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Abstract—Many types of data, such as natural languages, have
rich internal redundancy, which can be used to substantially
improve the error correction performance. This work studies
machine learning and algorithmic techniques for correcting
errors in compressed or uncompressed languages.

I. INTRODUCTION

The amount of data stored in the Internet is growing
exponentially fast. With this growth, how to ensure long-term
data reliability for all data also becomes more challenging.
To assist error-correcting codes (ECC), the redundancy in the
content of data itself can be utilized. This type of redundancy
– such as features in languages, images and videos, structures
in HTML files and databases, etc. – is referred to as natural
redundancy (NR), which supplements the more structured
redundancy added by error-correcting codes [14], [15]. NR
exists in both uncompressed and imperfectly compressed data,
which are abundant in storage systems. That makes NR a
promising tool to enhance data reliability.

With NR, a decoding system can be considered as consisting
of two decoders: an ECC-Decoder, and an NR-Decoder. They
work collaboratively to correct errors or erasures in the ECC
codeword. We illustrate it by an example.

Example 1. Consider texts compressed by an LZW algorithm
that uses a fixed dictionary of size 2`. The dictionary has 2` text
strings (called patterns) of variable lengths, where every pattern
is encoded as an `-bit codeword. Given a text to compress, the
LZW algorithm scans T and partitions it into patterns, and maps
them to codewords. For instance, if ` = 20 and the text is
“Flash memory is an electronic · · · ”, the partitioning and LZW-
codewords can be as illustrated in Fig. 1 (a).

Now suppose some bits in the LZW-codewords are erased.
An NR-Decoder can check all the possible solutions, map each
solution back to patterns, and use a dictionary of words to
eliminate those solutions that contain invalid words. (Such a
dictionary of words has been commonly used in spell checkers.)
If all the remaining solutions agree on the value of an erased bit,
then that erasure is decoded by the NR-Decoder. For instance,
suppose each LZW-codeword in Fig. 1 (a) suffers from two
erasures, which lead to four possible solutions/patterns (see
Fig. 1 (b)). By combining the patterns for each codeword, we
can rule out many solutions. For instance, the combination
“should becnomially ars an ele” can be eliminated due to the

invalid word “becnomially”. In fact, the only combination with-
out invalid words (without considering words on the boundary
of the string, which might be part of a longer word) is “Flash
memory is an ele”, so the NR-Decoder can recover all six
erasures in the three codewords.

Suppose that the LZW-codewords, seen as information bits,
are protected by a systematic ECC. Then the ECC-Decoder
can correct erasures by parity-check constraints, and the NR-
Decoder can correct erasures by NR. They can work collabora-
tively to maximize the number of correctable erasures. 2

(a) Patterns:

Codewords:

(emory i) (s an ele)

11011110100001000010 11101101001100100110 11001100100000100011

(Flash m) ...

...

(b) 1?011110100001000?10 11101101001?0010011? 110?1100100?00100011... ...Noisy
codewords:

Possible
solutions

10011110100001000010 11101101001000100110 11001100100000100011... ...

10011110100001000110 11101101001000100111 11001100100100100011... ...

11011110100001000010 11101101001100100110 11011100100000100011... ...

11011110100001000110 11101101001100100111 11011100100100100011... ...

1)

for

each
codeword:

2)

3)

4)

Possible
patterns

(should bec) (nominally ar) (s an ele) ...

(es of the c) (government, n) (epy,) ...

(Flash m) (emory i) (style and ) ...

( rast) (in France an) (the Palac) ...

1)

for

each
codeword:

2)

3)

4)

Fig. 1. (a) Compress a text by LZW. (b) NR-decoding for erasures.

As this paper is motivated by language-based NR, we would
like to mention that an LZW algorithm with a dictionary of 220

patterns (as in the above example) can compress the English
language to 2.94 bits per character. The UNIX Compress com-
mand uses LZW with a smaller dictionary and so achieves a
lower compression ratio. There are compression algorithms for
languages with higher compression ratios (e.g., syllable-based
Burrows-Wheeler Transform achieving 2 bits/character [19]).
However, there is still a gap toward Shannon’s estimation
of 1.34 bits/character for the entropy of English [30], which
gives motivation for NR-Decoders. And one may reasonably
conjecture that a similar scenario exists for images and videos.



In this work, we propose a relatively generic decoding
model for collaborative ECC-Decoding and NR-Decoding that
is motivated by language-based NR. The model is shown
in Fig. 2. The (compressed or uncompressed) data, seen as
information bits, are encoded into a systematic ECC codeword.
The NR-decoder uses a sliding window of L bits to check a
segment of the data each time, and uses its NR to correct
errors/erasures in it. We bound the size of the window to
L bits because due to the lack of structures in NR, NR-
decoding is often not as efficient as ECC-decoding and its
complexity grows with L, so a finite L bounds the acceptable
complexity of NR-decoding. The NR-Decoder works jointly
with the ECC-Decoder to correct errors/erasures.

information bits (data with NR) parity-check bits

systematic ECC:

a sliding window of L bits for NR-decoding sliding window at a different position

Fig. 2. A model for collaborative ECC-decoding and NR-decoding.

The above model can be applied to languages compressed
by LZW codes or Huffman codes, where some practical
decoding algorithms have been presented [14], [15], [20], [22],
[31], [32]. In this paper, we study a basic theoretical problem
for LDPC codes: when the number of erasures in a noisy
LDPC codeword exceeds the decoding capability of the LDPC
code’s ECC-Decoder, what is the minimum number of erasures
that an NR-Decoder needs to help correct so that the remaining
erasures are decodable by the ECC-Decoder?

We have proposed and studied the above problem in [13],
[16], where some results on the analysis of the problem’s com-
putational complexity, the design of approximation algorithms
and the design of exact algorithms were presented. In this
paper, we present a brief overview of those results in [13],
[16].

It is worthwhile to mention that two main applications have
been introduced in [13], [16] for the studied problem, one
for distributed storage, and the other for satellite-to-ground
communication with feedback. The application introduced here
is yet another notable one, and is actually what motivated the
study of the problem in the first place.

Let us define the problem more specifically. Let the LDPC
code’s ECC-Decoder be the following widely-used iterative
belief-propagation (BP) algorithm: in each iteration, use every
parity-check equation involving exactly one erasure to decode
that erasure; and repeat until every equation involves zero or at
least two erasures. If the ECC-Decoding fails, then we are left
with a stopping set, which is a set of erasures such that every
parity-check equation involving any of them involves at least
two of them. If we represent the LDPC code by a bipartite
Tanner graph, then a stopping set is a subset of variable nodes
(representing erasures) such that a check node adjacent to any
of them is adjacent to at least two of them.

We now define the capability and limitations of the NR-

Decoder. Suppose that for any sliding window of L bits, the
NR-Decoder can always correct its erasures if the number of
erasures in the window is at most α. Given a stopping set,
the objective is to use the NR-Decoder to correct sufficiently
many erasures so that the remaining erasures are correctable
by the ECC-Decoder. However, notice that since NR-Decoding
is typically less efficient than ECC-Decoding, there is an
associated cost. Let β denote the number of L-bit windows
(at β different locations) used by NR-Decoding. Whether
the NR-decoding is implemented in hardware or software
(where decoding circuits or software can choose the location
of each window), the overall circuit complexity and/or time
complexity is proportional to β. (For instance, if circuits are
used to decode the windows in parallel, then β circuits are
needed for β windows.) Therefore, we need to minimize the
number of windows used by NR-decoding, and choose the
locations of the windows carefully for that purpose.

In this paper, we will study a special case of the above
problem by setting L = α = 1, and we assume that the sliding
windows can cover both information bits and parity-check bits.
Although it may seem too restrictive at first sight, there are
several reasons that still make it quite meaningful. First, stor-
age systems often have low raw bit-error-rates (e.g., less than
0.5%), so for a relatively short window (e.g, tens of bits), the
number of erasures in it is often at most 1, which can usually
be corrected very effectively by NR-Decoding [15]. In such
cases, having L ≥ 1, α = 1 is similar to having L = α = 1.
Second, ECCs in storage systems often have high rates (e.g.,
over 0.93), which can make the sliding window’s access to all
codeword bits similar to accessing only information bits (since
information bits are the majority of bits). Third, understanding
the basic case of L = α = 1 will be the basis for understanding
the more general case of L ≥ α ≥ 1. And last but not least,
the case L = α = 1 corresponds to a fundamental problem
for LDPC codes: assume there is a powerful and unrestricted
Oracle decoder that can correct any erasure, but its decoding
comes at a high cost; then, how to minimize the number of
erasures the Oracle decoder needs to correct in order to make
the remaining erasures decodable by the ECC-Decoder? We
believe the problem is theoretically important in its own right.

The problem to study can now be defined formally as
follows. Let G = (V ∪ C,E) be a bipartite graph, where
V (representing erasures) is a subset of the variable nodes in
an LDPC code’s Tanner graph, C is a subset of the check
nodes in the same Tanner graph such that every node in C is
adjacent to at least one node in V , and E is the set of edges in
the Tanner graph with one endpoint in V and another endpoint
in C. If every node in C has degree two or more, then G is
called a Stopping Graph and V is called a Stopping Set. If an
iterative BP algorithm (as introduced earlier) that runs on G
can decode all the variable nodes in V (where every variable
node in V is an erasure), then V is called a Decodable Set
(or simply decodable); otherwise, it is a Non-Decodable Set
(or simply non-decodable). Note that a Stopping Set must be a
Non-Decodable Set, but not vice versa. The problem we study,
called Stopping-Set Elimination (SSE) Problem, is as follows.



Definition 2. Given a Stopping Graph G = (V ∪ C,E), how
to remove the minimum number of variable nodes from V such
that the remaining variable nodes are decodable?

The removed variable nodes represent NR-decoded erasures.
Clearly, after the removal, the remaining nodes will no longer
contain any Stopping Set.

The rest of the paper is organized as follows. In Section II,
we review works related to error correction by natural redun-
dancy (NR). In Section III, we show that the SSE Problem is
NP hard. In Section IV, we discuss an approximation algorithm
for the SSE1 Problem. In Section V, we analyze the effect of
RBER (raw bit error rate) on achieving good approximation
ratios, and present algorithms that return optimal solutions
to SSE Problems when the stopping graphs form trees. In
Section VI, we extend the study to stopping graphs with
cycles, and present a number of results, including analyzing
properties of optimal solutions and the design of approximate
and exact algorithms. In Section VII, we conclude the paper.

II. RELATED WORKS

In this section, we present a brief review of existing works
that are related to error correction by NR.

Error-correction with NR is related to joint source-channel
coding and denoising. The idea of using the inherent redun-
dancy in a source – or the leftover redundancy at the output
of a source encoder – to enhance the performance of the
ECC has been studied within the field of joint source-channel
coding. In [11], source-controlled channel coding using a
soft-output Viterbi algorithm is considered. In [4], a trellis
based decoder is used as a source decoder in an iterative
decoding scheme. Joint decoding of Huffman and Turbo codes
is proposed in [10]. In [12], joint decoding of variable length
codes (VLCs) and convolutional/Turbo codes is analyzed.
Applications of turbo codes to image/video transmission are
shown in [8], [25] and [17]. Joint decoding using LDPC
codes for VLCs and images are illustrated in [26] and [27],
respectively. However, not many works have considered JSCC
specifically for language-based sources, and exploiting the
redundancy in the language structure via an efficient decoding
algorithm remains as a significant challenge. Related to joint
source-channel coding, denoising is also an interesting and
well studied technique [2], [5], [6], [7], [21], [24], [23],
[28], [35]. A denoiser can use the statistics and features of
input data to reduce its noise level for further processing. For
discrete memoryless channels with stationary input sequences,
a universal algorithm that performs asymptotically as well as
optimal denoisers are given in [33]. The algorithm is also
universal for a semi-stochastic setting, where the channel input
is an individual sequence and the randomness in the channel
output is solely due to the channel’s noise.

Spell-checking softwares are a typical example of using
NR to correct errors in languages. They are widely used in
text editors. A spell-checking software usually works at the
character level (namely, it does not consider how characters
or text strings are encoded by bits), is for uncompressed texts,

and uses the validity of words and the correctness of grammar
to correct errors that appear in the typing of texts.

Using NR to correct errors at the bit level in compressed
texts has been studied in a number of works. In [20], texts
compressed by Huffman coding is considered, and a dynamic
programming algorithm is used to partition the noisy bit
sequence into subsequences that represents words, and to
select likely solutions based on the frequencies of words and
phrases. In [14], texts that are compressed by Huffman coding
and then protected by LDPC codes are studied. An efficient
greedy algorithm is used to decompress the noisy bit string,
and partition it into stable and unstable regions based on
whether each region contains recognizable words and phrases.
The stable and unstable regions have polarized RBERs, which
are provided as soft information to the LDPC code for better
decoding performance. The algorithm is enhanced in [22] by
a machine learning method for content recognition, and an
iterative decoding algorithm between the NR-Decoder and
the ECC-Decoder is used to further improve performance.
In [32], texts compressed by Huffman coding and protected
by Polar codes are studied. The validity of words is used to
prune branches in a list sequential decoding algorithm, and
a trie data structure for words is used to make the algorithm
more efficient. A concatenated-code model that views the text
with NR as the outer code and the Polar code as the inner
code is considered, and the rate improvement for the Polar
code due to NR is analyzed. That model is further studied
in [31], where an optimal algorithm that maximizes the code
rate improvement by unfreezing some frozen bits to store
information is presented. A model that views NR as the output
of a side information channel at the channel decoder is also
studied, where NR is shown to improve the random error
exponent.

III. NP-HARDNESS OF SSE PROBLEM

It has been proved in [16] that the SSE Problem is NP-hard.
The proof has two steps: first, using the well-known Set Cover
Problem, we prove that a related covering problem where
nearly all elements (more specifically, all but at most one)
are covered – which we call the Pseudo Set Cover Problem
– is NP-complete; then, we reduce the latter problem to the
SSE Problem.

Theorem 3. The SSE Problem is NP-hard.

We can extend the SSE Problem by considering the time for
BP decoding [16]. After the nodes in an Elimination Set are
removed (namely, after NR-decoding corrects those erasures),
the remaining erasures are guaranteed to form a Decodable
Set, and therefore the BP decoder can correct them. However,
there is no guarantee on how many iterations are needed by
the BP decoder to correct the remaining erasures. Here we
assume a standard parallel-implementation of BP decoding: in
each iteration, first, all variable nodes transmit their values to
neighboring check nodes in parallel; then, all check nodes use
incoming messages to correct erasures and send the decoding



results back to variable nodes, also in parallel. So the time for
BP decoding can be measured by the number of BP iterations.

It can be seen that for a Stopping Set of n variable nodes
(namely, n erasures), after an Elimination Set is removed, the
BP decoder may still use as many as Θ(n) iterations to correct
the remaining erasures.

For BP decoding, its decoding time is an important measure
of performance. So it is useful to limit the number of iterations
needed by BP decoding, which offers a performance guarantee.
That motivates us to study this extended SSE Problem.

Definition 4. Given a Stopping Graph G = (V ∪ C,E) and
an integer k, how to remove the minimum number of variable
nodes from V such that the remaining variable nodes can be
corrected by the BP decoder in no more than k iterations?

We call the above problem the SSEk Problem. In compar-
ison, the SSE Problem studied earlier has no constraint on k,
so it can be seen as the SSE∞ Problem.

We have already proved that SSE∞ is NP-hard. The
question now is: if k is a constant – namely, we want the
BP decoding to finish within a fixed number of iterations –
does the SSEk problem become polynomial-time solvable? A
positive answer seems possible at first sight, because having a
small k puts more constraints on solutions and limits its search
space. For example, if k = 1, to correct all remaining erasures
in just one iteration, in the subgraph induced by the remaining
variable nodes and their adjacent check nodes, every variable
node needs to be adjacent to at least one check node of degree
one. That is a very local property for the bipartite graph and
can possibly make the problem simpler. However, our study
below will give a negative answer. We will prove that even
the

SSE1

Problem is NP-hard.
There have been a number of works on the node-deletion

problem (also called the maximum subgraph problem) [1], [9],
[18], [34], which can be generally stated as follows: find the
minimum number of vertices to delete from a given graph
so that the remaining subgraph satisfies a property π. The
node-deletion problem includes many well-known problems
as special cases. Some examples are:
• Max Clique Problem: the property π is that the remaining

subgraph is a complete graph.
• Feedback Vertex Set Problem: the property π is that the

remaining subgraph has no cycles.
• Vertex Cover Problem: the property π is that the remain-

ing subgraph contains only isolated nodes, without edges.
Some node-deletion problems are NP-complete on both

general graphs and bipartite graphs, such as the feedback ver-
tex set problem. However, some are NP-complete on general
graphs but polynomial-time solvable on bipartite graphs, such
as the vertex cover problem.

The SSEk Problem is different from the previously studied
problems in several ways. First, its property π is for the

remaining subgraph to be decodable within k iterations, which
is different from the property π in other problems. Second,
the previous works focus on properties π that are hereditary
on induced subgraphs, namely, whenever a graph G satisfies
π, by deleting nodes from G, the remaining subgraphs also
satisfies π [1], [9], [18], [34]. (For example, the property π
for the max clique problem is hereditary because when nodes
are removed from a complete graph, the remaining subgraph is
also a complete graph. The same holds for the feedback vertex
set problem and the vertex cover problem.) However, for the
SSEk Problem, the property π is not hereditary, because when
a check node is removed, it may turn a Decodable Set into a
Non-decodable Set. An example is shown below.

Example 5. A Decodable Set is shown in Fig. 3 (a), which
satisfies the property π of the SSEk problem. As shown in
Fig. 3 (b), after the check nodes c1 and c3 are removed, the
remaining subgraph becomes non-decodable, which violates
the property π. So for the SSEk Problem, the property π is
not hereditary. 2

(a)

v1 v2

c1 c2 c3 (b)

v1 v2

c2

Fig. 3. (a) A graph with a Decodable Set. (b) After check nodes c1 and c3
are removed, the remaining variable nodes form a Non-decodable Set.

We have proved the NP-hardness of the SSE1 Problem [16].
We use a reduction from the NP-complete Not-all-equal SAT
Problem [29], similar to a proof technique used in [34]. How-
ever, due to the differences between the SSEk problem and
the previously studied node-deletion problems (as mentioned
above), the two proofs also have significant differences: they
use different mappings from the Not-all-equal SAT Problem
to the target problem, which also lead to some substantially
different properties in the mapped structures.

Theorem 6. The SSE1 Problem is NP-hard.

IV. APPROXIMATION ALGORITHM FOR SSE1 PROBLEM

In [16], an approximation algorithm has been presented for
the SSE1 problem, for Stopping Graphs whose degrees of
variable nodes and check nodes are upper bounded by dv and
dc, respectively [16]. Its approximation ratio is

dv(dc − 1).

(Clearly, the same result also applies to regular (dv, dc)
LDPC codes and irregular codes with the same constraint on



maximum degrees.) Note that the optimization objective is to
minimize the size of the elimination set (namely, the number
of removed variable nodes). So the approximation ratio means
the maximum ratio of the size of an elimination set produced
by the approximation algorithm to the size of an optimal (i.e.,
minimum) elimination set.

Due to space limitation, we skip the details of the algo-
rithm here. The approximation algorithm has time complexity
O(d2

vd
2
c |V |). And analysis shows that it achieves the following

approximation ratio: let dv and dc denote the maximum
degrees of variable nodes and check nodes, respectively, in
the Stopping Graph G = (V ∪ C,E); then thealgorithm has
an approximation ratio of

dv(dc − 1).

V. ANALYSIS AND ALGORITHMS FOR SSEk PROBLEMS

In this section, we present more analysis and algorithms
for SSEk Problems, including k =∞. We first analyze how
an important factor, RBER (raw bit-erasure rate), affects the
performance of approximation algorithms, and show that for
high-rate codes with high actual erasure rates, all algorithms
have good approximation ratios. We then present exact algo-
rithms for SSE∞ and SSEk Problems when the Stopping
Graph is a tree (or a forest). The algorithms output optimal
solutions and have linear time complexity.

A. Effect of RBER for Approximation Algorithms

We first analyze the effect of RBER for approximation
algorithms. Consider an (N,K) LDPC code with N codeword
bits and K information bits (where K < N ), whose code rate
is R , K/N . Let G = (V ∪ C,E) be its Stopping Graph,
where V is the Stopping Set. The higher RBER is, the greater
|V | becomes on average. Let ε , |V |/N be called the actual
erasure rate relative to stopping set V . The following result
can be derived [13].

Theorem 7. For the SSEk Problem, if ε > 1 − R, then the
approximation ratio of any algorithm is at most

ε

ε− (1−R)
.

So for high rate codes (where R approaches 1), if the RBER
is high (which approaches 1), then with high probability, ε
also approaches 1. In this case, ε

ε−(1−R) approaches 1, so all
algorithms have good approximation ratios.

B. Exact Algorithm for SSE∞ Problem with Stopping Tree

The Stopping Graph G = (V ∪ C,E) can be a tree,
especially when the RBER is low. In this case, we call G
a Stopping Tree. Note that if G is a forest, the SSEk Problem
can be solved for each of its tree components independently.

In this subsection, we discuss an efficient and exact al-
gorithm for the SSE∞ Problem, which has been presented
in [16]. The algorithm will be extended to the SSEk Problem
for general k subsequently.

The algorithm first runs BFS to generate GBFS . It then
processes the nodes in the reverse order of their labels (from
v|V |+|C| to v1). Every time it comes to a node vi, if vi
is a variable node and has siblings (of smaller labels), its
siblings are included in the Elimination Set. The root v1 is also
included in the Elimination Set. For details of the algorithm,
please refer to [16].

It is proved that the algorithm returns an optimal (i.e.,
minimum-sized) Elimination Set of G = (V ∪ C,E). And
its time complexity is O(|V |+ |C|).

C. Exact Algorithm for SSEk Problem with Stopping Tree

We now extend the previous analysis, and design an exact
algorithm for the SSEk Problem of linear time complexity.

The algorithm first runs BFS on G to get the tree GBFS
that labels nodes by v1, v2, · · · , v|V |+|C|, where v1 is the root.
Then (similar to the algorithm for SSE∞), it processes the
nodes in the reverse order of their labels, and keeps reducing
the SSEk Problem – actually, a more general form of the
SSEk Problem, – to smaller and smaller subtrees. For details
of the algorithm, please refer to [16].

The algorithm can be proved to return an optimal (i.e.,
minimum-sized) k-iteration Elimination Set of G = (V ∪
C,E). It also has time complexity O(|V |+ |C|).

VI. SSE PROBLEM FOR p-CYCLIC STOPPING GRAPHS

In the above, we introduced exact algorithms for stopping
graphs that form trees. A more general case is that the stopping
graph can be cyclic but its number of cycles is bounded.
That also matches the most useful cases in practice, where
the number of erasures exceeds but is not far away from the
LDPC code’s decoding threshold. So we focus on this more
general case in this paper. Specifically, we focus on p-Cyclic
Stopping Graphs defined as follows.

Definition 8. For a Stopping Graph G = (V ∪C,E), if at most
p variable nodes can be removed to make the remaining graph
acyclic, then G is called a p-Cyclic Stopping Graph.

In the following, we analyze properties of the SSE∞ Prob-
lem and present a scheme that finds optimal elimination sets
for stopping graphs. We present an efficient linear-complexity
algorithm based on the scheme for stopping graphs containing
one cycle. We also present an approximation algorithm for
the SSE∞ Problem for p-cyclic stopping graphs, which has
approximation ratio 2p

c+1 + 1 and polynomial time complexity,
where c ≥ 0 is an integer parameter that can be selected freely.
We then present an extended polynomial-time approximation
algorithm with the same approximation ratio for the SSEk
Problem for p-cyclic stopping graphs. Due to space limitation,
we skip many details. More detailed analysis and algorithms
can be found in [13].

A. SSE∞ Problem for 1-Cyclic and p-Cyclic Stopping
Graphs

In this sub-section, we study the SSE∞ Problem. We first
analyze the properties of stopping graphs, and present an (not



necessarily polynomial-time) algorithm that finds an optimal
elimination set for any stopping graph. We then present two
polynomial-time algorithms for stopping graphs with one
cycle and for p-cyclic stopping graphs, respectively, which are
variations of the first algorithm.

Let us first define several concepts. We call a graph smooth
if every node in it is of degree at least two. We call a node
in a graph a smooth-node if it is either in a cycle, or on a
simple path that connects two cycles in the graph. We call a
node v in a graph G a tree-node if v has degree one, or if
removing v from G will break G into two or more disjoint
subgraphs and at least one of those subgraphs is a tree that
has only one node adjacent to v in G. Given a stopping graph
G = (V ∪C,E), if a node v in it is both a smooth-node and a
tree-node, then we call v a bridge-node; furthermore, if v ∈ V
is a variable node (resp., if v ∈ C is a check node), then we
call v a bridge-variable-node (resp., a bridge-check-node). We
let Λ(G) denote the set of bridge-variable-nodes of G, and let
Π(G) denote the set of bridge-check-nodes of G.

Given a stopping graph G = (V ∪C,E), let SG denote the
subgraph of G obtained by removing from G all the nodes that
are tree-nodes but not bridge-nodes. We call SG the smooth-
component of G. Furthermore, let CG denote the subgraph of
SG obtained by removing from SG all the nodes in Π(G). We
call CG the core-component of G.

Lemma 9. [13] For any stopping graph G = (V ∪ C,E), SG
is a smooth graph. All the cycles in G are also in SG, and vice
versa. The nodes in SG are exactly those smooth-nodes in G.
Furthermore, both SG and CG are stopping graphs (i.e., every
check node in them is of degree at least two).

Consider a stopping graph G = (V ∪ C,E) and a bridge-
node v in it. By definition, removing v from G will break G
into multiple subgraphs, at least one of which is a tree with
exactly one node (say node u) adjacent to v in G. We call such
a tree a peripheral-tree Tpt,G(u) in G, and call u its root. Let
AG(v) denote the set of roots of peripheral trees adjacent to v
in G. Let Tbt,G(v) denote the subgraph of G containing these
nodes: v, and all the nodes of those peripheral trees whose
roots are in AG(v) (namely, are adjacent to v in G). It can
be seen that Tbt,G(v) is a tree, which we call a bridge-tree,
and call v its root. It is not hard to see that G contains a
smooth-component and a set of disjoint bridge-trees, where
each bridge-tree overlaps the smooth-component at its root (a
bridge node).

We will use the two algorithms in [16] that find optimal
elimination sets for stopping trees – one algorithm for the
SSE∞ Problem and the other for the SSEk Problem – in
the algorithms of this paper. Due to space limitation, we
do not include their details, and use them only as modules.
For convenience, let us call the two algorithms the Tree∞
Algorithm and Treek Algorithm, respectively. We note that the
Tree∞ Algorithm has a property: it can choose any variable
node v in the stopping tree and ensure that the optimal

elimination set it finds contains v. (v was seen as the tree’s
root in [16].) That property will be used in our future analysis.

We now present a recursive algorithm (called OPT∞(G))
that finds an optimal elimination set for any stopping graph for
the SSE∞ Problem. It takes a stopping graph G = (V ∪C,E)
as input, and outputs an elimination set E ⊆ V for G.

Algorithm 10. OPT∞(G): [13]
1) If G is smooth, find an optimal elimination set E ⊆ V for

G, and return E . Otherwise, go to Step 2.
2) Ecore ← OPT∞(CG). (Namely, use the core-component
CG as input to this algorithm to obtain an elimination set
Ecore for CG.)

3) For every bridge-node v ∈ Λ(G)∪Π(G), use the Tree∞
Algorithm to find an optimal elimination set F(v) for the
bridge-tree Tbt,G(v).

4) Return Ecore∪
(
∪v∈Λ(G)F(v)− {v}

)
∪
(
∪v∈Π(G)F(v)

)
.

We now analyze the algorithm OPT∞(G), and prove that
it returns an optimal elimination set for G = (V ∪ C,E).

First, let Gα = (Vα ∪ Cα, Eα) denote the subgraph of G
obtained by removing all peripheral trees rooted at nodes in
∪v∈Λ(G)AG(v), namely, peripheral-trees adjacent to bridge-
variable-nodes. (Here Vα ⊆ V and Cα ⊆ C.)

Lemma 11. [13] Let G = (V ∪ C,E) be a stopping graph.
For the SSE∞ Problem, there exists an optimal elimination set
E∗ ⊆ V such that E∗ ∩ Vα is an elimination set for Gα.

Lemma 12. [13] Let G = (V ∪C,E) be a stopping graph, and
let CG = (Vcore ∪ Ccore, Ecore) be its core-component, where
Vcore ⊆ V and Ccore ⊆ C. Then for the SSE∞ Problem, there
exists an optimal elimination set F ⊆ V such that F ∩ Vcore is
an elimination set for CG.

For any stopping graph G′, let χ(G′) denote the size of an
optimal elimination set for G′.

Theorem 13. Let G = (V ∪ C,E) be a stopping graph. Then

χ(G) = χ(CG)− |Λ(G)|+
∑

v∈Λ(G)∪Π(G)

χ(Tbt,G(v)).

Theorem 14. The algorithm OPT∞(G) returns an optimal
elimination set for G = (V ∪ C,E).

The algorithm OPT∞(G) finds an optimal elimination set,
but it may not be a polynomial-time algorithm, because it
is NP-hard to find an optimal elimination set for a smooth
stopping graph (which can be derived from the NP-hardness
of the SSE∞ Problem). In this following, we first study the
SSE∞ Problem for stopping graphs containing just one cycle,
which is the basic case for cyclic stopping graphs, and show
that an efficient algorithm exists.

For a stopping graph G = (V ∪ C,E) that contains one
cycle, its core-component CG is either a cycle (if |Π(G)| = 0)
or |Π(G)| disjoint paths (if |Π(G)| > 0). If CG is a cycle, then



its optimal elimination set contains a single variable node in
the cycle. If CG consists of |Π(G)| disjoint paths, then its
optimal elimination set contains |Π(G)| variable nodes (one
for each path). So based on Theorem 13, we see that an optimal
elimination set for G has size

χ(G) = max{|Π(G)|, 1}−|Λ(G)|+
∑

v∈Λ(G)∪Π(G)

χ(Tbt,G(v)).

Based on the above analysis, the algorithm OPT∞(G) can
be simplified accordingly. (We skip details of the algorithm
due to space limit.) Note that the Tree∞ Algorithm has linear
time complexity [16]. It is not hard to see that the algorithm
here also has linear time complexity O(V + C + E).

We now present an approximation algorithm for p-cyclic
stopping graphs. It uses an approximation algorithm for the
Minimum Feedback Vertex Set (MFVS) Problem as a tool.
Given an undirected graph G′ = (V ′, E′), a feedback vertex
set (FVS) is a set of vertices S ⊆ V ′ such that every cycle
in G′ contains at least one vertex of S (namely, removing S
will turn G′ into an acyclic graph). The MFVS Problem is
defined as follows: given an undirected graph G′ = (V ′, E′)
where every vertex v ∈ V ′ has a non-negative cost c(v), find
an FVS in G′ whose cost is minimized. The MFVS Problem
has a 2-approximation algorithm [3], which we shall call the
MFVS Algorithm.

Our approximation algorithm for the SSE∞ Problem for a
p-cyclic stopping graph G = (V ∪ C,E) is a modification of
the Algorithm OPT∞(G). In Step 1 of OPT∞(G), instead
of finding an optimal elimination set E ⊆ V for the smooth
graph G, we find an approximate solution as follows:
• Step 1.1: Let c be a non-negative integer. Use exhaustive

search to check if G has an elimination set of size at
most c. If yes, return an optimal elimination set for G;
otherwise, go to Step 1.2.

• Step 1.2: In G, let all variable nodes have cost 1, and let
all check nodes have cost ∞. Run the MFVS Algorithm
to find an FVS F ⊆ V for G. (The high cost for check
nodes ensures that F contains only variable nodes.)

• Step 1.3: Remove the nodes in F from G, and use BP
decoding to further remove those nodes that become
decodable until we get a new stopping graph Ĝ =
(V̂ ∪ Ĉ, Ê). (Ĝ is acyclic because F is an FVS.) Then
find an optimal elimination set S∗ ⊆ V̂ for Ĝ using the
Tree∞ Algorithm. Return F ∪ S∗ as the elimination set
for G.

We let Step 2 through Step 4 of the algorithm OPT∞(G)
remain the same. Let us call the new algorithm Approx∞(G).
It has polynomial time complexity for constant parameter c
because all its elements (the MFVS Algorithm, the Tree∞ Al-
gorithm, the exhaustive search, the number of recursive calls)
are of polynomial time. We now analyze its approximation
ratio (define based on the size of the elimination set).

Theorem 15. AlgorithmApprox∞(G) has approximation ratio

2p

c+ 1
+ 1.

So when p is small, the approximation ratio can be small.
The SSEk Problem is a generalization of the SSE∞ Prob-

lem. In [13], we have presented an approximation algorithm
for it for a p-Cyclic Stopping Graph G = (V ∪ C,E). It
is the same as Step 1.1 through Step 1.3 of the Algorithm
Approx∞(G), except that we use the Treek Algorithm to
replace the Tree∞ Algorithm in Step 1.3; and we do not
use the remaining steps (namely Step 2 through Step 4 of
OPT∞(G)). (That is because here G is the original input to
the algorithm, not its smooth subgraph obtained during the
recursion.) Let us call the new algorithm Approxk(G).

Algorithm Approxk(G) also has an approximation ratio of
2p
c+1 +1 and polynomial time complexity. The analysis is very
similar to Algorithm Approx∞(G), so we skip it details. Note
that although the two algorithms have the same approximation
ratio (which considers the worst case performance) and Algo-
rithm Approxk(G) appears simpler (i.e., with fewer steps),
Algorithm Approx∞(G) is better optimized for the SSE∞
Problem because its extra steps can further reduce the size of
the output elimination set.

VII. CONCLUDING REMARKS

This paper summarizes a number of results on the stopping
set elimination problem for LDPC decoding, which has ap-
plications to error correction that utilizes natural redundancy
(NR) in data. How to mine NR in data effectively is a
challenging problem. We are currently conducting research
that uses deep learning techniques for mining information from
NR that is useful for ECC decoding. The work can also be
extended by studying more specific LDPC code constructions
(e.g., spatially-coupled codes, etc.), and design corresponding
SSEk algorithms.
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