
Half-Wits: Software Techniques for Low-Voltage Probabilistic Storage on
Microcontrollers with NOR Flash Memory

Mastooreh Salajegheh∗, Yue Wang†, Anxiao (Andrew) Jiang†, Erik Learned-Miller∗, Kevin Fu∗
∗Department of Computer Science, University of Massachusetts Amherst

†Department of Computer Science and Engineering, Texas A&M University
{negin,kevinfu,elm}@cs.umass.edu, {yuewang,ajiang}@cse.tamu.edu

Abstract

This work analyzes the stochastic behavior of writing to
embedded flash memory at voltages lower than recom-
mended by a microcontroller’s specifications to reduce
energy consumption. Flash memory integrated within a
microcontroller typically requires the entire chip to op-
erate on common supply voltage almost double what the
CPU portion requires. Our approach tolerates a lower
supply voltage so that the CPU may operate in a more en-
ergy efficient manner. Energy efficient coding algorithms
then cope with flash memory that behaves unpredictably.

Our software-only coding algorithms (in-place writes,
multiple-place writes, RS-Berger codes) enable reliable
storage at low voltages on unmodified hardware by ex-
ploiting the electrically cumulative nature of half-written
data in write-once bits. For a sensor monitoring applica-
tion using the MSP430, coding with in-place writes re-
duces the overall energy consumption by 34%. In-place
writes are competitive when the time spent on computa-
tion is at least four times greater than the time spent on
writes to flash memory. Our evaluation shows that tightly
maintaining the digital abstraction for storage in embed-
ded flash memory comes at a significant cost to energy
consumption with minimal gain in reliability.

1 Introduction
Billions of microcontrollers appear in embedded systems
ranging from thermostats and utility meters to tollway
payment transponders and pacemakers. Many of these
systems use on-chip flash memory for storage.

While the reliability, low cost, and high storage den-
sity of flash memory make it a natural choice for em-
bedded systems [2], its relatively high voltage require-
ment (Table 1) introduces challenges for energy-efficient
designs aiming to maximize the system’s effective life-

This paper appears in the Proceedings of the 9th USENIX Con-
ference on File and Storage Technologies (FAST ’11), San Jose, CA,
February 2011. http://www.usenix.org/events/fast11/tech/
full_papers/Salajegheh.pdf.

time. Instrumenting the system to operate at a fixed
low voltage vl is one way to reduce power consump-
tion; however, achieving consistently correct results for
flash writes are guaranteed only if vl is higher than a
manufacturer-specified threshold. Moreover, in energy-
limited devices that cannot provide a constant supply
voltage, scenarios may arise in which the flash memory is
the only part of the circuit whose operating requirements
are not met. In such cases, applications can expect nor-
mal operation when they are not performing flash writes
and unpredictable behavior when they are.

Microcontroller CPU Flash write
Min. voltage Min. voltage

TI MSP430 1.8 V 2.2 or 2.7 V
PIC32M 2.3 V 3.0 V

ATmega128L 2.7 V 4.5 V

Table 1: Flash memory restricts choices for the CPU
voltage supply on microcontrollers because the CPU
shares the same power rail as the on-chip flash memory.

Because embedded flash memory typically shares a
common voltage supply with the CPU (separate power
rails are cost prohibitive), a single voltage must be cho-
sen that satisfies different components with different
minimum voltage requirements. Current embedded sys-
tems address the voltage limitations of flash memory in
one of the following ways:

i) A system can choose a high supply voltage sufficient
for both reliable writes to flash memory and reliable CPU
operation. This is a common choice for embedded sys-
tems with on-chip flash memory, but causes the CPU to
consume more energy than necessary.

ii) A system can choose a low supply voltage sufficient
for CPU operation, but insufficient for reliable writes to
flash memory. This choice allows the energy source to
last longer and for the CPU to compute more efficiently.



CPUFl
as
h

Fl
as
hVo
lta
ge

Time

CPU

Half-wits

Conventional

Figure 1: Operating at a lower voltage and tolerat-
ing errors instead of the conventional case of choos-
ing the highest minimum voltage requirement may
help decrease energy consumption. Considering that
Power ∝ voltage2, decreasing voltage decreases the
power consumption quadratically.

An example of such a system is the Intel WISP [5], a bat-
teryless RFID tag that excludes access to flash memory
to save power.

iii) A system can modify hardware to enable dy-
namic voltage scaling. This approach requires additional
analog circuitry such as voltage regulators and GPIO-
controlled switches. Because many embedded systems
are extremely cost sensitive, this choice is unattractive
for high-volume manufacturing with low per-unit profit
margins. An additional 50 cent part on a thermostat con-
trol can be cost prohibitive. Moreover, small changes
may necessitate a new PCB layout—upsetting the deli-
cate supply chain and invalidating stocked inventories of
already fabricated PCBs.

Approach. Our approach reduces the operating volt-
age of the microcontroller to a point at which the result-
ing power savings of the CPU portion of the workload
exceeds the power cost of the algorithms for ensuring re-
liable writes (Figure 1). Our low-power storage scheme
benefits from the accumulative property of flash memory
by repeating writes to the same cell. Each write opera-
tion will increase the chance of success by forcing some
number of state transitions. That is, a failed write is still
progress.

Of wits and half-wits. In 1982, Rivest and Shamir in-
troduced the notion of write-once bits (wits) in the con-
text of coding theory to make write-once storage behave
like read-write storage [4]. Bits in flash memory behave
like wits because a programmed bit cannot be repro-
grammed without calling an energy-intensive erase op-
eration to a block of memory much larger than a single
write. We coin the term half-wits to refer to wits used
in a manner inconsistent with a manufacturer’s specifica-
tions, resulting in stochastic behavior. Half-wits in this
work are wits of flash memory used below the recom-
mended supply voltage.

In examining error rates at low voltage and construct-
ing a system that provides reliable storage despite errors,

our work suggests that it is appropriate to relax previ-
ously assumed constraints and reexamine the costly dig-
ital abstractions layered above on-chip flash memory.

Contributions. Our primary contributions include an
empirical evaluation that characterizes the behavior of
on-chip flash memory at voltages below minimum lev-
els specified by manufacturers, and algorithms that en-
able reliable writes to flash memory while coping with
low voltage. Our evaluation identifies three key factors
affecting error rates: voltage, Hamming weight of the
data, and the wear-out history of the flash memory.

The first algorithm, in-place writes, makes attempts at
write time to store a value correctly in the given memory
address. The in-place writes method repeatedly writes
data to the same memory address. The intuition behind
this approach is that repeating a write attempt in a con-
sistent location accumulates the charge in the same cell,
increasing the chance of storing a bit of information cor-
rectly. In addition, since flash writes only change bits
in a single direction, a correctly written bit cannot be re-
versed to produce an error on a second write attempt. The
second algorithm, multiple-place writes, tries to decrease
the probability of error by making attempts at both write
time and read time. This method stores data in more than
one location aiming that the data (even partially) will be
stored correctly in at least one of these locations. The
third algorithm is a hybrid error-correcting code combin-
ing Reed-Solomon (RS) [3] and Berger [1] codes. The
Berger code detects, but does not correct, asymmetric er-
rors caused by the low write voltage. Given the approx-
imate locations of errors, which are determined by the
Berger code, the RS code efficiently recovers the origi-
nally stored data.

The paper compares all three methods in terms of en-
ergy consumption, execution time, and error correction
rate. We also show that our methods are most effective
for CPU-bound workloads. With respect to cost and en-
ergy, our techniques may enable already deployed em-
bedded flash memory to remain competitive with emerg-
ing technology for low-power, non-volatile memory.

References
[1] J. Berger. A note on error detection codes for asymmetric channels.

Information and Control, 4(1):68–73, 1961.

[2] A. Jiang, R. Mateescu, M. Schwartz, and J. Bruck. Rank modu-
lation for flash memories. In IEEE International Symposium on
Information Theory (ISIT), pages 1731–1735, 2008.

[3] I. S. Reed and G. Solomon. Polynomial codes over certain finite
fields. Journal of the Society for Industrial and Applied Mathe-
matics, 8(2):300–304, 1960.

[4] R. L. Rivest and A. Shamir. How to reuse a write-once memory.
Information and Control, 55:1–19, 1982.

[5] A. P. Sample, D. J. Yeager, P. S. Powledge, A. V. Mamishev, and
J. R. Smith. Design of an RFID-based battery-free programmable
sensing platform. IEEE Transactions on Instrumentation and Mea-
surement, 57(11):2608–2615, Nov. 2008.

2


