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Coding for Secure Write-Efficient Memories
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Abstract— Non-volatile memories suffer from two challenges
due to their physical and system-level constraints. One challenge
is limited memory lifetime, also called the endurance problem.
The other is the difficulty in deleting data securely, called the
insecure deletion problem. This paper proposes a coding scheme
that addresses both challenges jointly. It studies the secure
write-efficient memory (WEM) by analyzing its rewriting-rate
equivocation region and secrecy rewriting capacity. It also
presents an optimal code construction for a large family of secure
WEM channels.

Index Terms— Non-volatile memories, endurance, security,
write-efficient memories, wire-tap channel, rewriting-rate-
equivocation region, secrecy rewriting capacity, polar codes.

I. INTRODUCTION

NON-VOLATILE memories are becoming ubiquitous due
to advantages such as high data density, scaling size,

and non-volatility. The two most conspicuous challenges for
them are the limited lifetime, i.e., the so-called endurance
problem, and the difficulty of secure deletion, i.e., the so-called
insecure deletion problem. Such characteristics are different
from traditional storage media, and posing a threat to their
further usages. In this work, we propose a novel coding model,
secure Write-Efficient Memory (WEM), to address the two
challenges jointly, and focus on both information theoretical
results, i.e., rewriting-rate-equivocation region and its secrecy
rewriting capacity, and coding theory results, i.e., an optimal
code construction for a large family of secure WEM, in this
paper.

In the following, we present the two challenges in detail
(i.e., endurance and insecure deletion), which motivate us to
propose the secure WEM model to solve them jointly.

A. Endurance and Rewriting Codes

The first challenge in non-volatile memories is endurance.
Endurance means non-volatile memory can only experience a
limited number of writes due to its physical characteristics,
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beyond which the memory quality degradation can no longer
be accommodated by the memory system.

In the following, we first introduce two types of non-volatile
memories, i.e., Phase Change Memories (PCM), and Resistive
Random-Access Memories (RRAM). They all have attracted
significant research interest due to their scalability, com-
pactness, and simplicity. However, they all suffer from the
endurance problem.

A PCM [28] cell is made up of two metal electrodes
separated by a resistive heater and a chalcogenide material, the
phase change material. The two common states are the crys-
talline state, which is the Low Resistance State (LRS), and the
amorphous state, which is the High Resistance State (HRS).

There are three operations on a PCM cell: read, write
(RESET) and erasure (SET). The read operation is to
precharge a read voltage on the cell, and measure the
resistance. The RESET operation changes the cell state
to amorphous. The SET operation changes the cell to
crystalline.

PCM has attracted research interest [23], [44] due to its
superior resistance ratio, scalability, low-energy switching,
and high-speed. Its write endurance ranges from 104 to 109

SET/RESET cycles, however, because writes induce thermal
expansion and contraction within the cell, this degrades injec-
tion contacts and limits endurance to hundreds of millions of
writes per cell at current processes. These limitations prevent
PCM from replacing DRAM in main memory.

Similar to PCM, an RRAM [4] cell can be in three resistance
states: virgin-state, on-state (LRS), and off-state (HRS). The
virgin state can be irreversibly activated by the forming opera-
tion, while the switching between LRS and HRS is reversible,
where the changing from LRS to HRS is the RESET, and the
reverse operation is the SET operation.

Endurance is still one serious challenge for RRAM, and
the limit is around 104 writes [4]. It is shown by various
electrical tests that its endurance degrades due to lowering
resistance in the HRS attributed to the accumulation of defects
and the difficulty to RESET from LRS as we cycle the device
repeatedly.

Rewriting code is a technique to solve the endurance
problem from the coding theory perspective. Fig. 1 presents
the rewriting code model, where the rewriter selects a new
codeword y N−1

0 = (y0, y1, · · · , yN−1) based on the mes-
sage – which is M– to rewrite to the underlying storage
medium, and the current cell state of the storage medium
x N−1

0 = (x0, x1, · · · , xN−1) such that a predefined constraint
between x N−1

0 and y N−1
0 is always satisfied.

Based on various constraints, different rewriting
code models [27] such as write-once memory (WOM)
codes [11], [16], [17], [38], WEM codes [1], and Floating
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Fig. 1. Rewriting code model, where M is the message to rewrite, x N−1
0 is

the current cell state, and yN−1
0 is the rewrite codeword.

codes [22] etc, have been proposed, and optimal code
constructions [8], [29], [41], [42] have been shown. For
WOM, the constraint is yi ≥ xi for i = 0, 1, · · · , N − 1, that
is, the cell level can only increase but not decrease.

We repeat the definition of WEM as follows, before which
we present some notations.

Let X be the alphabet of the symbol stored in a cell.
∀x, y ∈ X , let the rewriting cost of changing a cell’s level
from x to y be ϕ(x, y), which may be time or energy taken.
Given N cells and x N−1

0 , y N−1
0 ∈ X N , let ϕ(x N−1

0 , y N−1
0 ) =

1
N

N−1∑

i=0
ϕ(xi , yi ) be the rewriting cost of changing the N cell

levels from x N−1
0 to y N−1

0 . Here we abuse the same nota-
tion ϕ(·) to denote both the rewriting costs of two cells and
two sets of N cells, and the exact meaning can be obtained
based on the context.

Let D ⊆ N denote the |D| possible values of the data stored
in the N cells. Let the decoding function be D : X N → D,
which maps the N cells’ levels to the data they represent. Let
the rewriting function be R : D×X N → X N , which changes
the N cells’ levels to represent the new input data.

Definition 1: [1] An (N, L, D) write-efficient memory
code consists of

• D = {0, 1, · · · , L − 1} and
⋃L−1

i=0 Ci , where Ci ⊆ X N

is the set of codewords representing data i . We require
∀i �= j , Ci

⋂
C j = ∅;

• A rewriting function R(i, x N−1
0 ) such that

ϕ(x N−1
0 , R(i, x N−1

0 )) ≤ D for any i ∈ D and
x N−1

0 ∈ X N ;
• A decoding function D(y N−1

0 ) such that D(R(i, x N−1
0 )) =

i for any i ∈ D.
That is, the constraint is for each rewrite the rewriting cost

of changing the current cell state x N−1
0 to the rewrite codeword

yN−1
0 has to be no more than a predefined constraint. Note that

another WEM model with an average rewrite cost constraint is
also presented in [1]. We present a concrete example of WEM
in Fig. 2.

WEM code can be used to solve the endurance issue in
both PCM and RRAM by appropriately modelling the costs
of RESET and SET operations [20], [21], [26]. For example,
Jacobvitz et al. proposed coset coding [20], [21] to extend the
PCM lifetime by reducing the number of bits flipped during
the lifetime of the memory, which is essentially a variant of
WEM with the Hamming distance metric.

B. Insecure Deletion and Wiretap Codes

The second challenge for non-volatile memories is insecure
deletion (or insecure erasure) ( [35], [37], [45]). Insecure
deletion means data manager systems produce multiple copies

Fig. 2. An example of (3, 4, 1) WEM. Two sequences of numbers inside a
box are codewords, and the number outside a box is the data represented by the
codewords inside the box. For example, both codewords (0, 0, 0) and (1, 1, 1)
represent data (0, 0). The rewriting cost metric is the Hamming distance, that
is, ϕ(0, 0) = ϕ(1, 1) = 0 and ϕ(0, 1) = ϕ(1, 0) = 1.

of data that can not be deleted completely; however, a sophis-
ticated attacker can recover and obtain information about the
data.

Note that this issue is caused not by the physical characteris-
tics of the underlying storage media but by the top layer system
management schemes, which employ out-of-place updating.
Such schemes are actually quite common in the system and
application level: 1) Log-Structured File system (LSF) [39],
which was proposed originally for hard disks, and now is
widely used in non-volatile memory systems [5]. One of its
goals is to reduce hard disk seek and rotation time by only
allowing sequential writes on the hard disk and replacing
in-place updates with out-of-place updates. LSF also employs
the logical-to-physical mapping table and garbage collection;
2) Log-structured merge (LSM) [40] tree based databases,
which are inspired by LSF, and widely used, e.g., BigTable at
Google, Cassrandra at Facebook, and Dynamo at Amazon, etc.

The out-of-place updating scheme leads to the existence
of multiple copies of codewords in the storage system. The
ratio between the number of codewords in physical memories
and the number of logical codewords issued by hosts is
defined as write amplification. Write amplification depends
on many factors, such as mapping table granularity, garbage
collection algorithms and the workload traffic, etc. There are
a large number of research works estimating the value of
write amplification such as [15], [47], and [32]. For example,
a recent study by Desnoyers [15] theoretically estimates that
in certain scenario (i.e., with the so called greedy garbage
collection algorithms, page mapping and uniform workload)
the write amplification can be as high as 3 ∼ 13, and this
number is further confirmed by another research [47].

The out-of-place updating scheme leads to two disadvan-
tages: 1) the secure data deletion problem as shown by
Reardon [36] “neither of these systems (log-structured file
systems) provide temporal data deletion guarantees and that
deleted data remains indefinitely on these systems if the
storage medium is not used after the data is marked for
deletion”; 2) a much stronger decoder who has access to
redundant copies of codewords [31], [43].

We use the example in Fig. 3 to illustrate the secure deletion
problem. Let X ,Z be two alphabets of the symbol stored
in a cell, M be sensitive data stored at a logical address
LA0, y N−1

0 ∈ X N be its codeword (which may not be a
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Fig. 3. Illustration and modelling of insecure deletion in non-volatile
memories.

Fig. 4. Wiretap codes model. M is the message to send to Bob, yN−1
0 is the

encoded codeword, wN−1
0 and z N−1

0 are noisy codewords of yN−1
0 passing

through the main channel and the wiretap channel, respectively, and M̂ is the
estimate of M given by Bob.

rewriting codeword) initially stored at PA0. Due to out-of-
place updates and garbage collections etc, copies of yN−1

0 may
be stored at PA1, PA2, · · · , PAt gradually, only one of which
is mapped to LA0 (indicated by the valid arrow in Fig. 3).
zN−1

0 (0), zN−1
0 (1), · · · , zN−1

0 (t) ∈ ZN are noisy codewords
of yN−1

0 at PA0, · · · , PAt , respectively. When M is deleted
by current methods, some of zN−1

0 (0), · · · , zN−1
0 (t) remain in

raw memory. When the memory is attacked by a powerful
eavesdropper who has access to the remaining codewords, the
sensitive information of M can be leaked by using redundant
copies of codewords.

Wiretap channel codes [18], [34], [46] provide uncondi-
tional information-theoretic security. More precisely, in the
wiretap code setting (see Fig. 4), Alice wishes to send
message M to Bob through a main channel, but her trans-
missions are also accessible to an eavesdropper Eve through
another channel, wiretap channel. That is, Alice selects a
codeword yN−1

0 based on the message M and random bits
to send through the main channel and the wiretap channel.
wN−1

0 and zN−1
0 are noisy codewords of yN−1

0 passing through
the two channels, respectively. After receiving wN−1

0 , Bob
maps it to an estimate of the original message. The goal
of wiretap channel codes is to design a reliable and secure
communication scheme, that is, Bob can reliably recover the
message, while the information leaked to Eve is negligible.

Wiretap channel codes have gained escalating practical
interest due to their striking benefits over conventional cryp-
tography. Popular as wiretap channel code is for secure wire-
less communication [33], there have not been many research
works [10] considering its application to non-volatile memory
storages, and even fewer for the secure deletion problem.

Fig. 5. Illustration and modelling of rewriting codes with security constraint
in non-volatile memories.

C. Contribution and Structure of This Paper

In this paper, we first propose a new coding model – secure
Write Efficient Memory– which has both properties of rewrit-
ing codes and wiretap channel codes [46] to jointly solve
the endurance and insecure deletion problem. Fig. 5 presents
the big picture of this setting, where the sensitive data M
is encoded using a rewriting codeword y N−1

0 , noisy code-
words of y N−1

0 are accessible to both a legal decoder, who
can reliably retrieve M , and an eavesdropper, whose knowl-
edge of M is negligible to satisfy the security constraint.
The rigorous definition of the code is deferred to a later
section.

To the best knowledge of the authors, this is the first
work to study rewriting codes with a security concern under
the wiretap channel setting. To that end, in this work we
first explore the fundamental information theoretical results,
i.e., achievable rate region and its capacity. Secondly, we
present an optimal (i.e., achieve the whole rate region) code
construction based on Polar codes for a large family of
secure WEM.

The rest of this paper is structured as follows.
In Section slowromancapii@, we formally define the secure
Write-Efficient Memory model. In Section slowromancapiii@,
we present the achievable regions for secure WEM and the
secrecy rewriting capacities. The proof is presented in the
Appendix Section. The code constructions are presented in
Section slowromancapiv@. The conclusion and future work
are shown in Section slowromancapv@.

II. PROBLEM DEFINITIONS

In this section, we first define some notations used through-
out this paper, and then formally present the secure WEM
model.

A. Notations

Let X ,W,Z be the alphabets of the symbol stored in a cell.
Assume the sequence of data written to the storage medium
is {M1, · · · , Mt }, where we assume Mi for 1 ≤ i ≤ t is
uniformly distributed over D, and the average rewriting cost is

D̄
def= lim

t→∞
1
t

t∑

i=1
ϕ(x N−1

0 (i), R(Mi , x N−1
0 (i))), where x N−1

0 (i)

is the current cell states before the i th update.
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Fig. 6. The secure WEM model. C H1, C H2 are the main channel and the
wiretap channel, respectively. M, x N−1

0 , yN−1
0 , z N−1

0 , wN−1
0 and M̂ are the

message to rewrite, the current cell states, the rewrite codeword, the wiretap
channel’s output, the main channel’s output and the estimated message,
respectively.

B. Secure WEM With a Maximum Rewriting Cost Constraint

In the secure WEM setting (shown in Fig. 6), Alice wishes
to store messages in a limited lifetime storage medium using
the rewriting code, WEM [1], the messages are accessible to
Bob through a storage channel but her transmissions also reach
an eavesdropper Eve through a noisier wiretap channel.

Alternatively, in Fig. 6, the N-dimensional vector
x N−1

0 ∈ X N is the current cell states and the message M is
the new information to write, which is independent of x N−1

0 .
A rewriter uses both x N−1

0 and M to choose a new codeword
y N−1

0 ∈ X N , which will be programmed as the N cells’
new states. The codeword yN−1

0 passes through a noisy main
memoryless channel C H1 W = (X ,W, WW |Y ), and the noisy
codeword wN−1

0 ∈ WN is its output. The codeword yN−1
0

also passes through an even noisier and memoryless wiretap
channel C H2, P = (X ,Z, PZ |Y ), Y ∈ X .

Compared to the setting in Fig. 3, the model proposed in
Fig. 6 is simplified in that here Eve can only reach one noisier
codeword instead of multiple ones, and we left the case where
Eve receives multiple codewords as our future work.

The assumption that C H2 is noisier than C H1 is due to
the fact that a decoding of wN−1

0 at a legitimate decoder
always happens prior to the deletion of wN−1

0 as after deletion
the mapping table entry is marked invalid and the legitimate
decoder has no access to wN−1

0 , thus zN−1
0 accumulates more

disturb/interferences than wN−1
0 [9], [19], [30] because of

read/write operations occurring after the legitimate decoding.
Note that it is possible that a codeword is accessible by an
eavesdropper before its deletion, however, this is out of the
scope of this paper.

Due to the above reasons we assume that C H1 is noiseless
for simplicity, and leave the noisy case as the future work.
For this reason, we omit the rigorous definition of the notion
noisier, and interested readers are referred to [7].

The goal of secure WEM codes is to design a rewriting
coding scheme such that it is possible to store messages
cost-effectively and securely. Being cost-effective means for
each rewrite the defined rewriting cost, i.e., which is measured
by ϕ(x N−1

0 , y N−1
0 ) for a defined cost ϕ(·), has to be less

than a predefined number to solve the endurance problem.
Being secure means the uncertainty of the eavesdropper
about the message M after observing the wiretap channel
output zN−1

0 , i.e., which is measured by the weak security

condition lim
N→∞

1
N H (M|zN−1

0 ) [46], also satisfies a predefined

constraint to solve the insecure deletion problem.
We present the definition of secure WEM codes in the

following.
Definition 2: An (N, 2N R , Re, D) secure write-efficient

memory code for wiretap channel P = (X ,Z, PZ |Y ) and the
rewriting cost function ϕ(·) consists of

• A message set D = {0, 1, · · · , 2N R − 1} and its corre-
sponding codewords

⋃2N R −1
i=0 Ci , where Ci ⊆ X N is the

set of codewords representing data i . We require ∀i �= j ,
Ci

⋂
C j = ∅;

• A rewriting function R(M, x N−1
0 ) such that

– ϕ(x N−1
0 , R(M, x N−1

0 )) ≤ D for any M ∈ D and
x N−1

0 ∈ X N ;
– and 1

N H (M|zN−1
0 ) ≤ Re for any M ∈ D, zN−1

0 ∈
ZN , ε > 0 and N → ∞.

• A decoding function D(y N−1
0 ) such that

D(R(x N−1
0 , M)) = M for all M ∈ D and x N−1

0 ∈ X N . <
That is, the first condition indicates that each data is

represented by a group of codewords; the first requirement
of the rewriting function indicates that during each rewrite
the rewriting cost of changing a current codeword x N−1

0 to
its updated codeword yN−1

0 is less than a predefined number;
the second requirement of the rewriting function indicates that
the leaked information of the message at the eavesdropper
is limited; the last one indicates that the decoder knows the
rewriting message given a rewriting codeword.

Also note that in the above the security measure is the weak
security condition. Beside it, other security measures, such as
the strong security condition [7] and the recently proposed
semantic security measure [6], also exist, and we leave them
as future work.

Fixing D, the rewriting cost function ϕ(·) and the wiretap
channel P = (X ,Z, PZ |Y ), a tuple (R, Re) ∈ R

2 is said to
be achievable if there exists a sequence of (N, 2N R , Re, D)
codes. When Re = R, we say it achieves full secrecy. The
set of all achievable tuples is denoted by Rswem , rewriting-
rate-equivocation region. The secrecy rewriting capacity is

Cswem(D)
def= supR{R : (R, R) ∈ Rswem}.

C. Secure WEM With an Average Rewriting Cost Constraint

The secure WEM code in definition 2 puts a constraint on
the maximal rewriting cost, and we now define a code with
an average rewriting cost constraint.

Definition 3: An (N, 2N R , Re, D)ave secure write-efficient
memory code for wiretap channel P = (X ,Z, PZ |Y ) and the
rewriting cost function ϕ(·) consists of

• A message set D = {0, 1, · · · , 2N R − 1} and its corre-
sponding codewords

⋃2N R −1
i=0 Ci , where Ci ⊆ X N is the

set of codewords representing data i . We require ∀i �= j ,
Ci

⋂
C j = ∅;

• A rewriting function R(M, x N−1
0 ) such that

– D̄ ≤ D;
– and 1

N H (M|zN−1
0 ) ≥ Re −ε for any M ∈ D, zN−1

0 ∈
ZN , ε > 0 and N → ∞.
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Fig. 7. Typical shapes of the achievable region in Theorem 4.

• A decoding function D(y N−1
0 ) such that

D(R(x N−1
0 , M)) = M for any M ∈ D and x N−1

0 ∈ X N .
That is, compared with (N, 2N R , Re, D) code, the rewriting
cost constraint for each rewrite is replaced by the average
rewriting cost constraint over the whole rewriting process.

Similarly, a tuple (R, Re)ave ∈ R
2 is said to be achievable

if there exists a sequence of (N, 2N R , Re, D)ave code. When
Re = R, we say it achieves full secrecy. The set of all

achievable tuples is denoted by Rswem
ave , and Cswem

ave (D)
def=

supR{R : (R, R)ave ∈ Rswem
ave }.

III. RESULTS ON THE ACHIEVABLE REGION

AND CAPACITY

In this section, we present the main information theoretical
results of this paper, i.e., to characterize the rewriting-rate-
equivocation region and present capacity results.

A. Characterizing the Achievable Region

The following theorems present the main contributions of
this paper, which characterize the achievable region for secure
WEM. We defer their proofs to the Appendix Section.

Theorem 4: Define R(PXY ) =
⎧
⎨

⎩
(R, Re) :

R ≤ H (Y |X)
Re ≤ H (Y |Z)
Re ≤ R

⎫
⎬

⎭
,

where PXY ∈ P(D)
def= {PXY : PX = PY , E(ϕ(X, Y )) ≤ D},

the joint distribution of X, Y, Z factorizes as PX PY |X PZ |Y , and
the PZ |Y is given by wiretap channel P = (X ,Z, PZ |Y ).

Then, the rewriting-rate-equivocation region of the secure
WEM is the convex region: Rswem = ⋃

PXY
R(PXY ).

The first inequality of R(PXY ) in Theorem 4 is the same
as the rewriting rate for write-efficient memories [1, Th. 2],
which is an immediate result as secure WEM is a special case
of WEM. The second inequality is one of the main results of
this paper.

The typical shapes of the above achievable region R(PXY )
are presented in Fig. 7: type one is the case where H (Y |Z) ≤
H (Y |X) for a given PXY ∈ P(D), and type two is the other
case.

The result for Rswem
ave is presented in the following:

Theorem 5: The rewriting-rate-equivocation region for
secure WEM with an average rewriting cost constraint is the

same as that of secure WEM with a maximal rewriting cost
constraint, i.e., Rswem

ave = Rswem .

B. Secrecy Rewriting Capacity

In this subsection, we study secrecy rewriting capacities by
utilizing Theorem 4 and Theorem 5. We mainly present the
results for Cswem(D) as Cswem

ave (D) is the same as Cswem(D)
based on Theorem 5.

By specializing Theorem 4 to full secrecy, we obtain the
following result for secrecy rewriting capacity.

Corollary 6: The secrecy rewriting capacity of secure
WEM (N, 2N R , Re, D) code with wiretap channel
P = (Z,Y,PZ|Y ) and the rewriting cost function ϕ(·) is:

Cswem(D) = max
PXY ∈P(D)

{min{H (Y |X), H (Y |Z)}},

where the definition of P(D) is the same as that of
Theorem 4.

Let us examine some extreme cases: when the eavesdropper
obtains the same observation as the legitimate decoder, in this
case no confidential messages can be securely transmitted.
From the above theorem, we know that if Y = Z , then
H (Y |Z) = 0, and thus Cswem(D) = 0. On the other hand,
when there is no eavesdropper, i.e., Z ∈ ∅, the result should
coincide with original WEM code [1]. From theorem 4, we
know that Cwem(D) = max

PXY ∈P(D)
H (Y |X), which is exactly

the rewriting capacity of WEM.
We define the following terms to obtain further simpler

results for secrecy rewriting capacity.
Definition 7: The WEM is more capable than wiretap chan-

nel P = (Z,Y, PZ|Y ) if I (X; Y ) ≥ I (Y ; Z) for every PXY ∈
P(D). The WEM is less capable than wiretap channel P =
(Z,Y,PZ|Y ) if I (X; Y ) < I (Y ; Z) for every PXY ∈ P(D).

With the above notations, we have the following results for
secrecy rewriting capacity.

Corollary 8: The secrecy rewriting capacity Cswem(D) is
maxPXY ∈P(D) H (Y |X) if WEM is less capable than wire-
tap channel P, (which is effectively the rewriting capac-
ity of write-efficient memory [1, Theorem 2]) and H (Y |Z)
for PXY ∈ P(D) if WEM is more capable than wiretap
channel.

We present the following concrete example:
Example 9: Consider the following binary secure WEM

(N, 2N R , Re, D), where the rewriting cost function is the
Hamming distance, and wiretap channel P is the binary
symmetric channel with flipping rate p. Based on [1, Theorem
4], the WEM rewriting capacity is R(D) = H (D) in this case.
Therefore, if WEM is less capable, then Cswem(D) = H (p);
if WEM is more capable, then Cswem(D) = H (D).

IV. POLAR CODES-BASED CONSTRUCTION

FOR SECURE WEM

In this section, we present a code construction based on
Polar codes for secure WEM, and prove that such codes
achieve the whole rewriting-rate-equivocation region for a
family of secure WEM.
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A. A Brief Introduction to Polar Codes

The Polar code [3] was invented by Arikan in 2008, and
it is the first theoretically proven capacity approaching code
for symmetric channels. Polar code is a milestone in coding
theory not only for its great success in channel coding but also
for its remarkable performances in lossy source coding [24] ,
wiretap channel coding [2], [13], [34], write-once memories
[8], etc. In this part, to help understand our results, we present
a brief introduction to Polar codes.

Let W = (X ,Y, WY |X ) be a binary-input discrete memo-
ryless channel. Let G⊗n

2 be n-th Kronecker product of
(

1 0
1 1

)

for n ∈ N. Let Z(W ) = ∑

y∈Y

√
WY |X (y|0)WY |X (y|1) be the

Bhattacharyya parameter.
Let N = 2n , and the Polar code, which is denoted as

CN (F, uF ), is {x N−1
0 = uN−1

0 G⊗n
2 : uFc ∈ {0, 1}|Fc|}, where

∀F ⊆ {0, 1, · · · , N − 1}, uF is the subvector ui : i ∈ F , and
uF ∈ {0, 1}|F |. By convention, F is the frozen set and uF is
the frozen set value. The Polar code ensemble is CN (F) =
{CN (F, uF ),∀uF ∈ {0, 1}|F |}.

Denote W (i)
N : {0, 1} → YN × {0, 1}i the i -

th sub-channel with the input set {0, 1}, the output
set YN × {0, 1}i , and the transition probability

W (i)
N (y N−1

0 , ui−1
0 |ui )

def= 1
2N−1

∑

uN−1
i+1

W N (y N−1
0 |uN−1

0 ),

where W N (y N−1
0 |uN−1

0 ) is
N−1∏

i=0
WY |X (yi |(uN−1

0 G⊗n
2 )i ),

and (uN−1
0 G⊗n

2 )i denotes the i -th element
of uN−1

0 G⊗n
2 .

Let β < 1/2 be a fixed positive constant, define a good sub-
channel set as GN (W, β) = {i ∈ {0, 1, · · · , N−1} : I (W (i)

N ) >
1
N 2−Nβ }, and define a bad sub-channel set as BN (W, β) =
{i ∈ {0, 1, · · · , N − 1} : I (W (i)

N ) ≤ 1
N 2−Nβ }. With a little

abuse of notations, we also define a good sub-channel set
as G′

N (W, β) = {i ∈ {0, 1, · · · , N − 1} : Z(W (i)
N ) < 1 −

( 1
N 2−Nβ

)2} and define a bad sub-channel set as B′
N (W, β) =

{i ∈ {0, 1, · · · , N − 1} : Z(W (i)
N ) ≥ 1 − ( 1

N 2−Nβ
)2}.

Based on [25, Lemma 2.6], lim
N→∞

1
N |BN (W, β)| =

lim
N→∞

1
N |B′

N (W, β)| = 1 − I (W ), and lim
N→∞

1
N |GN (W, β)| =

lim
N→∞

1
N |G′

N (W, β)| = I (W ).

B. Polar Codes are Optimal for Stochastically Degraded
Secure-WEM Channels

1) Symmetric Secure WEM: In this part, we define sym-
metric secure WEM, which is a large family of secure WEM,
and it is the symmetric secure WEM that our Polar code
construction focuses on in this paper.

Recall that the rewriting capacity of WEM is R(D) =
max

PXY ∈P(D)
H (Y |X) [1]. Analogous to a symmetric channel,

a symmetric WEM is such a WEM whose rewriting capacity
is achieved when current cell state (i.e., X) and updated
cell state (i.e., Y ) are uniformly distributed. That is, for
symmetric WEM its capacity is determined as R(D) =

max
PXY ∈Ps(D)

H (Y |X), where Ps(D)
def= {PXY : PX = PY , X ∼

U(q), E(ϕ(X, Y )) ≤ D} and q is the number of states for X .
Note that R(D) can be obtained through the following

optimization function:

max : H (Y |X),

s.t. :
∑

x

1

q
P(y|x) =

∑

y

1

q
P(x |y) = 1

q
,

∑

x

∑

y

1

q
P(y|x)ϕ(y, x) ≤ D. (1)

Let P∗(y|x) be the probability distribution maxmizing the
objective function of (1). P∗(y|x) plays the role of a channel.
By convention, we call P∗(y|x) a WEM channel, and denote
it by W = (X, Y, WY |X ).

W (i)
N (vN−1

0 , ei−1
0 |1)

W (i)
N (vN−1

0 , ei−1
0 |0)

=

∑

eN−1
i+1

W N (vN−1
0 |ei−1

0 1eN−1
i+1 )

∑

eN−1
i+1

W N (vN−1
0 |ei−1

0 0eN−1
i+1 )

,

=

∑

eN−1
i+1

W N (wN−1
0 |ei−1

0 1eN−1
i+1 + (vN−1

0 + wN−1
0 )(G⊗n

2 )−1)

∑

eN−1
i+1

W N (wN−1
0 |ei−1

0 0eN−1
i+1 + (vN−1

0 + wN−1
0 )(G⊗n

2 )−1)
,

=

∑

eN−1
i+1

W N (wN−1
0 | f i−1

0 1eN−1
i+1 )

∑

eN−1
i+1

W N (wN−1
0 | f i−1

0 0eN−1
i+1 )

,

= W (i)
N (wN−1

0 , f i−1
0 |1)

W (i)
N (wN−1

0 , f i−1
0 |0)

, (2)

where the third equation is due to the assumption that ((vN−1
0 + wN−1

0 )(G⊗n
2 )−1)Mc is the zero vector and the

assumption e j = f j + ((vN−1
0 + wN−1

0 )(G⊗n
2 )−1) j for j ≤ i − 1.
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Fig. 8. Illustration of the Polar code construction for symmetric secure WEM
achieving the capacity, where the output yN−1

0 is permuted in such a way
that sub-channels are positioned as the above figure.

A symmetric secure WEM is such a secure WEM model
that both the WEM channel W and the wiretap channel P

are symmetric. Furthermore, we consider the case where the
WEM channel is stochastically degraded with respect to the
wiretap channel, which belongs to the case of the type-one
rewriting-rate-equivocation region of secure WEM. Besides,
the code construction presented here focuses on symmetric
rewriting cost, i.e., ϕ(0, 1) = ϕ(1, 0), the Hamming distance
metric.

We present a concrete example of symmetric secure WEM
in the following:

Example 10: Continue with example 9 of WEM with Ham-
ming distance metric. In this case the capacity of symmetric
WEM is H (D) where 0 ≤ D ≤ 1/2 and the WEM
channel induced is a Binary Symmetric Channel (BSC) with
parameter D. Let the wiretap channel P = (X ,Z, PZ |Y ) be
a BSC with flipping rate p (0 ≤ p ≤ 1/2). In this case, the
secrecy capacity is H (p) based on Corollary 1 when D > p.
Also in this case the WEM channel is stochastically degraded
with respect to the wiretap channel, and it is one example of
symmetric secure WEMs we focuse on in this work.

2) Optimal Code Construction Achieving Capacity: In the
following we present optimal code constructions for symmetric
secure WEM where the cost constraint is the average case
only, and omit those for the symmetric secure WEM with the
maximal rewriting cost constraint as their code constructions
are identical.

The outline of the code construction is presented in Fig. 8:
Given the WEM channel and the wiretap channel, we divide
all sub-channels to three parts, i.e., sub-channels bad for
both channels, whose sub-channel index set is denoted by
set M ⊆ N, sub-channels good for both channels, whose sub-
channel index set is denoted by set M2 ⊆ N, and remaining
sub-channels, whose sub-channel index set is denoted by the
set M1 ⊆ N.

Then the data uM is represented by codewords of Polar
code with frozen set M, and frozen set value uM. The
rewriting function R(M, x N−1

0 ) is to fill in bits of M by M ,
bits of M1 by random bits, and bits of M2 by bits determined
by successive cancellation encoding. The decoding function
D(y N−1

0 ) is to retrieve the value represented by bits of M.

Algorithm 1 A Code Construction for Binary Symmetric
Secure WEM

The (N, 2N R , R, D)ave code is C = ⋃

uM
CN (M, uM),

where CN (M, uM) is a Polar code with the frozen set M
set as above and |M| = N R.

Algorithm 2 The Rewriting Operation yN−1
0 = R(M, x N−1

0 )

1: Let vN−1
0 = x N−1

0 + gN−1
0 , where gN−1

0 is a common and
uniform distributed message known by both rewriter and
decoder and + is over GF(2).

2: Apply SC (Successive Cancellation) encoding [25] to
(vN−1

0 )M2 , and this results in a vector uN−1
0 =

Û(vN−1
0 , uM(M)), that is, u j =
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

uM(M) f ( j ) j ∈ M
m1 j ∈ M1, m1 is randomly chosen,

m w.p.
W (i)

N (u j−1
0 ,v N−1

0 |m)
∑

m′
W (i)

N (u j−1
0 ,v N−1

0 |m′)
,

and ŷ N−1
0 = uN−1

0 G⊗n
2 .

3: y N−1
0 = ŷ N−1

0 + gN−1
0 .

Algorithm 3 The Decoding Operation uM(M) = D(y N−1
0 )

1: ŷ N−1
0 = y N−1

0 + gN−1
0 .

2: uM(M) = (ŷ N−1
0 (G⊗n

2 )−1)M.

Formally, let G′
N (W, β) and GN (P, β) denote good

sub-channel sets for the WEM channel W and the wiretap
channel P, and let B′

N (W, β) and BN (P, β) denote the bad
sub-channels for them, respectively. When W is stochastically
degraded with respect to P, it implies that BN (P, β) ⊆
B′

N (W, β) [25]. Let M def= B′
N (W, β)

⋂
BN (P, β) =

BN (P, β), M1
def= B′

N (W, β)
⋂

GN (P, β) and M2
def=

G′
N (W, β). We know that lim

N→∞
|M|

N = H (Y |Z), lim
N→∞

|M1|
N =

H (Y |X) − H (Y |Z) and lim
N→∞

|M2|
N = I (X; Y ).

The code construction for binary symmetric secure WEM
is presented in Algorithm 1.

The rewriting operation is presented in Algorithm 2, where
m1 is a random bit, uM(M) j is the j th bit of the binary
representation of M , f (·) : {0, 1, ..., |M| − 1} → M is a
one-to-one mapping, and W (y|x) is determined by the WEM
channel W = (X, Y, WY |X ).

That is, uN−1
0 is assembled by rewriting message M , aux-

iliary random message M1, and random message determined
by SC encoding (which is to make sure the rewriting cost
constraint is satisfied).

The decoding function is to retrieve bits in M, and the
algorithm is presented in Algorithm 3.

3) Theoretical Analysis: In this part, we present the theo-
retical analysis to show that the presented code construction
is optimal. We start with calculating the probability of a
randomly selected vector in part a), which is used to prove
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that the induced channel is symmetric in part b), then with
the symmetric channel we proceed to prove the rewriting
cost constraint as well as the security constraint are satisfied
in part c), the capacity approaching property is proved in
part d), and the theoretical performance of the proposed code
construction is concluded in part e).

a) The probability of a randomly selected vector: Let
R = M1

⋃
M2, and let eR denote the random bits deter-

mined by the above algorithm. In this part we focus on the
average probability that eR is selected given the rewriting
data M , P(eR|M ) (over vN−1

0 ), and we show that P(eR|M ) is
independent of M .

Let eN−1
0 denote a vector by assembling a rewriting message

M and eR, and we know that

P(eN−1
0 |vN−1

0 ) =
∏

i

PEi |Ei−1
0 ,V N−1

0
(ei |ei−1

0 , vN−1
0 ),

where vN−1
0 is the random vector determined in our

rewriting function, and PEi |Ei−1
0 ,V N−1

0
(ei |ei−1

0 , vN−1
0 ) =

W (i)
N (ei−1

0 ,v N−1
0 |ei )

∑

e′i
W (i)

N (ei−1
0 ,v N−1

0 |e′
i )

if i ∈ M2, 1
2 if i ∈ M1 and 1 otherwise.

The following lemma presents the condition under which
Û(vN−1

0 , uM(M1))Mc = Û(wN−1
0 , uM(M2))Mc . Note that

in the following + is over GF(2).
Lemma 11: Let M1, M2 ∈ {0, · · · , 2|M| − 1},

uM(M1), uM(M2) ∈ {0, 1}|M|, let vN−1
0 , wN−1

0 ∈ {0, 1}N

such that vN−1
0 + wN−1

0 = x N−1
0 G⊗n

2 where (x N−1
0 )M =

uM(M1) + uM(M2) and (x N−1
0 )Mc is the zero vector, then

under the coupling through a common source of randomness,
Û(vN−1

0 , uM(M1))Mc = Û(wN−1
0 , uM(M2))Mc .

Proof: Let eN−1
0 and f N−1

0 be the result of
Û(vN−1

0 , uM(M1)) and Û(wN−1
0 , uM(M2)). We prove that

ei = fi + ((vN−1
0 + wN−1

0 )(G⊗n
2 )−1)i for 0 ≤ i ≤ N − 1 by

induction. This holds true for i = 0.
Now suppose this also holds true for i −1, and now consider

the case for i . As ei = fi + ((vN−1
0 + wN−1

0 )(G⊗n
2 )−1)i holds

true for the case when i ∈ M, we only consider the other case
when i ∈ Mc.

Firstly consider i ∈ M1, since all elements of M1 have
access to the same random source, we have ei = fi +((vN−1

0 +
wN−1

0 )(G⊗n
2 )−1)i .

Secondly consider i ∈ M2, and it is proved using a skill
similar to [25, Lemma 3.12] as shown in equation 2.

Thus Û(vN−1
0 , uM(M1))i = Û(wN−1

0 , uM(M2))i when
they have access to the same random source. Thus we
conclude ei = fi + ((vN−1

0 + wN−1
0 )(G⊗n

2 )−1)i , and
Û(vN−1

0 , uM(M1))Mc = Û(wN−1
0 , uM(M2))Mc .

Let P(eR|M) denote the average probability (over vN−1
0 )

that eR is chosen given M is the rewriting data, thus it is easy
to obtain that

P(eR|M) =
∑

v N−1
0

P(vN−1
0 )P(eN−1

0 |vN−1
0 ),

=
∑

v N−1
0

1

2N
P(eN−1

0 |vN−1
0 )

as vN−1
0 is uniformly distributed.

Fig. 9. Illustration of the induced channel, where the output yN−1
0 is

permitted the same way as before such that sub-channels are positioned as
the above figure, and where the channel inputs are u N−r−1

0 (i.e., rewriting
data) and the channel outputs are z N−1

0 (i.e., noisy codeword of yN−1
0 though

wiretap channel).

The following theorem shows that on average the probability
that eR is chosen given the rewriting data M is the same for
every M .

Theorem 12: P(eR|M) is independent of M , i.e.,
P(eR|M1) = P(eR|M2) for M1, M2 ∈ M.

Proof: The correctness holds by the fact that for
each vN−1

0 there is a unique wN−1
0 such that eR =

Û(vN−1
0 , uM(M1)) = Û(wN−1

0 , uM(M2)) based on the pre-
vious lemma.

As P(eR|M) is independent of M , hereafter we will omit M
and write P(eR|M) as P(eR).

b) The induced channel is symmetric: In this part,
we investigate an induced channel by our code construc-
tion and show that it is symmetric. The symmetric chan-
nel plays a key role in our proof of the optimal code
construction.

The induced channel is pictorially presented in Fig. 9, where
the input is N −r bits uM, representing the rewriting data, and
the output of the channel is zN−1

0 , the output of y N−1
0 through

the wiretap channel. Note that eR is partially determined by
successive cancellation encoding, i.e., for bits in M2, and is
partially randomly selected for the remaining bits, i.e., for
bits in M1. Let (uN−r−1

0 , er−1
0 ) denote the vector uN−1

0 with
uR = uN−r−1

0 and uRc = er−1
0 .

Next, we define its channel transition probability as
Q(zN−1

0 |uN−r−1
0 ) =

∑

er−1
0

P(er−1
0 )

N−1∏

i=0

P(zi |((uN−r−1
0 , er−1

0 )G⊗n
2 )i ), (2)

where P(er−1
0 ) denotes the probability er−1

0 is selected given
the rewriting data vector uN−r−1

0 , it is determined as the
previous part, and P(z|y) is determined by the wiretap channel
P = (Y,Z, PZ |Y ). For convenience, we denote our channel by
Q(P,R) = (X N−r ,ZN ,QZ N |U N−r ). where X = {0, 1}.

Note that our definition of Q(P,R) shares some similarities
with the induced channel in [34][Section VI-C]], that is, the
inputs of both channels are data communicated to decoders,
and the outputs of them are both noisy codewords through
the wiretap channel. However, the channels differ in their
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transition probabilities, which stems from how the random bits
are determined, i.e., for channel in [34], the random bits are
chosen independently and uniformly, and for our channel, the
random bits are partially determined by successive cancellation
encoding and are partially determined independently and uni-
formly. The similarities can also be found in their proofs, and
for this reason we present its proof in sketch in the following
theorem.

We now present the main result of this part in the following
theorem, which shows the channel Q(P,R) is a symmetric
channel.

Theorem 13: Q(P,R) is symmetric.
Proof: Given a channel (X ,Y, WY |X ), we first recall the

definition of symmetric channel from group theory. A group
action of an abelian group A on a set Y is a function
A × Y → Y , denoted (a, y) → a · y, with the following
properties:

• 0 · y = y for all y ∈ Y , where 0 is the unit of A;
• (a + b) · y = a · (b · y) for all a, b ∈ A and all y ∈ Y ,

where + denotes the group operation for A.

The following result from [34, Th. 11] presents the neces-
sary condition for the channel to be symmetric.

Let (X ,Y, WY |X ) be a discrete memoryless chan-
nel, and suppose that X is an abelian group under
the binary operation +. Further, suppose that there
exists a group action · of X on Y such that

W (y|a + x) = W (a.y|x) (7)

for all a, x ∈ X and all y ∈ Y . Then (X ,Y, WY |X )
is a symmetric channel.

For Q(P,R) = (X N−r ,ZN ,QZ N |U N−r ), we first explore an

action of X N−r , denoted as ·, such that (X N−r , ·) is an abelian
group, and we then explore a group action, denoted as ◦ of the
abelian group X N−r on ZN , such that Q(P,R) is symmetrical
based on the above cited result.

We first explore the operation of · in the following two
paragraphs:

Let π1 be a permutation on Z and it is an involution,
that is, π1 = π−1

1 . Let π0 be the identity permutation on
Z . Following Arikan [3], let the group action of the additive
group of X = {0, 1} on the set Z be x · z = πx(z) for
all x ∈ X and z ∈ Z . The group action has the property
(x + y) · z = x · (y · z) and (x · y) · z = x · (y · z)
which can be verified based on enumeration. We can further
verify that the additive group X with the operation · is an
abelian group.

Similarly, let x N−1
0 · zN−1

0 = (x0 · z0, · · · , xN−1 · zN−1) for
all x N−1

0 ∈ X N and zN−1
0 ∈ ZN . The action has the following

two properties

• (x N−1
0 + y N−1

0 ) · zN−1
0 = x N−1

0 · (y N−1
0 · zN−1

0 );
• (x N−1

0 · y N−1
0 ) · zN−1

0 = x N−1
0 · (y N−1

0 · zN−1
0 ),

where the first one is based on the property (x+y)·z = x ·(y·z),
and the second one is based on the property (x · y) · z =
x · (y · z). The additive group X N with the operation · is an
abelian group.

We then explore the operation of ◦ in the following: Define

◦ as x N−r−1
0 ◦ zN−1

0
def= (x N−r−1

0 , 0r−1
0 )G⊗n

2 · zN−1
0 . We can

verify that the defined action is a group action as it satisfies
the following two requirements:

• 0N−r−1
0 ◦ zN−1

0 = zN−1
0 ;

• (x N−r−1
0 + y N−r−1

0 )◦ zN−1
0 = x N−r−1

0 ◦ (y N−r−1
0 ◦ zN−1

0 ),

(x N−r−1
0 + y N−r−1

0 ) ◦ zN−1
0 = ((x N−r−1

0 , 0r−1
0 ) + (y N−r−1

0 , 0r−1
0 ))G⊗n

2 · zN−1
0 ,

= (x N−r−1
0 , 0r−1

0 )G⊗n
2 · ((y N−r−1

0 , 0r−1
0 )G⊗n

2 · zN−1
0 ),

= x N−r−1
0 ◦ (y N−r−1

0 ◦ zN−1
0 ), (3)

where the second equation is based on the property (x N−1
0 + y N−1

0 ) · zN−1
0 = x N−1

0 · (y N−1
0 · zN−1

0 ).

Q(zN−1
0 |aN−r−1

0 + x N−r−1
0 )

=
∑

er−1
0

P(er−1
0 )

∏

i

P(zN−1
0 |(((aN−r−1

0 , 0r−1
0 ) + (x N−r−1

0 , er−1
0 ))G⊗n

2 ))i , (4)

=
∑

er−1
0

P(er−1
0 )

∏

i

P((aN−r−1
0 , 0r−1

0 )G⊗n
2 · zN−1

0 |(x N−r−1
0 , er−1

0 )G⊗n
2 ))i , (5)

=
∑

er−1
0

P(er−1
0 )

∏

i

P(aN−r−1
0 ◦ zN−1

0 |(x N−r−1
0 , er−1

0 )G⊗n
2 ))i , (6)

= Q(aN−r
0 ◦ zN−1

0 |x N−r−1
0 ),

where

(4) follows from the definition of Q(zN−1
0 |uN−r−1

0 );
(5) follows from [3, Proposition 12]. i.e., P N (zN−1

0 |(aN−1
0 + x N−1

0 )G⊗n
2 ) = P N (aN−1

0 G⊗n
2 · zN−1

0 |x N−1
0 G⊗n

2 ) and
P N (zN−1

0 |x N−1
0 ) = ∏N−1

i=0 P(zi |xi);
(6) follows from our definition of the operation ◦, and also from Theorem 12.
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where the correctness of the second item is shown in
equation (3).

We finish the proof by showing that Q(zN−1
0 |aN−r−1

0 +
x N−r−1

0 ) = Q(aN−r
0 ◦ zN−1

0 |x N−r−1
0 ) as shown in

equations (4) ∼ (6).

c) Rewriting cost constraint and security constraint:
We first focus on the rewriting cost constraint. From
[29, Th. 9], we know that as long as M2 ⊆ G′

N (W, β),
with high probability ϕ(x N−1

0 , y N−1
0 ) ≤ D for arbitrary

x N−1
0 , y N−1

0 , i.e., Pr(ϕ(x N−1
0 , y N−1

0 ) ≥ D + σ) < 2−Nβ
for

σ > 0. Therefore based on our selection of M2, which is
M2 = G′

N (W, β), the rewriting cost constraint is satisfied
with high probability.

We next focus on the security constraint, and we apply a
technique similar to [34].

I (M; zN−1
0 )

≤ I (ûM ; ẑN−1
0 ), (7)

= I (ūM ; z̄N−1
0 ), (8)

=
|M|−1∑

i=0

I (ūi ; z̄N−1
0 |ū0, · · · , ūi−1), (9)

=
|M|−1∑

i=0

I (ūi ; z̄N−1
0 ūi−1

0 ), (10)

=
|M|−1∑

i=0

C(P
(i)
N ), (11)

where
(7) follows from the channel Q(P,R) is symmetric,

and ûM and ẑN−1
0 denote versions of uM and zN−1

0
when ui and zi are uniformly and independently
distributed;

(8) is due to the permutation such that uN−1
0 is arranged

as Fig. 8;
(9) is due to the chain rule of mutual information;
(10) is due to ūi is independent of each other;
(11) is due to P

(i)
N is the i -th virtual bit channel induced

by the wiretap channel P = (X ,Z, PZ |Y ) (refer to
Section slowromancapii@ for its definition).

Based on our selection of M, which is BN (P, β), we

know that C(P
(i)
N ) ≤ 2−Nβ

and further obtain
I (M;zN−1

0 )
N ≤

|BN (P,β)|
N 2−Nβ

, which is approaching 0 as N → ∞.
Therefore, we can conclude that the security constraint is

satisfied since 1
N H (M|zN−1

0 ) = 1
N H (M) − 1

N I (M; zN−1
0 ) →

R as N → ∞.
d) Capacity approaching property: When the WEM

channel is stochastically degraded with respect to the wire-
tap channel, the secrecy capacity is H (Y |Z) as shown by
Corollary 1. Based on our code construction we know that
lim

N→∞
|M|

N = H (Y |Z), thus the construction is achieving the

secrecy capacity asymptotically.
e) Conclusion for theoretical performance: Thus based

on analysis from a) ∼ d), we have the following con-
clusion for theoretical performances of the proposed code
construction:

Theorem 14: For any symmetric secure WEM, when
the WEM channel is stochastically degraded with respect
to the wiretap channel, the proposed Polar code scheme
achieves the secrecy capacity.

C. Optimal Code Construction Achieving the Whole
Rewriting-Rate-Equivocation Region

In this subsection, we extend the above code con-
struction to achieve the whole rewriting-rate-equivocation
region.

Given a ∀(R, Re) ∈
⎧
⎪⎪⎨

⎪⎪⎩

(R, Re) :
R ≤ H (Y |X)
Re ≤ H (Y |Z)
Re ≤ R
H (Y |Z) ≤ H (Y |X)

⎫
⎪⎪⎬

⎪⎪⎭

, (12)

for a PXY ∈ Ps(D), we know that based on the
code construction in the previous subsection, we can con-
struct a code construction for (N, 2N Re , Re, D) symmetric
secure WEM, and partition the set {0, 1, · · · , N − 1} into
B′

N (W, β)
⋂

BN (P, β) = BN (P, β), B′
N (W, β)

⋂
GN (P, β)

and G′
N (W). We know that Re = |B′

N (W,β)
⋂

BN (P,β)|
N .

Our code construction for an (N, 2N R , Re, D) symmetric
secure WEM is as follows:

• let M1 = B′
N (W, β)

⋂
BN (P, β) of size N Re ;

• let M2 ⊆ B′
N (W, β)

⋂
GN (P, β) of size N(R − Re)

whose elements have lowest I (W
(i)
N );

• let M = M1 ⋃
M2;

• let M1 = B′
N (W, β)

⋂
GN (P, β) − M2;

• let M2 = G′
N (W, β);

• the (N, 2N R , Re, D)ave code is C = ⋃

M
CN (M, uM(M)),

where CN (M, uM(M)) is a Polar code with the frozen
set M and frozen set value M with its binary represen-
tation uM(M).

That is, comparing with the previous code construction, the
only difference is that bits of B′

N (W, β)
⋂

GN (P, β) in this
case also represent user information, i.e., in Fig. 8, some
auxiliary message bits carry information.

The rewriting function and the decoding function are the
same as previous ones. We summarize its performance in the
following theorem.

Theorem 15: For any symmetric secure WEM code (R, Re)
satisfying (12), when the WEM channel is stochastically
degraded with respect to the wiretap channel, there exists
a Polar code achieving the whole rewriting-rate-equivocation
region.

Proof: We present the sketch proof as follows. We first
focus on the rewriting cost constraint: since M2 ⊆ G′

N (W, β)
(the same as the previous subsection), similarly based on [29,
Lemma 7] or [24, Th. 1] we obtain the average rewriting cost
D̄ ≤ D + O(2−Nβ

).
Next we focus on the security constraint: with similar

arguments of a) ∼ c) of the previous subsection, we can
prove that the channel Q(P,R) is still symmetric in this case;
similarly, we obtain
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I (M; zN−1
0 )

≤
|M1 ⋃

M2|−1∑

i=0

C(P
(i)
N ), (13)

≤
|M2|−1∑

i=0

C(P
(i)
N ) + |BN (P, β)|

N
2−Nβ

, (14)

≤ N(R − Re) + ε, (15)

where

(13) follows from the similar arguments of d) in the
previous subsection;

(14) is due to the selection of M1 and the definition of
BN (P, β);

(15) is due to the selection of M2 and the definition of
GN (P, β).

Thus we further obtain 1
N H (M|zN−1

0 ) ≥ Re +ε as desired.

D. Optimal Code for Secure WEM With Type-Two Region

In this subsection, we present the Polar code for secure
WEM of type-two region. The code construction and analysis
are similar to the previous ones, therefore in the following
we present briefly its code construction and the main result
without a detailed proof.

The family of secure WEM of type-two region we focus on
is still the symmetric secure WEM, the rewriting cost metric is
still symmetric, but here the wiretap channel is stochastically
degraded with respect to the WEM channel.

Given a ∀(R, Re) ∈
⎧
⎨

⎩
(R, Re) :

R ≤ H (Y |X)
Re ≤ R
H (Y |X) ≤ H (Y |Z)

⎫
⎬

⎭
, (16)

for a PXY ∈ Ps(D), the code construction for an
(N, 2N Re , Re, D) symmetric secure WEM is as follows: When
P is stochastically degraded with respect to W, it implies
that B′

N (W, β) ⊆ BN (P, β). Thus, let M = B′
N (W, β),

M1 = ∅ and M2 = G′
N (W, β). The (N, 2N Re , Re, D)ave

code is C = ⋃

uM
CN (M, uM), where CN (M, uM) is a Polar

code with the frozen set M.
That is, compared to the previous code construction, the

difference is data are represented by bits of B′
N (W, β), and

there is no need to fill in random bits. The (N, 2N R , Re, D)
is C = CN (M′, uM′), where M′ ⊂ M and |M′| = N R,
M2 = M − M′ M2 = G′

N (W, β).
The rewriting function and the decoding function are the

same as Algorithm 2 and Algorithm 3, respectively.
We summarize its performance in the following theorem.
Theorem 16: For any symmetric secure WEM code (R, Re)

satisfying (16), when the wiretap channel is stochastically
degraded with respect to the WEM channel, there exists a Polar
code achieving the whole rewriting-rate-equivocation region.

V. CONCLUDING REMARKS

In this paper, we propose a secure WEM model to
address both the endurance and secure-deletion problems

for non-volatile memories. We analyze the rewriting-rate-
equivocation region, as well as the secrecy rewriting capacity.
We further present code constructions based on Polar codes.
There are still some important open problems, e.g., secure
WEM codes with an optimal error correction capability. They
remain as our future research topics.

APPENDIX

In this section, we show that the regions presented in
Theorem 4 and Theorem 5 are achievable. We mainly focus on
the proof of Theorem 4 since the proof of Theorem 5 is quite
similar. For simplicity, we only present details of type one
region of Fig. 7, and present just a sketch proof for type-two
region due to its similarity.

The proof for type one region is divided into the following
three steps and we present them in detail in the following
parts:

• Step 1: We use a random-coding argument to show the
existence of a sequence (N, 2N R , Re, D) code such that
1
N I

def= 1
N H (M) − 1

N H (M|zN−1
0 ) ≤ ε for some ε > 0

and R ≤ H (Y |Z). This shows that the following sub-

region of type one region is achievable: R′(PXY )
def=

{

(R, Re) : R ≤ H (Y |Z)
Re ≤ R

}

,

where PXY ∈ P(D).
• Step 2: We show that the entire type one region in

Theorem 4 is achievable with a minor modification of
the code construction presented in step 1.

• Step 3: We show that the Rswem is convex.

A. Step 1: Achieving Region R′(PXY )

1) Background on Strong Typical-Sequences: We first
present some background about strong typical-sequences. For
more details, interested readers are referred to [14].

Let x N−1
0 be a sequence with N elements drawn from X .

Define the type of x N−1
0 by π(x |x N−1

0 ) = |{i:xi =x}|
N . The set

T N
ε (X) is defined as:

T N
ε (X) = {x N−1

0 : |π(x |x N−1
0 ) − PX (x)| ≤ ε,∀x}.

That is, the set of sequences for which the empirical frequency
is within ε of the probability PX (x) for every x ∈ X .

Let (x N−1
0 , y N−1

0 ) be a pair of sequences with ele-
ments drawn from (X ,Y). Define their joint type:
π(x, y|x N−1

0 , y N−1
0 ) = |{i:(xi ,yi )=(x,y)}|

N for (x, y) ∈
X × Y . We denote T N

ε (XY ) = {(x N−1
0 , y N−1

0 ) :
|π(x, y|x N−1

0 , y N−1
0 ) − PXY (x, y)| ≤ ε,∀(x, y)}.

For x N−1
0 ∈ T N

ε (X) and PY |X , we define the conditional

typical sequence T N
Y |X (x N−1

0 ) = {y N−1
0 : (x N−1

0 , y N−1
0 ) ∈

T N
ε (XY )}.
The following results will be used: i

1) For a vector x N−1
0 , where xi is chosen i.i.d. ∼ PX ,

Pr(x N−1
0 ∈ T N

ε (X)) → 1 as N → ∞. (17)
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2) For vectors x N−1
0 , y N−1

0 , where (xi , yi ) is chosen i.i.d.
∼ PXY ,

Pr((x N−1
0 , y N−1

0 ) ∈ T N
ε (XY )) → 1 as N → ∞.(18)

3) For x N−1
0 ∈ T N

ε (X), and y N−1
0 is independently

chosen according to PY , then Pr((x N−1
0 , y N−1

0 ) ∈
T N

Y |X (x N−1
0 )) ∈

[2−N(I (X;Y )+λ), 2−N(I (X;Y )−λ)], (19)

for some λ(ε) > 0 with λ → 0 as ε → 0.
4) For any x N−1

0 ∈ T N
ε (X), we have |T N

Y |X (x N−1
0 )| ∈

[(N + 1)−|X ||Y |2N H(Y |X), 2N H(Y |X)]. (20)

2) Rewriting Function Being Random to Achieve Full
Secrecy: In this part, we explore one desired property of
rewriting function, i.e., it should be stochastic to achieve full
secrecy, when (x N−1

0 , y N−1
0 ) has the property (xi , yi ) is chosen

i.i.d. ∼ PXY ∈ P(D).
For convenience, we write the rewriting function as yN−1

0 =
R(M, x N−1

0 , M1, M2) where M1 and M2 are independent of
M and x N−1

0 , M1 and M2 are constant if R(·) is deterministic,
and at least one of them is a random variable otherwise.
M1 and M2 play significant roles in deriving the rewriting-
rate-equivocation region, i.e., whether only M1, M2, or both
of them should be random, and how to determine their random
values. For example, in the following M1 and M2 are both
random in order to achieve the full secrecy, while only M2 is
random in order to achieve the entire type one region.

In the following, we bound I using M, M1, M2 in
equation (21), equation (22) and equation (23).

Therefore, if

1

N
H (M1) = I (Y ; Z) − I (X; Y ) + σ1, (24)

which implies that the rewriting function
R(M, x N−1

0 , M1, M2) is random,

1

N
H (M1M2|zN−1

0 M) ≤ σ2, (25)

and

H (x N−1
0 |M1 M2 MzN−1

0 ) − H (x N−1
0 |y N−1

0 ) ≤ σ3 (26)

for σi ≥ 0 for i = 1, 2, 3, the full secrecy is possible.
In the following subsection, we present a code construction

having all those properties to achieve full secrecy.
3) Enhanced Secure WEM: The achievability of the region

R′(PXY ) is obtained by designing a specific random code
construction for the following enhanced secure WEM such
that the equation (24), and inequalities (25) and (26) hold.

We define the enhanced secure WEM (as shown in Fig. 10)
as follows:

Definition 17: An (N, 2N R , 2N R1 , 2N R2 , D) code for
type one enhanced secure WEM with wiretap channel
P = (X ,Z, PY |Z ) and the rewriting cost function ϕ(·)
consists of:

Fig. 10. Type one enhanced secure WEM model. C H is the wiretap channel.
M, M1 are messages to rewrite, where M is the primary message, M1 is the
auxiliary message and may not carry information, x N−1

0 is the current cell
states, yN−1

0 is the rewrite codeword, M2 is the random factor determined by
f (yN−1

0 ), z N−1
0 is the wiretap channel’s output, M̂1, M̂2 and M̂ are estimated

messages corresponding to M1, M2 and M, respectively.

• A primary message set D = {0, 1, · · · , 2N R − 1}, an
auxiliary message set R1 = {0, 1, · · · , 2N R1 − 1} and a
random message set R2 = {0, 1, · · · , 2N R2 − 1};

• A stochastic rewriting function for Alice: RA : R1 ×D×
X N → X N such that ϕ(x N−1

0 , RA(M1, M, x N−1
0 )) ≤ D

for all M ∈ D, M1 ∈ R1 and x N−1
0 ∈ X N ;

• An auxiliary function for Alice to determine the random
argument in RA, f : X N → R2. And a deterministic
rewriting function for Alice: R′

A : R1 × R2 × D ×
X N → X N such that R′

A(M1, f (RA(x N−1
0 , M, M1)), M ,

x N−1
0 ) = RA(x N−1

0 , M, M1) for all M1 ∈ R1, M ∈
D, x N−1

0 ∈ X N ;
• A decoding function for Bob: DB : X N → D such that

DB(RA(M1, M, x N−1
0 )) = M for all M ∈ D, M1 ∈ R1

and x N−1
0 ∈ X N ;

• A virtual decoding function for Charlie: DC : ZN ×D →
R1 × R2.

That is, the original secure WEM is enhanced by 1) splitting
the message set into D and R1, and introducing a random
variable M2 ∈ R2. Note that M1 ∈ R1 is a dummy message
to achieve full secrecy in this part, and carries partial informa-
tion otherwise (see the following part). That is, we sacrifice
rewriting rate to gain full secrecy. M2 does not carry any infor-
mation; 2) for each stochastic rewriting codeword yN−1

0 =
RA(M1, M, x N−1

0 ), the implicit random variable M2 can be
obtained by the auxiliary function f (·); 3) the same rewriting
codeword yN−1

0 = RA(M1, M, x N−1
0 ) can also be obtained by

the deterministic rewriting function R′
A(M1, M2, M, x N−1

0 );
and 4) introducing a virtual decoder Charlie, who accesses
to zN−1

0 and the message M , and is to give estimates
of M1 and M2, M̂1 and M̂2. The role of Charlie is motivated
by the inequation 25, i.e., 1

N H (M1M2|zN−1
0 M) ≤ σ2, and it

leads to decoding M1 and M2 with zN−1
0 and M available.

The reliability of Charlie is measured by Pe =
Pr((M1, M2) �= (M̂1, M̂2)).

We present a random code construction for the above
enhanced secure WEM as follows, and we illustrate the code
construction using Fig. 11:
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Fig. 11. Illustration of binning structure, rewriting process for Alice and
decoding process for Charlie for type one enhanced secure WEM.

4) Random Code Construction for Type One Enhanced
Secure WEM :

• Codebook generation: Randomly divide T N
ε (X) into

2N(R+R1) bins B(M, M1) where M ∈ D and M1 ∈ R1.
Let R2 = H (X) − R − R1, and for each codeword in
bin B(M, M1), index it by M2 ∈ {0, 1, ..., 2N R2 − 1}.
Abusing of notation, we index x N−1

0 by B(M, M1, M2)

or x N−1
0 (M, M1, M2).

• RA: given M, M1 and x N−1
0 , randomly choose M2 such

that yN−1
0 = B(M, M1, M2) ∈ T N

PY |X (x N−1
0 ) for any M2;

• f : given the rewriting codeword y N−1
0 = B(M, M1, M2),

output M2. R′
A is to output B(M, M1, M2) with

M, M1, M2;
• DB : given y N−1

0 , output M such that y N−1
0 =

B(M, M1, M2) for any M1 and M2;
• DC : given M, zN−1

0 , output a unique M̂1, M̂2 such that
yN−1

0 = B(M, M̂1, M̂2) ∈ T N
PY |Z (zN−1

0 ).

5) Analysis of the Random Code Construction: The above
construction has the property (xi , yi ) i.i.d. ∼ P(D) and DB

satisfies the constraint DB(RA(M1, M, x N−1
0 )) = M . We next

consider the rewriting function.

Let us first consider the probability of rewriting failure, i.e.,
Pr (no y N−1

0 ∈ B(M, M1) such that y N−1
0 ∈ T N

PY |X (x N−1
0 ))

= (1 − 1

2N(R+R1)
)
|T N

PY |X (x N−1
0 )|

,

= (1 − 1

2N(R+R1)
)
2N(R+R1 )|T N

PY |X (x N−1
0 )|2−N(R+R1 )

,

≤ e−(2N H (Y |X)−N(R+R1)), (27)

where inequation (27) is based on the property (20). Therefore,
if R + R1 ≤ H (Y |X), the above probability tends to be 0 and
we have a desired yN−1

0 . We further know that R2 ≥ I (X; Y )
since R2 = H (X)− R − R1. Finally, we analyze the condition
under which the average error probability E(Pe)

= E(Pr(M1, M2) �= (M̂1, M̂2))

= Pr((M1, M2) = ( j, k)) ·
E(Pr((M̂1, M̂2) �= ( j, k)|(M1, M2) = ( j, k)))

tends to be 0 as N → 0. If Pe → 0 holds, we know that
1
N H (M1M2|zN−1

0 M) ≤ σ2 based on Fano’s inequality.
By the symmetry of the code construction, the average error

probability does not depend on (M1, M2), thus we assume
(M1, M2) = (1, 1). Further, without less of generality, we
assume that M = 1.

Define the following error events: E1,1
def=

{(y N−1
0 , zN−1

0 ) ∈ T N
ε (Y Z) and y N−1

0 = B(1, 1, 1)},

and F j,k
de f=

{(y N−1
0 , zN−1

0 ) ∈ T N
ε (Y Z) and y N−1

0 ∈ B(1, j, k)}.

By the union bound, E(Pr((M̂1, M̂2) �= (1, 1)|

I = I (M; zN−1
0 ),

= I (Mx N−1
0 M1 M2; zN−1

0 ) − I (M1 M2x N−1
0 ; zN−1

0 |M),

= I (y N−1
0 ; zN−1

0 ) − I (M1 M2x N−1
0 ; zN−1

0 M),

= I (yN−1
0 ; zN−1

0 ) − H (M1M2x N−1
0 ) + H (M1M2x N−1

0 |zN−1
0 M), (21)

= I (yN−1
0 ; zN−1

0 ) − H (M1M2) − H (x N−1
0 ) + H (M1M2x N−1

0 |zN−1
0 M),

= I (y N−1
0 ; zN−1

0 ) − I (y N−1
0 ; x N−1

0 ) − H (M1) − H (M2) − H (x N−1
0 |y N−1

0 )

+ H (M1M2|MzN−1
0 ) + H (x N−1

0 |M1 M2 MzN−1
0 ),

= N I (Y ; Z) − N I (Y ; X) − H (M1) − H (M2) − H (x N−1
0 |y N−1

0 )

+ H (M1M2|MzN−1
0 ) + H (x N−1

0 |M1 M2 MzN−1
0 ), (22)

≤ N I (Y ; Z) − N I (Y ; X) − H (M1) − H (x N−1
0 |y N−1

0 ) + H (x N−1
0 |M1 M2 MzN−1

0 )

+ H (M1M2|MzN−1
0 ), (23)

where

(21) is due to y N−1
0 = R(M, x N−1

0 , M1, M2), and M1, M2 and x N−1
0 are independent of M;

(22) is due to (xi , yi ) is i.i.d. according to PXY ∈ P(D) based on our assumption, and the wiretap channel is memoryless.
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(M1, M2) = (1, 1))

≤ Pr(Ec
1,1) +

⋃

( j,k) �=(1,1)

Pr(F j,k),

≤
∑

j,k

Pr((y N−1
0 , zN−1

0 ) ∈ T N
ε (Y Z)|y N−1

0

= B(1, j, k)) + ε′, (28)

≤ 2N(R1+R2−I (Y ;Z)+λ) + ε′, (29)

where inequation (28) is based on the property (18), and
inequation (29) is based on the property (19).

Therefore, when R1 + R2 ≤ I (Y ; Z), that is, R1 =
I (Y ; Z)−I (X; Y )+σ1, E(Pr((M̂1, M̂2) �= (1, 1)|(M1, M2) =
(1, 1))) ≤ ε. Hence, we obtain that R ≤ H (Y |Z) + σ .
Based on Fano’s inequality [12, lemma 7.9.1], we obtain
that 1

N H (M1M2|zN−1
0 M) ≤ 1

N + Pr((M̂1, M̂2) �= (M1, M2))
(R1 + R2) ≤ σ2.

Based on our code construction, yN−1
0 is uniquely deter-

mined by M, M1, M2, therefore H (x N−1
0 |M M1 M2zN−1

0 ) =
H (x N−1

0 |y N−1
0 zN−1

0 ) ≤ H (x N−1
0 |y N−1

0 ) + σ3. That is, 1
N I ≤

σ1 + σ2 + σ3 based on inequation (23). Therefore, (R, R) is
achievable for R ≤ H (Y |Z).

B. Step 2: Achieving the Entire Type One Region R(PXY )

The key idea is to modify step 1 such that we let the dummy
message M1 transmit additional information.

The code construction is modified as follows,

• DB : given y N−1
0 , output M and M1 such that y N−1

0 =
B(M, M1, M2) for any M2.

The remaining parts are the same as step 1.
The analysis of the above code construction is as follows.
By checking the analysis for rewriting cost constraint of

step 1, we know that as long as R + R1 ≤ H (Y |X), there
exists a codeword satisfying the rewriting cost constraint.

Next, consider the equivocation rate:

1

N
H (M M1|zN−1

0 ) ≥ 1

N
H (M|zN−1

0 ),

= 1

N
H (M) − 1

N
I (M; zN−1

0 ).

With similar techniques as step 1, i.e. I (M; zN−1
0 ) ≤ σ , we

can prove that 1
N H (M M1|zN−1

0 ) ≥ R − σ . Thus, we obtain
that (R + R1, R − σ) is achievable, where R + R1 ≤ H (Y |X)
and R ≤ H (Y |Z).

C. Step 3: Rswem is Convex

We show that Rswem is convex by proving that, for any
PX1Y1 , PX2Y2 ∈ P(D), the convex hull of R(PX1Y1) and
R(PX2Y2) is in Rswem .

Let (R1, Re1) ∈ R(PX1Y1) for some random variables
X1, Y1 and Z1 whose joint distribution is such that ∀(x, y, z) ∈
X × Y ×Z , PX1Y1 Z1(x, y, z) = PX1(x)PY1|X1(y|x)PZ |Y (z|y).
Similarly, let (R2, Re2) ∈ R(PX2Y2) for some random
variables X2, Y2 and Z2 whose joint distribution is such
that ∀(x, y, z) ∈ X × Y × Z , PX2Y2 Z2(x, y, z) =
PX2(x)PY2|X2(y|x)PZ |Y (z|y).

Let

θ =
{

1 with probability λ,

2 with probability 1 − λ,

thus we know that θ → Xθ → Yθ → Zθ forms a
Markov chain and the joint distribution of Xθ , Yθ and Zθ

satisfies ∀(x, y, z) ∈ X × Y × Z , PXθ Yθ Zθ (x, y, z) =
PXθ (x)PYθ |Xθ (y|x)PZ |Y (z|y) and PXθ Yθ ∈ P(D). Let
X = Xθ , Y = Yθ and Z = Zθ . Then

H (Y |X) = H (Yθ |Xθ ),

≥ H (Yθ |Xθ , θ),

= λH (Y1|X1) + (1 − λ)H (Y2|X2),

= λR1 + (1 − λ)R2, .

Similarly, we can prove that H (Y |Z) ≥ λRe1 + (1 −λ)Re2.
Hence, for any λ ∈ [0, 1], there exist X, Y such that (λR1 +
(1 − λ)R2, λRe1 + (1 − λ)Re2) ∈ R(PXY ) ⊆ Rswemn , which
finishes the proof.

D. Sketch Proof of Achieving the Entire Region R(PXY ) for
Type Two Region

In this case, we rewrite equation (23) as follows: I

= I (M; zN−1
0 ),

= I (y N−1
0 ; zN−1

0 ) − I (y N−1
0 ; x N−1

0 ) − H (M1)

− H (M2) − H (x N−1
0 |y N−1

0 )

+ H (M1 M2|MzN−1
0 ) + H (x N−1

0 |M1 M2 MzN−1
0 ),

≤ N I (Y ; Z) − N I (X; Y ) + H (M1M2|MzN−1
0 )

+ H (x N−1
0 |M1 M2 MzN−1

0 ) − H (x N−1
0 |y N−1

0 ),

≤ N I (Y ; Z) − N I (X; Y ) + H (M1)

+ H (M2|M M1zN−1
0 )

+ H (x N−1
0 |M M1 M2zN−1

0 ) − H (x N−1
0 |y N−1

0 ),

where some repeated steps of equation (23) are skipped.
Therefore, if 1

N H (M1) = I (Y ; X) − I (Y ; Z) + σ1,
1
N H (M2|zN−1

0 M M1) ≤ σ2, and H (x N−1
0 |M1 M2 MzN−1

0 ) −
H (x N−1

0 |y N−1
0 ) ≤ σ3 for σi ≥ 0 for i = 1, 2, 3, the full

secrecy is possible.
This motivates us to redefine the enhanced secure WEM

(shown in Fig. 12) as follows:
Definition 18: An (N, 2N R , 2N R1 , 2N R2 , D) code for type

two enhanced secure WEM with wiretap channel P =
(X ,Z, PY |Z ) and the rewriting cost function ϕ(·) consists of:

• A primary message set D = {0, 1, · · · , 2N R − 1}, an
auxiliary random message set R1 = {0, 1, · · · , 2N R1 −
1} and a primary random message set R2 = {0, 1, · · · ,
2N R2 − 1};

• A stochastic rewriting function for Alice: RA : D ×
X N → YN such that ϕ(x N−1

0 , RA(M, x N−1
0 )) ≤ D for

all M ∈ D and x N−1
0 ∈ X N ;

• An auxiliary function for Alice to determine the random
argument in RA, f : YN → R1 × R2. And a deter-
ministic rewriting function for Alice: R′

A : R1 × R2 ×
D × X N → YN such that R′

A( f (RA(x N−1
0 , M)), M ,

x N−1
0 ) = RA(x N−1

0 , M) for all M ∈ D and x N−1
0 ∈ X N ;
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Fig. 12. Type two enhanced secure WEM model. C H is the wiretap channel.
M is a message to rewrite, x N−1

0 is the current cell states, yN−1
0 is the rewrite

codeword, M1 and M2 are two random variables determined by f (yN−1
0 ),

z N−1
0 is the wiretap channel’s output, M̂1 and M̂ are estimated messages

corresponding to M1 and M, respectively.

• A decoding function for Bob: DB : YN → D such that
DB(RA(M, x N−1

0 )) = M for all M ∈ D and x N−1
0 ∈ X N ;

• A virtual decoding function for Charlie: DC : ZN ×D →
R2 × R1.

That is, compared with type one enhanced secure WEM, we
let M1 be the random variable instead of auxiliary message
variable. Again, the role of Charlie is motivated by the
inequation in the above, i.e., 1

N H (M2|zN−1
0 M M1) ≤ σ2, and

it leads to decoding M2 with zN−1
0 , M and M2 available. The

reliability for Charlie is measured by Pe = Pr(M1 �= M̂1).
The remaining proof details are similar to those of previous

subsections, and we omit them.

E. Proof of the Converse Part

The proof for R is the same as that of [1], and for
completeness, we present it here. We first digress to prove
the following conclusion:

N R = H (y N−1
0 |x N−1

0 ). (30)

N R

= H (M), (31)

= H (M|x N−1
0 ), (32)

= H (Mx N−1
0 |x N−1

0 ), (33)

≥ H (y N−1
0 |x N−1

0 ), (34)

≥ H (M|x N−1
0 ), (35)

= N R,

where

(31) follows from the assumption that M is uniformly
distributed among D;

(32) follows from the fact that M is independent of x N−1
0 ;

(34) follows from yN−1
0 = R(M, x N−1

0 ) and the fact that
function never increases entropy;

(35) follows from M = D(yN−1
0 ).

Next, we proceed the proof as follows: R =
1
N H (y N−1

0 |x N−1
0 ) ≤ 1

N

N−1∑

i=0
H (yi |xi ) ≤ H (Y |X).

Then, we consider the rewriting cost, ϕ(x N−1
0 , y N−1

0 ) =
1
N

N−1∑

i=0
ϕ(xi , yi ) = E(ϕ(X, Y )) ≤ D, thus PXY ∈ P(D) =

{PXY : PX = PY , E(ϕ(X, Y )) ≤ D}, where the fact that PX =
PY follows from the assumption that stationary distribution of
x N−1

0 exists. Therefore, R ≤ H (Y |X) for PXY ∈ P(D).
Let us consider Re ≤ 1

N H (M|zN−1
0 ) ≤ 1

N H (y N−1
0 |zN−1

0 )

≤ 1
N

N−1∑

i=0
H (yi |zi ) ≤ H (Y |Z).

Meanwhile, we know that Re ≤ 1
N H (M|zN−1

0 ) ≤
1
N H (M) = R. Therefore, Re ≤ min{R, H (Y |Z)}.
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