
Efficient Assistance to LDPC Code-based
Erasure Recovery in NVM Storage

Anxiao (Andrew) Jiang∗, Pulakesh Upadhyaya∗, Ying Wang?, Krishna Narayanan?

Hongchao Zhou†, Jin Sima‡, and Jehoshua Bruck‡
∗ Computer Science and Engineering Department, Texas A&M University
? Electrical and Computer Engineering Department, Texas A&M University
† School of Information Science and Engineering, Shandong University
‡ Electrical Engineering Department, California Institute of Technology

Abstract—LDPC Codes are an effective way to correct erasures
in local and distributed NVM storage systems. When erasures
exceed the code’s recovery capability (namely, forming a stop-
ping set), additional tools – e.g., retrieving replicated codeword
symbols from remote sites or correcting erasures using natural
redundancy – can assist. However, such assistance operations
often have high costs and should be minimized. This work
presents the correspoding Stopping-Set Elimination Problem,
namely, given a stopping set, how to remove the fewest erasures so
that the remaining erasures can be decoded by belief propagation
in k iterations (including k = ∞). The NP-hardness of the
problem is proven. An approximation algorithm is presented for
k = 1. And an efficient exact algorithm is presented for general
k when the stopping sets form trees.

I. INTRODUCTION

Non-volatile memories (NVMs) have become a main-stream
choice for both local and distributed storage. LDPC codes are
an important tool for erasure recovery in NVM systems. In
this work, we study a basic problem for LDPC codes: when
the erasures in a noisy LDPC codeword cannot be corrected
by the decoder, how to remove the fewest erasures so that
the remaining erasures become decodable? The problem has
several applications:

• Erasure Recovery in Distributed NVM Storage Systems.
Distributed file systems like HDFS have been widely
used in big data applications. Typically, they store data
in blocks, and ECCs are applied over the blocks (where
each block is seen as a codeword symbol of the ECC).
Binary LDPC codes are naturally an attractive candidate
for distributed storage, as they have excellent code rates,
good locality (e.g., a missing block can be recovered
by a local SSD from a few neighboring blocks), and
excellent computational simplicity (only XOR is used for
decoding, since when each block has t bits, the decoding
can be seen as t binary LDPC codes being decoded in
parallel). Meanwhile, almost all big IT companies store
multiple copies of their data at different locations. So
when one site loses some blocks in an LDPC code and
cannot recover them by itself, it needs to retrieve some
lost blocks from other remote sites. Since communication
with remote sites is much more costly than accessing
local SSDs, it is desirable to minimize the number of

blocks retrieved from remote sites as long as the remain-
ing erasures become decodable.

• Erasure Correction by Natural Redundancy in NVMs.
Data with rich structures, such as languages or images,
often have plenty of redundancy left even after being
compressed by standard compression algorithms. Such
residual redundancy, called natural redundancy (NR), has
been used to correct erasures (and errors) beyond the
decoding threshold of classic decoders [1], [2], [4]. Such
decoding operations by NR are most suitable for NVMs,
because they usually require fast random-access speed
for lookup in dictionaries (such as dictionaries of words,
phrases or image patterns) to assist decoding. However,
when the erasure rate is high, many lookups are needed,
which is costly even for NVMs. So it is desirable to
selectively decide which erasures to recover by NR and
minimize their numbers, as long as the remaining erasures
become decodable by the classic decoder.

When belief-propagation (BP) decoding fails, the remaining
erasures form a Stopping Set. The problem to study can now
be defined formally as follows. Let G = (V ∪ C,E) be a
bipartite graph, where V (representing erasures) is a subset of
the variable nodes in an LDPC code’s Tanner graph, C is a
subset of the check nodes in the same Tanner graph such that
every node in C is adjacent to at least one node in V , and E
is the set of edges in the Tanner graph with one endpoint in
V and another endpoint in C. If every node in C has degree
two or more, then G is called a Stopping Graph and V is
called a Stopping Set. Now let k ≥ 1 be an integer parameter.
If an iterative BP algorithm that runs on G can decode all the
variable nodes in V (where every variable node in V is an
erasure) within k iterations, then V is called a Decodable Set
(or simply decodable); otherwise, it is a Non-Decodable Set
(or simply non-decodable). (Here we introduce the parameter
k to make the problem more general, and to control not only
the decodability of erasures but also the time for decoding.)
Note that a Stopping Set must be a Non-Decodable Set, but
not vice versa. The problem we study, called Stopping-Set
Elimination (SSEk) Problem, is as follows.

Definition 1. Given a Stopping Graph G = (V ∪ C,E), how
to remove the minimum number of variable nodes from V

such that the remaining variable nodes can be decoded by BP
decoding within k iterations? (If the constraint on “k iterations”
does not exist, we can see k as being∞.)

This work was presented at the Allerton Conference of
2017 [3]. In the following, we introduce its main results.

II. MAIN RESULTS

A. NP-hardness of SSEk Problems

Theorem 2. The SSEk Problem is NP-hard. In particular, even
if k = 1 or k =∞, the problem is still NP-hard.

B. Approximation Algorithm for SSE1 Problem

Theorem 3. Let dv and dc denote the maximum degrees of
variable nodes and check nodes, respectively, in the Stopping
Graph G = (V ∪ C,E). Then there exists an algorithm of
time complexity O(d2vd

2
c |V |) with an approximation ratio of

dv(dc − 1).

The proof to the theorem is constructive. An algorithm that
achieves the above performance is presented in [3].

C. Optimal Algorithms for Stopping Trees

The Stopping Graph G = (V ∪ C,E) can be a tree,
especially when the erasure rate is low. In this case, we call G a
Stopping Tree. Given a Stopping Tree G = (V ∪C,E), we can
pick an arbitrary variable node v ∈ V as the root, run Breadth-
First Search (BFS) on G starting with v, and label the nodes
of G by v1, v2, · · · , v|V |+|C| based on their order of discovery
in the BFS. We denote the resulting BFS tree by GBFS . For
any non-root node u in GBFS , let π(u) denote its parent.
Let Gsub denote the subtree of GBFS obtained this way: if
we remove the subtree rooted at π(v|V |+|C|) from GBFS , the
remaining subgraph is Gsub. We now define a generalization
of the SSEk problem for a stopping tree when k is finite.

Definition 4. [gSSEk Problem] Let G = (V ∪ C,E) be a
Stopping Graph. and let k be a non-negative integer. Every
variable node v ∈ V is associated with two parameters δ(v) ∈
{1, 2, · · · , k,∞} and ω(v) ∈ {0, 1, · · · , k,∞} satisfying the
condition that either δ(v) = ∞ or ω(v) = ∞, but not
both; and when the BP decoder runs on G, v’s value can be
recovered (namely, v can become a non-erasure) by the end
of the δ(v)-th iteration automatically (namely, without any
help from neighboring check nodes). Then, how to remove the
minimum number of variable nodes from V such that for every
remaining variable node v with ω(v) ≤ k, it can be corrected by
the BP decoder in no more than ω(v) iterations? (By default, if
ω(v) = 0, v has to be removed from V because the BP decoder
starts with the 1st iteration.)

A solution to the gSSEk Problem (namely, the set of
removed nodes) is called a g-Elimination Set. We see that
if δ(v) =∞ and ω(v) = k for every v ∈ V , then the gSSEk
Problem is identical to the SSEk Problem.

In GBFS , let τ ∈ {1, 2, · · · , |V |+|C|} denote the minimum
integer such that vτ either is a sibling of v|V |+|C| or is v|V |+|C|

itself. (So vτ , vτ+1, · · · , v|V |+|C| are siblings.) Define P ,
{i | τ ≤ i ≤ |V | + |C|, ω(vi) ≤ k} and Q , {i | τ ≤ i ≤
|V |+ |C|, δ(vi) ≤ k}.

We can reduce the gSSE Problem from GBFS to its
subtree Gsub. The following lemma considers the case
maxi∈P ω(vi) ≤ maxi∈Q δ(vi).

Lemma 5. Suppose maxi∈P ω(vi) ≤ maxi∈Q δ(vi). Consider
five cases:

1) Case 1: If |Q| > 0 and maxi∈Q δ(vi) = k, let S be a
minimum-sized g-Elimination Set for Gsub.

2) Case 2: If |Q| > 0, maxi∈Q δ(vi) < k and
δ(π(π(v|V |+|C|))) ≤ k, let S be a minimum-sized g-
Elimination Set for Gsub where δ(π(π(v|V |+|C|))) is
changed to min{δ(π(π(v|V |+|C|))),maxi∈Q δ(vi) + 1}.

3) Case 3: If |Q| > 0 and ω(π(π(v|V |+|C|))) ≤
maxi∈Q δ(vi) < k, let S be a minimum-sized g-
Elimination Set for Gsub.

4) Case 4: If |Q| > 0 and maxi∈Q δ(vi) <
ω(π(π(v|V |+|C|))) ≤ k, let S be a minimum-sized g-
Elimination Set for Gsub where δ(π(π(v|V |+|C|))) is
changed to maxi∈Q δ(vi) + 1 and ω(π(π(v|V |+|C|))) is
changed to∞.

5) Case 5: If |Q| = 0, there are two sub-cases: (1)
if ω(π(π(v|V |+|C|))) = 0, let S be a minimum-
sized g-Elimination Set for Gsub; (2) otherwise,
let S be a minimum-sized g-Elimination Set for
Gsub where δ(π(π(v|V |+|C|))) is changed to 1 and
ω(π(π(v|V |+|C|))) is changed to∞.

Then S ∪{vi|i ∈ P} is a minimum-sized g-Elimination Set for
GBFS .

The case for maxi∈P ω(vi) > maxi∈Q δ(vi) can be ana-
lyzed similarly. Due to the page limit, we skip its details.

An efficient algorithm that constructs an optimal solution
to the SSEk problem (for finite k) can be built based on
the above reductions, and be extended to k = ∞. It first
runs BFS on G to get the tree GBFS that labels nodes by
v1, v2, · · · , v|V |+|C|. Then it processes the nodes in the reverse
order of their labels, and keeps reducing the gSSEk Problem
to smaller and smaller subtrees, while finding more and more
nodes in the solution. The algorithm has linear time complexity
O(|V |+ |C|). For its detailed pseudo code, please see [3].

ACKNOWLEDGMENT: This work was supported in part by
NSF Grant CCF-1718886.

REFERENCES

[1] A. Jiang, Y. Li, and J. Bruck, “Enhanced Error Correction via Language
Processing,” in Proc. Non-Volatile Memories Workshop, 2015.

[2] A. Jiang, P. Upadhyaya, E. F. Haratsch and J. Bruck, “Error Correction
by Natural Redundancy for Long Term Storage,” in Proc. NVMW, 2017.

[3] A. Jiang, P. Upadhyaya, Y. Wang, K. R. Narayanan, H. Zhou, J.
Sima and J. Bruck, “Stopping Set Elimination for LDPC Codes,” in
Proc. 55th Annual Allerton Conference on Communication, Control
and Computing (Allerton), Monticello, IL, October 2017. Available
at http : //faculty.cse.tamu.edu/ajiang/Publications/2017/
StoppingSetElimination Allerton.pdf .

[4] Y. Wang, K. R. Narayanan and A. Jiang, “Exploiting Source Redundancy
to Improve the Rate of Polar Codes,” in Proc. IEEE International
Symposium on Information Theory (ISIT), pp. 864–868, 2017.

