
LDPC Decoding with Natural Redundancy
Pulakesh Upadhyaya and Anxiao (Andrew) Jiang

Computer Science and Engineering Department, Texas A&M University
pulakesh@tamu.edu, ajiang@cse.tamu.edu

I. INTRODUCTION

The increasingly wider application of non-volatile memories
(NVMs) in big-data storage has led to a challenge: how to
recover data from errors as effectively as possible for reliable
long-term storage. Flash memories and other NVMs have
noise mechanisms such as charge leakage, read/write disturbs,
and cell-quality degradation due to P/E cycling. They make
data more and more noisy over time. So there is a strong
motivation in exploring new techniques for error correction.

In this paper, we study how to correct errors using natural
redundancy (NR) in compressed data, and how to combine
it with error-correcting codes (ECCs). By NR, we refer to
the redundancy in data that is not artificially added for error
correction, such as features in languages and images and
structures in databases. It is a rich resource for error correction
even after data are compressed (due to practical reasons such
as high complexity in compression and data modeling), and
is especially suitable for NVMs because an NR-decoder often
needs to check the validity of candidate solutions (such as
words/phrases for languages) in dictionaries, and the fast
random access speed of NVMs makes it very efficient.

In an accompanying paper [1] (where a survey of related
works is given), we have shown that after deep compression of
languages, plenty of redundancy still remains. In this work, we
also study it for images. We then propose a general scheme to
combine NR-decoding with low-density parity-check (LDPC)
codes, which are used very widely in NVMs. We explore
the density evolution of LDPC decoding given information
from the NR-decoder. We also propose a theoretical model for
compressed languages, and study the performance of iterative
decoding between the LDPC decoder and the NR-decoder. The
results show that natural redundancy can substantially improve
the error correction capability of LDPC codes.

II. NR-DECODING FOR IMAGES AND LANGUAGES

We have designed a natural-redundancy (NR) decoder for
images. In particular, we focus on images of handwritten
digits. They are from the National Institute of Standards and
Technology (NIST) database, which have 70, 000 images as
training or test data. We compress the bi-level images (of size
28×28 pixels) using run-length coding, where the run-lengths
of 0s and 1s are compressed by two optimized Huffman codes,
respectively. The rate is 0.27 bit/pixel.

Assume the compressed images have erasures. To decode
noisy images, we have designed a convolutional neural net-
work for recognizing noisy images, and also a specialized filter
based on features of connected components in decompressed
images. The NR-decoder is illustrated in Fig. 1 (a). The final

step of decoding is: if all candidate solutions agree on a bit,
set the bit to that value; otherwise, keep it as an erasure.

convolutional
neural
network

candidate
solutions to
compressed
image

decompress decompress
successfully?

yes

no
remove such solutions

candidate
solutions to
decompressed
image

keep such solutions

likely correct image

likely noisy imageremove such
solutions

set A of candidate solutions
to compressed image filter based on

number
and sizes/shapes
of components
in image

solutions
passing filterset B of candidate solutions

to compressed image

joint
decoder

solution
to
compressed
image

(a)

(b)

NR-Decoder LDPC Decoder(c)

LDPC Decoder NR-Decoder

(d)

Fig. 1. (a) NR-decoder for images. (b) Performance of NR-decoder. (c) A
concatenated decoding scheme. (d) An iterative decoding scheme.

The decoding performance can be measured as follows. Let
ε ∈ [0, 1] be the erasure probability before decoding. After
the decoding by natural redundancy, let δ ∈ [0, 1] denote the
probability that an originally erased bit remains as an erasure,
and let ρ ∈ [0, 1− δ] denote the probability that an originally
erased bit is decoded to 0 or 1 incorrectly. Then the amount
of noise after decoding can be measured by the entropy of
the noise (erasures and errors) per bit: ENR , ε(δ + (1 −
δ)H(ρ

1−δ)), where H(p) = −p log p−(1−p) log(1−p) is the
entropy function. We show ENR in Fig. 1 (b). The NR-decoder
reduces noise substantially: it removes noise effectively by
over 75% for the compressed images (without any help from
ECC), for raw bit-erasure rate (RBER) from 0.5% to 6.5%.

Similar performance can be obtained for languages. In [1],
we have presented an NR-decoder for deeply compressed En-
glish texts. The NR-decoder reduces noise effectively (between
88.0% and 91.6%) for LZW-compressed texts, for raw bit-
erasure rate from 5% to 30%.

III. COMBINE NR-DECODING WITH LDPC CODES

We protect compressed data (languages or images) as infor-
mation bits by a systematic LDPC code. The decoding process
is a concatenation of two decoders: first, the NR-decoder
decodes information bits, and outputs a partially corrected
codeword with its updated soft information; then, the LDPC
decoder takes that as input, and uses belief propagation (BP)
for decoding. See Fig. 1 (c). We present a theoretical analysis
for the decoding performance, and show that the NR-decoder
can substantially improve the performance of LDPC codes.

Consider a binary-erasure channel (BEC) with erasure prob-
ability ε0. (BSC can be analyzed similarly.) Let us call the
non-erased bits fixed bits. Assume that after NR-decoding,
an erased bit remains as an erasure with probability p0, and
becomes an error with probability (1− p0)γ0. We design the
following iterative LDPC decoding algorithm, which gener-
alizes both the peeling decoder for BEC and the Gallager B
decoder for BSC: (1) let π and τ be two integer parameters;
(2) in each iteration, for a variable node v that is an erasure,
if π or more non-erased message bits come from check nodes
and they all have the same value, set v to that bit value; (3) if
v is not a fixed bit and not an erasure (but possibly an error) in
this iteration, change v to the opposite bit value if τ or more
non-erased message bits come from check nodes and they all
have that opposite value. We analyze the density evolution for
the decoding algorithm. (For t = 0, 1, 2 · · · , let αt and βt
be the fraction of codeword bits that are errors or erasures,
respectively, after t iterations of LDPC decoding. We have
α0 = ε0(1−p0)γ0 and β0 = ε0p0. Let κ0 = ε0(1−p0)(1−γ0).)

Theorem 1. For a regular LDPC code with variable-
node degree dv and check-node degree dc, we
have αt+1 = α0Ct + κ0Dt + β0µt, where
Ct = 1−(1−At)dv−1+

∑τ−1
i=0

(
dv−1
i

)
Bit(1−At−Bt)dv−i−1,

Dt =
∑dv−1
j=τ

(
dv−1
j

)
Ajt (1 − At − Bt)

dv−1−j ,
µt =

∑dv−1
m=π

(
dv−1
m

)
Amt (1 − At − Bt)

dv−1−m

with At = (1−βt)dc−1−(1−βt−2αt)dc−1

2 and Bt =
(1−βt)dc−1+(1−βt−2αt)dc−1

2 . And βt+1 = β0(1 − µt − νt),
where νt =

∑dv−1
m=π

(
dv−1
m

)
Bmt (1−At −Bt)dv−1−m.

Define erasure threshold ε∗ as the maximum erasure prob-
ability (for ε0) for which the LDPC code can decode success-
fully (which means the error/erasure probabilities αt and βt
both approach 0 as t→∞). Let us show how the NR decoder
can substantially improve ε∗. Consider a regular LDPC code
with dv = 5 and dc = 100 of rate 0.95. Without NR-decoding,
the erasure threshold is ε̃∗ = 0.036. Now let π = 1 and τ = 4.
For compressed images, when ε0 = 0.065, the NR-decoder
gives p0 = 0.247 and γ0 = 0.0008, for which the LDPC
decoder has limt→∞ αt = 0 and limt→∞ βt = 0. (The same
happens for ε0 < 0.065.) So with NR-decoding, ε∗ ≥ 0.065,
which means the improvement in erasure threshold is more
than 80.5%. The same happens for LZW-compressed texts [1]:
with NR-decoding, ε∗ ≥ 0.3, which means the improvement
in erasure threshold is more than 733.3%.

IV. ITERATIVE DECODING FOR LANGUAGES

We present a theoretical model for compressed languages,
and analyze the decoding performance when we use itera-
tive decoding between the LDPC decoder and NR-decoder.
(In last section’s study, the NR-decoder is followed by
the LDPC decoder, without iterations between them.) Let
T = (b0, b1, b2, · · ·) be a compressed text. Partition T
into segments S0, S1, S2 · · · , where each segment Si =
(bil, bil+1, · · · , bil+l−1) has l bits. Consider erasures. Let
θ ∈ [0, 1], lθ , blθc and p ∈ [0, 1] be parameters. We assume
that when a segment Si has at most lθ erasures, the NR-
decoder can decode it by checking the validity of the up to
2lθ candidate solutions (based on the validity of words/phrases,
grammar, etc.), and either determines the correct solution with
probability p or makes no decision with probability 1−p. And
this NR-decoding operation can be performed only once for
each segment. Here lθ models the limit on time complexity,
and p models the probability of making a high-confidence
decision. The model is suitable for compression algorithms
such as Huffman coding, LZW coding, etc., where each
segment can be decompressed to a sequence of characters.
The greater l is, the better the model is.

The decoding model is shown in Fig. 1 (d). Let ε0 < 1 be
the BEC’s erasure rate. Let ε′t and εt be the LDPC codeword’s
erasure rate after the t-th iteration of the LDPC decoder and
the NR-decoder, respectively. We analyze the density evolution
for regular (dv, dc) LDPC codes of rate R = 1− dv

dc
.

Call an l-bit segment lucky if the NR-decoder can decode
it successfully when it has no more than lθ erasures. For t =
1, 2, 3 · · · and k = 0, 1, · · · , l, let fk(t) denote the probability
that a lucky segment contains k erasures after t iterations of
decoding by the NR-decoder. Define q0 = 1, qt , εt

ε′t
and dt ,

ε′t
εt−1

for t ≥ 1. Note that decoding will end after t iterations if
one of these conditions occurs: (1) ε′t = 0, because all erasures
are corrected by the t-th iteration; (2) dt = 1, because the
LDPC decoder corrects no erasure in the t-th iteration, and
nor will the NR-decoder since the input codeword is identical
to its previous output. We now study density evolution before
those boundary cases occur.

Theorem 2. For t ≥ 1, εt = ((1 − R) + R(1 −

p))ε0(
t∏
i=1

dt)+Rp
l∑

k=lθ+1

k
l fk(t), and ε′t = (

∏t−1
m=0 qm)ε0(1−

(1−εt−1)dc−1)dv−1. fk(1) is
lθ∑
i=0

(
l
i

)
(ε′1)

i(1−ε′1)l−i if k = 0, is

0 if 1 ≤ k ≤ lθ, and is
(
l
k

)
(ε′1)

k(1−ε′1)l−k if lθ+1 ≤ k ≤ l. For

t ≥ 2, fk(t) is fk(t−1)+
l∑

i=lθ+1

lθ∑
j=0

fi(t−1)
(
i
j

)
(dt)

j(1−dt)i−j

if k = 0, is 0 if 1 ≤ k ≤ lθ, and is
l∑

i=k

fi(t − 1)
(
i
k

)
(dt)

k(1 −

dt)
i−k if lθ + 1 ≤ k ≤ l.

REFERENCES

[1] A. Jiang, P. Upadhyaya, E. Haratsch and J. Bruck, “Error Correction by
Natural Redundancy for Long Term Storage,” in Proc. NVMW 2017.

