in-
formation bits if for j = 0, 1, · · · , m − 1, the binary error-
correcting code Cj can correct ∑k∈crossm(j) γk binary errors.

III. OPTIMAL LABELING OF CELL-LEVELS

We present a new technique, labeling of cell levels, for better
performance. Let π : {0, 1, · · · , q− 1} → {0, 1, · · · , q− 1}
be a permutation function that maps every physical state
s to its corresponding level π(s). Let s ∈ {0, 1, · · · , q −
1} denote the original physical state of a cell, let δ ∈
{−s, · · · , 0, · · · , q− 1− s} denote the physical error in it, and
let s′ = s+ δ denote its noisy physical state. Correspondingly,
let ` = π(s) denote its original level, let `′ = π(s′) denote its
noisy level, and let ε = `′− ` denote the error in the cell level.

The objective of a good labeling is to decrease the number
of bit-errors in C0, · · · , Cm−1 caused by physical errors, and
maximize the overall code rate. In the following, for simplicity,
assume q = 2m and binary representations are used.

Construction 5. A METHOD FOR CELL-LEVEL LABELING
Let π(0) = 0. For i = 1, 2, · · · , m and j = 2i−1, 2i−1 +
1, · · · , 2i − 1, let π(j) = π(j− 2i−1) + 2m−i.
Theorem 6. Construction 5 minimizes the total number of
bit-errors introduced by magnitude-one (including +1 and -1)
physical errors.

IV. CODE RATE COMPARISON

We have evaluated extensively the code rates of the bit-
fixing scheme, and compared them to the commonly used
basic binary-representation scheme and the Gray-code based
scheme. The following example is an illustration of their
performance. Let errors be in the range [−L−, L+], which
is modeled as follows. Let there be n → ∞ cells of q = 2m

levels, whose errors are i.i.d. Let p ∈ [0, 1] be a parameter,
let L+ and L− be non-negative integers (with L+ + L− > 0),
and let δ̃ ∈ {−L−, · · · , 0, · · · , L+} be a random variable
with this distribution: Pr{δ̃ = 0} = 1 − p; and ∀ i ∈
{−L−, · · · ,−1, 1, · · · , L+}, Pr{δ̃ = i} = p/(L− + L+).
For a cell of original physical state s ∈ {0, 1, · · · , q − 1},
the noise δ̃ is added to it. If δ̃ > 0, the noisy physical
level s′ becomes min{s + δ̃, q − 1}; otherwise, s′ becomes
max{s + δ̃, 0}. (It is modeled this way because a cell’s state
must be in {0, 1, · · · , q − 1}. And given a labeling π, the
error changes the level from ` = π(s) to `′ = π(s′).)
We consider the practical case where Pr{bi = 0} = 1/2
for i = 0, 1, · · · , m − 1. Some results on achievable rates
are shown in Fig. 1, with q = 16, p = 0.01, and L+

changing from 1 to 6. It can be seen that the bit-fixing
coding scheme compares favorably with the basic binary-
representation scheme, and is comparable to the Gray-code
based scheme.

 3.72

 3.74

 3.76

 3.78

 3.8

 3.82

 3.84

 3.86

 3.88

 3.9

 1 2 3 4 5 6

R
at

e
pe

r C
el

l

L+

Bit-Fixing
Binary

Gray

 3.74

 3.75

 3.76

 3.77

 3.78

 3.79

 3.8

 3.81

 3.82

 3.83

 1 2 3 4 5 6

R
at

e
pe

r C
el

l

L+

Bit-Fixing
Binary

Gray

(a) (b)
Fig. 1. Comparison of achievable rates (number of stored bits per cell).
Here q = 16, p = 0.01, and L+ increases from 1 to 6. (a) Asymmetric
errors, where L− = 0. (b) Bidirectional errors, where L− = 3.

REFERENCES

[1] Y. Cassuto, M. Schwartz, V. Bohossian and J. Bruck, “Codes for
asymmetric limited-magnitude errors with application to multilevel flash
memories,” in IEEE Trans. Inf. Theory, vol. 56, no. 4, pp. 1582–95, 2010.

[2] E. Yaakobi, P. H. Siegel, A. Vardy, and J. K. Wolf, “On codes that correct
asymmetric errors with graded magnitude distribution,” in Proc. ISIT. pp.
1021–1025, St. Petersburg, Russia, August 2011.

[3] A. Jiang, Y. Li, and J. Bruck, “Bit-fixing Codes for Multi-level Cells,” in
Proc. IEEE Information Theory Workshop (ITW), 2012.

