
On LDPC Decoding with Natural Redundancy
Pulakesh Upadhyaya and Anxiao (Andrew) Jiang

Computer Science and Engineering Department, Texas A&M University
pulakesh@tamu.edu, ajiang@cse.tamu.edu

Abstract—Big-data storage has substantial challenges due to
accumulative noise in storage media. To ensure its long-term
reliability, new techniques for error correction are being explored.
This paper studies how to discover natural redundancy in data
and use it for error correction. It explores the combination
of natural redundancy decoding with low-density parity-check
(LDPC) codes for enhanced error-correction performance. It
derives analytical equations for the density evolution of LDPC
decoding given information from natural-redundancy decoders.
It proposes a theoretical model for compressed languages, and
studies the performance of iterative decoding between the LDPC
decoder and the natural-redundancy decoder. It also presents an
upper bound to the code sizes of error-correcting codes given the
assistance from natural-redundancy decoders.

I. INTRODUCTION

Big-data storage is having increasingly wide applications.
However, it faces a substantial challenge – how to recover
data from errors as effectively as possible for reliable long-
term storage – due to accumulative noise in storage media.
For example, flash memories and other NVMs have noise
mechanisms such as charge leakage, read/write disturbs, and
cell-quality degradation due to P/E cycling. They make data
more and more noisy over time. So there is a strong motivation
in exploring new techniques for error correction.

In this paper, we study how to correct errors using natural
redundancy (NR) in compressed data, and how to combine
it with error-correcting codes (ECCs). By natural redundancy,
we refer to the redundancy in data that is not artificially added
for error correction, such as features in languages/images and
structures in databases. In comparison, the redundancy in an
ECC (which we shall call artificial redundancy) is added in
a disciplined way with the specific goal of effective error
correction. NR is often a rich resource for error correction for
data that are uncompressed or compressed imperfectly. There
are various reasons for imperfect compression in practical sys-
tems, including high complexity of optimal compression, our
limited understanding on the data models (e.g., for languages
and images), etc. For data that are encoded as ECCs and later
corrupted by errors, as our understanding on the data model
improves, we can design better and better NR-decoders to
correct the errors.

With NR, a decoding system can be considered as consisting
of two decoders: an ECC-Decoder, and an NR-Decoder. They
work collaboratively to correct errors or erasures in the ECC
codeword. We illustrate it by an example.

Example 1.. Consider texts compressed by an LZW algorithm
that uses a fixed dictionary of size 2`. The dictionary has
2` text strings (called patterns) of variable lengths, where
every pattern is encoded as an `-bit codeword. Given a text
to compress, the LZW algorithm scans it and partitions it

into patterns, and maps them to codewords. For instance, if
` = 20 and the text is “Flash memory is an electronic · · · ”,
the partitioning and LZW-codewords can be as illustrated in
Fig. 1 (a).

Now suppose some bits in the LZW-codewords are erased.
An NR-Decoder can check all the possible solutions, map each
solution back to patterns, and use a dictionary of words to
eliminate those solutions that contain invalid words. (Such
a dictionary of words has been commonly used in spell
checkers.) If all the remaining solutions agree on the value
of an erased bit, then that erasure is decoded by the NR-
Decoder. For instance, suppose each LZW-codeword in Fig. 1
(a) suffers from two erasures, which lead to four possible
solutions/patterns (see Fig. 1 (b)). By combining the patterns
for each codeword, we can rule out many solutions. For
instance, the combination “should becnomially ars an ele”
can be eliminated due to the invalid word “becnomially”.
In fact, the only combination without invalid words (without
considering words on the boundary of the string, which might
be part of a longer word) is “Flash memory is an ele”, so
the NR-Decoder can recover all six erasures in the three
codewords. (In practice, it is also possible that we get more
than one combination that contain only valid words. In that
case, an erased bit can be corrected if all such combinations
set the same value for that erasure.)

Suppose that the LZW-codewords, seen as information bits,
are protected by a systematic ECC. Then the ECC-Decoder
can correct erasures by parity-check constraints, and the NR-
Decoder can correct erasures by NR. They can work collabo-
ratively to maximize the number of correctable erasures. 2

As this paper is largely motivated by language-based NR, it
is worthwhile to note that an LZW algorithm with a dictionary
of 220 patterns (as in the above example) can compress
the English language to 2.94 bits per character. The UNIX
Compress command uses LZW with a smaller dictionary and
so achieves a lower compression ratio. There are compres-
sion algorithms for languages with higher compression ratios
(e.g., syllable-based Burrows-Wheeler Transform achieving
2 bits/character [6]). However, there is still a gap toward
Shannon’s estimation of 1.34 bits/character for the entropy of
English [16], which gives motivation for NR-Decoders. And
one may reasonably conjecture that a similar scenario exists
for images and videos.

In this work, we study the utilization of NR for erasure
correction, including for languages and images. The paper is
organized as follows. In Section II, we survey related works.
In Section III, we introduce the discovery and utilization of
NR in data for erasure correction, including for languages and

(a) Patterns:

Codewords:

(emory i) (s an ele)

11011110100001000010 11101101001100100110 11001100100000100011

(Flash m) ...

...

(b) 1?011110100001000?10 11101101001?0010011? 110?1100100?00100011... ...Noisy
codewords:

Possible
solutions

10011110100001000010 11101101001000100110 11001100100000100011... ...

10011110100001000110 11101101001000100111 11001100100100100011... ...

11011110100001000010 11101101001100100110 11011100100000100011... ...

11011110100001000110 11101101001100100111 11011100100100100011... ...

1)

for

each
codeword:

2)

3)

4)

Possible
patterns

(should bec) (nominally ar) (s an ele) ...

(es of the c) (government, n) (epy,) ...

(Flash m) (emory i) (style and) ...

(rast) (in France an) (the Palac) ...

1)

for

each
codeword:

2)

3)

4)

Fig. 1. (a) Compress a text by LZW. (b) NR-decoding for erasures.

images. In Section IV, we study a scheme that combines NR-
decoding with low-density parity-check (LDPC) codes, and
derive analytical formulas for the density evolution of LDPC
decoding given information from the NR-decoder, which are
useful for measuring the overall decoding performance. In
Section V, we propose a theoretical model for compressed
languages, and study the performance of iterative decoding
between the LDPC decoder and the NR-decoder. In Section
VI, we present further analysis on the performance of NR
decoding for general ECCs. In Section VII, we present the
conclusions.

II. RELATED WORKS

Error-correction with NR is related to joint source-channel
coding and denoising. The idea of using the inherent redun-
dancy in a source – or the leftover redundancy at the output of
a source encoder – to enhance the performance of the ECC has
been studied within the field of joint source-channel coding.
In [3], source-controlled channel coding using a soft-output
Viterbi algorithm is considered. In [1], a trellis based decoder
is used as a source decoder in an iterative decoding scheme.
Joint decoding of Huffman and Turbo codes is proposed in [2].
In [4], joint decoding of variable length codes (VLCs) and
convolutional/Turbo codes is analyzed. Joint decoding using
LDPC codes for VLCs and images are illustrated in [13]
and [14], respectively. However, not many works have con-
sidered JSCC specifically for language-based sources, and
exploiting the redundancy in the language structure via an
efficient decoding algorithm remains as a significant challenge.
Related to joint source-channel coding, denoising is also an
interesting and well studied technique [8], [11], [12], [15],
[20]. A denoiser can use the statistics and features of input
data to reduce its noise level for further processing. For
discrete memoryless channels with stationary input sequences,
a universal algorithm that performs asymptotically as well as
optimal denoisers are given in [19]. The algorithm is also
universal for a semi-stochastic setting, where the channel input

is an individual sequence and the randomness in the channel
output is solely due to the channel’s noise.

Spell-checking softwares are a typical example of using
NR to correct errors in languages. They are widely used in
text editors. A spell-checking software usually works at the
character level (namely, it does not consider how characters
or text strings are encoded by bits), is for uncompressed texts,
and uses the validity of words and the correctness of grammar
to correct errors that appear in the typing of texts.

Using NR to correct errors at the bit level in compressed
texts has been studied in a number of works. In [7], texts
compressed by Huffman coding is considered, and a dynamic
programming algorithm is used to partition the noisy bit
sequence into subsequences that represents words, and to
select likely solutions based on the frequencies of words and
phrases. In [5], texts that are compressed by Huffman coding
and then protected by LDPC codes are studied. An efficient
greedy algorithm is used to decompress the noisy bit string,
and partition it into stable and unstable regions based on
whether each region contains recognizable words and phrases.
The stable and unstable regions have polarized RBERs, which
are provided as soft information to the LDPC code for better
decoding performance. The algorithm is enhanced in [9] by
a machine learning method for content recognition, and an
iterative decoding algorithm between the NR-Decoder and
the ECC-Decoder is used to further improve performance.
In [18], texts compressed by Huffman coding and protected
by Polar codes are studied. The validity of words is used to
prune branches in a list sequential decoding algorithm, and
a trie data structure for words is used to make the algorithm
more efficient. A concatenated-code model that views the text
with NR as the outer code and the Polar code as the inner
code is considered, and the rate improvement for the Polar
code due to NR is analyzed. That model is further studied
in [17], where an optimal algorithm that maximizes the code
rate improvement by unfreezing some frozen bits to store
information is presented. A model that views NR as the output
of a side information channel at the channel decoder is also
studied, where NR is shown to improve the random error
exponent.

III. NR-DECODING FOR LANGUAGES AND IMAGES

In this section, we present techniques for using NR in com-
pressed data, including languages and images, for correcting
erasures.

A. NR-Decoding for Language

Consider English texts that are compressed by an LZW
algorithm that uses a fixed dictionary of size 2`. We have
introduced a technique that corrects bit erasures based on the
validity of words in Example 1. For long compressed texts
with erasures, to make the NR-decoding efficient, we use
a decoding algorithm based on sliding-windows of variable
lengths as follows. Let nmin and nmax be two integers,
where nmin < nmax. We first use a sliding-window of nmin`
bits to scan the compressed text (where every such window

contains exactly nmin LZW-codewords), and obtain candidate
solutions for each window based on the validity of words
(as in Example 1). We then increase the size of the window
to (nmin + 1)`, (nmin + 2)`, · · · , nmax`, and do decoding
for each size in the following way: consider a window of
k` bits that contains k LZW-codewords C1, C2, · · · , Ck. Let
S1 ⊆ {0, 1}(k−1)` be the set of candidate solutions for the sub-
window that contains the LZW-codewords C1, C2, · · · , Ck−1;
and let S2 ⊆ {0, 1}(k−1)` be the set of candidate solutions for
the sub-window that contains the LZW-codewords C2, C3, · · · ,
Ck. (Both S1 and S2 have been obtained in the previous round
of decoding.) We now obtain the set of candidate solutions
for the current window, which contains C1, C2, · · · , Ck,
this way. A bit sequence (b1, b2, · · · , bk`) is in S only if it
satisfies two conditions: (1) its first (k−1)` bits are a solution
in S1, and its last (k − 1)` bits are a solution in S2; (2)
the decompressed text corresponding to it contains no invalid
words (except on the boundaries). This way, potential solutions
filtered by smaller windows will not enter solutions for larger
windows, making decoding more efficient. As a final step, an
erased bit is decoded this way: if any of the windows of size
nmax` containing it (note that there are up to 2nmax−1 such
windows) can recover its value (as we did in Example 1),
decode it to that value; otherwise it remains as an erasure.

To make the above decoding algorithm more efficient,
we also use phrases (such as “information theory”, “flash
memory”) and features such as word/phrase lengths. If a
solution for a window contains a valid word or phrase that
is particularly long, we may remove other candidate solutions
that contain only short words. That is because long words
and phrases are very rare: their density among bit sequences
of the same length decreases exponentially fast as the length
increases. So if they appear, the chance that they are the correct
solution is high based on Bayes’ rule. The thresholds for such
word/phrase lengths can be set sufficiently high such that the
probability of making a decoding error is sufficiently small.

We also enhance the decoding performance by using the
co-location relationship. Co-location means that certain pairs
of words/phrases appear unusually frequently in the same
context (because they are closely associated), such as “dog”
and “bark”, or “information theory” and “channel capacity”.
If two words/phrases with the co-location relationship are
detected among candidate solutions for two windows close
to each other, we may keep them as candidate solutions
and remove other less likely solutions. The reason for this
approach is similar to that for long words/phrases. The co-
location relationship can appear in multiple places in a text,
and therefore help decoding in non-trivial ways. For example,
for the text in Fig. 2 (a), the words/phrases that have the
co-location relationship with the phrase “flash memory” are
shown in Fig. 2 (b). (All of them appear in this text.) How
to find words/phrases with the co-location relationship from a
corpus of training texts is a well-known technique in Natural
Language Processing (NLP) [10]. So we skip its details here.

flash memory

volatile

Toshiba

EEPROMelectrically erasable

NAND

rewritten

byte

USB flashNOR flash

configurationdigital batterystatic RAM

(b)

(a) Flash memory is an electronic (solid-state) non-volatile computer storage medium that can be electrically
erased and reprogrammed. Toshiba developed flash memory from EEPROM (electrically erasable
programmable read-only memory) in the early 1980s and introduced it to the market in 1984. The two main
types of flash memory are named after the NAND and NOR logic gates. The individual flash memory cells
exhibit internal characteristics similar to those of the corresponding gates...... NAND or NOR flash memory
is also often used to store configuration data in numerous digital products, a task previously made possible
by EEPROM or battery-powered static RAM.

Fig. 2. (a) A sample paragraph from Wikipedia (part of which was omitted
to save space). (b) Phrases in it that have the co-location relationship with
“flash memory”.

B. NR-Decoding for Images

Consider the discovery of NR for images. General images
can have global features, and using such redundancy for error
correction can be difficult. To gain more insight into the
nature of NR in images, we focus in particular on images of
handwritten digits, as in Fig. 3 (a). They are from the National
Institute of Standards and Technology (NIST) database, which
have 70, 000 images as training or test data. We compress
the bi-level images (of size 28×28 pixels) using run-length
coding, where the run-lengths of 0s and 1s are compressed by
two optimized Huffman codes, respectively. The rate is 0.27
bit/pixel.

We now present an NR-decoder for images. It is illustrated
in Fig. 3 (b). Assume that a compressed image has λ erasures.
Out of the 2λ possible candidate solutions, usually only a
few decompress successfully. (For example, to decompress
successfully, the bit sequence needs to end with a valid
Huffman codeword. And errors may make it impossible.) To
decode noisy images among the successfully decompressed
images, we have trained a convolutional neural network for
recognizing noisy images, and designed a specialized filter
based on features of connected components in decompressed
images, as follows:

1) Convolutional Neural Network: The training and test
data consist of noisy as well as clean images of handwritten
digits. It consists of one input layer, two hidden layers and
a output layer. The input layer consists of a 28 × 28 bilevel
image, and the 2 × 1 output layer classifies the input images
as “clean” or “noisy”. The size of the convolution window is
5×5. The number of feature maps used in the first and second
hidden layers are 5 and 15 respectively.

2) Filter Based on Connected Components: We count the
number of components in an image, but without counting
those components that have at most two pixels or components
that are vertical lines (which may be caused by human or
scanning errors). The images that have the fewest components
are accepted as candidate images by this filter.

3) Joint Decoder: The final step of decoding is: if all
candidate solutions agree on the value an erased bit, set the
bit to that value; otherwise, keep it as an erasure.

Example 2. Suppose that the compressed image with erasures

convolutional
neural
network

candidate
solutions to
compressed
image

decompress decompress
successfully?

yes

no
remove such solutions

candidate
solutions to
decompressed
image

keep such solutions

likely correct image

likely noisy imageremove such
solutions

set A of candidate solutions
to compressed image filter based on

number
and sizes/shapes
of components
in image

solutions
passing filterset B of candidate solutions

to compressed image

joint
decoder

solution
to
compressed
image

(b)

(c)

NR-Decoder LDPC Decoder(d)

LDPC Decoder NR-Decoder

(e)

(a)

Fig. 3. (a) Examples of handwritten digits. (b) NR-decoder for images. (c)
Performance of NR-decoder. (d) A concatenated decoding scheme. (e) An
iterative decoding scheme.

is 1??0?1· · · , where “?” is an erasure. Suppose that the NR-
decoder finds 3 candidate solutions: 110001· · · , 110011· · · ,
100011· · · . Then it returns the solution 1?00?1· · · because
the candidate solutions agree on the second erasure, but not
the first or the third erasure. 2

C. Decoding Performance of NR decoders

The decoding performance for NR decoders can be mea-
sured as follows. Let ε ∈ [0, 1] be the erasure probability
before decoding. After the decoding by natural redundancy,
let δ ∈ [0, 1] be the probability that an originally erased
bit remains as an erasure, and let ρ ∈ [0, 1 − δ] be the
probability that an originally erased bit is decoded to 0 or
1 incorrectly. The amount of noise after NR-decoding can be
measured by the entropy of the noise (erasures and errors)
per bit: ENR , ε(δ + (1 − δ)H(ρ

1−δ)), where H(p) =
−p log p− (1− p) log(1− p) is the entropy function.

We show ENR for the NR-decoder for images in Fig. 3 (c).
The NR-decoder reduces noise substantially: it removes noise
effectively by over 75% for the compressed images (without
any help from ECC), for raw bit-erasure rate (RBER) from
0.5% to 6.5%.

The performance of the NR-decoder introduced above for
LZW-compressed English texts, experimented on a large cor-
pus of Wikipedia articles, is shown in the table below. It also

reduces noise effectively (between 88.0% and 91.6%) for raw
bit-erasure rate from 5% to 30%.

ε 0.05 0.10 0.15
δ 8.22× 10−2 8.67× 10−2 9.19× 10−2

ρ 9.18× 10−5 1.83× 10−4 1.82× 10−4

ENR 4.18× 10−3 8.92× 10−3 1.42× 10−2

Noise 91.6% 91.1% 90.6%
reduction

ε 0.20 0.25 0.30
δ 9.76× 10−2 1.05× 10−1 1.12× 10−1

ρ 3.61× 10−4 4.48× 10−4 7.11× 10−4

ENR 2.04× 10−2 2.76× 10−2 3.60× 10−2

Noise 89.8% 89.0% 88.0%
reduction

IV. COMBINE NR-DECODING WITH LDPC CODES

This section discusses the combination of NR-decoders
described in the previous section with LDPC codes. We protect
compressed data (languages or images) as information bits by
a systematic LDPC code of rate R. The decoding process
is a concatenation of two decoders: first, the NR-decoder
decodes the codeword (possibly only its information bits),
and outputs a partially corrected codeword with updated soft
information; then, the LDPC decoder takes that as input, and
uses belief propagation (BP) for decoding. (See Fig. 3 (d)
for an illustration.) We present a theoretical analysis for the
decoding performance, and show that the NR-decoder can
substantially improve the performance of LDPC codes.

Consider a binary-erasure channel (BEC) with erasure prob-
ability ε0. Let us call the non-erased bits fixed bits. Assume
that after NR-decoding, a non-fixed bit (i.e., erasure) remains
as an erasure with probability p0(ε0) ∈ [0, 1], becomes an
error (0 or 1) with probability (1 − p0(ε0))γ0(ε0) ∈ [0, 1 −
p0(ε0)], and is decoded correctly (as 0 or 1) with probability
(1− p0(ε0))(1− γ0(ε0)). (In general, p0(ε0) and γ0(ε0) may
be functions of ε0. Note that if the NR-decoder decodes
only information bits, and an erasure in the information bits
remains as an erasure with probability p0(ε0)′, then p0(ε0) =
Rp0(ε0)

′ + (1−R). Also note that the LDPC decoder needs
to decode all bits with both errors and erasures.)

A. Decoding Algorithm

We design the following iterative LDPC decoding algo-
rithm, which generalizes both the peeling decoder for BEC
and the Gallager B decoder for BSC:

Algorithm 3. Generalized LDPC decoding algorithm.
(1) Let π ∈ [1, dv − 1] and τ ∈ [1, dv − 1] be two integer

parameters;
(2) In each iteration, for a variable node v that is an

erasure, if π or more non-erased message bits come from dv−1
check nodes and they all have the same value, set v to that
bit value;

(3) If v is not a fixed bit and not an erasure (but possibly
an error) in this iteration, change v to the opposite bit value
if τ or more non-erased message bits come from dv− 1 check

nodes and they all have that opposite value. (The updated
value of v will be sent to the remaining check node in the next
iteration.)

B. Density Evolution Analysis

We now analyze the density evolution for the decoding
algorithm, for an infinitely long and randomly constructed
LDPC code of regular degrees.

For t = 0, 1, 2 · · · , let αt and βt be the fraction of codeword
bits that are errors or erasures, respectively, after t iterations
of LDPC decoding. We have α0 = ε0(1 − p0(ε0))γ0(ε0) and
β0 = ε0p0(ε0). Let κ0 = ε0(1− p0(ε0))(1− γ0(ε0)).

Theorem 4. For a regular (dv, dc) LDPC code with
variable-node degree dv and check-node degree dc,
we have αt+1 = α0Ct + κ0Dt + β0µt, where
Ct = 1−(1−At)dv−1+

∑τ−1
i=0

(
dv−1
i

)
Bit(1−At−Bt)dv−i−1,

Dt =
∑dv−1
j=τ

(
dv−1
j

)
Ajt (1 − At − Bt)

dv−1−j ,
µt =

∑dv−1
m=π

(
dv−1
m

)
Amt (1 − At − Bt)

dv−1−m

with At = (1−βt)dc−1−(1−βt−2αt)dc−1

2 and Bt =
(1−βt)dc−1+(1−βt−2αt)dc−1

2 . And βt+1 = β0(1 − µt − νt),
where νt =

∑dv−1
m=π

(
dv−1
m

)
Bmt (1−At −Bt)dv−1−m.

Proof: Consider the root variable node of a computation
tree. After t iterations, let At denote the probability that an
incoming message to the root node from a neighboring check
node is an error, and let Bt denote the probability that the
message is correct. Then 1 − At − Bt is the probability that
the message is an erasure. Let µt (respectively, νt) be the
probability that among the dv − 1 incoming messages from
neighboring check nodes to the root node, π or more messages
are errors (respectively, correct) and the remaining messages
are all erasures.

In the (t+ 1)-th iteration, we can have an error in the root
node in one of the following cases:

1) The root node was initially (namely, before decoding
begins) an error (which has probability α0), and either
of the two disjoint events happens: 1) fewer than τ
check-node messages are correct and the remaining
messages are all erasures, which happens with proba-

bility
τ−1∑
i=0

(
dv−1
i

)
Bit(1−At−Bt)dv−i−1; 2) at least one

check-node message is an error, which happens with
probability 1− (1−At)dv−1. The probability that either
of the two events occurs is Ct = 1 − (1 − At)dv−1 +
τ−1∑
i=0

(
dv−1
i

)
Bit(1−At −Bt)dv−i−1.

2) The root node was initially correct (which has prob-
ability κ0), but τ or more check-node messages are
errors and the rest are all erasures (which happens with

probability Dt =
dv−1∑
j=τ

(
dv−1
j

)
Ajt (1−At −Bt)dv−1−j).

3) The root node was initially an erasure (which has
probability β0), and π or more check-node messages
are errors and the rest are all erasures (which happens
with probability µt).

Therefore the error rate after t+1 iterations will be αt+1 =
α0Ct + κ0Dt + β0µt.

In the (t+1)-th iteration, we can correct an erasure at a root
node correctly if the root node was initially an erasure, and π
or more check-node messages are correct and the rest are all
erasures. This happens with probability β0νt. The root node
will remain as an erasure if it is neither corrected mistakenly
nor corrected correctly. So the erasure rate after t+1 iterations
will be βt+1 = β0(1− µt − νt).

Now we need to find the values of At, Bt, µt and νt.
The incoming message from a check node to the root node is
correct if out of the dc− 1 non-root variable nodes connected
to the check node, an even number of nodes are errors and
the rest are all correct (i.e., neither errors nor erasures). That

probability is Bt =
b dc−1

2 c∑
k=0

(
dc−1
2k

)
α2k
t (1− αt − βt)dc−1−2k =

(1−βt)dc−1+(1−βt−2αt)dc−1

2 . The incoming message from a
check node to the root node is an error if out of the dc − 1
non-root variable nodes connected to the check node, an odd
number of nodes are errors and the rest are all correct. That

probability is At =
b dc2 c∑
k=1

(
dc−1
2k−1

)
α2k−1
t (1 − αt − βt)dc−2k =

(1−βt)dc−1−(1−βt−2αt)dc−1

2 . The probability that π or more
neighboring check-node messages are errors and the rest are
all erasures can be simplified as µt =

∑dv−1
m=π

(
dv−1
m

)
Amt (1−

At−Bt)dv−1−m. The probability that π or more neighboring
check-node messages are correct and the rest are all erasures
can be simplified as νt =

∑dv−1
m=π

(
dv−1
m

)
Bmt (1 − At −

Bt)
dv−1−m. This completes the proof.

C. Erasure Threshold

Define erasure threshold ε∗ as the maximum erasure prob-
ability (for ε0) for which the LDPC code can decode success-
fully (which means the error/erasure probabilities αt and βt
both approach 0 as t→∞). Let us show how the NR decoder
can substantially improve ε∗. Consider a regular LDPC code
with dv = 5 and dc = 100, which has rate 0.95 (a typical code
rate for storage systems). Without NR-decoding, the erasure
threshold is ε̃∗ = 0.036. Now let π = 1 and τ = 4. For
compressed images, when ε0 = 0.065, the NR-decoder gives
p0 = 0.247 and γ0 = 0.0008, for which the LDPC decoder has
limt→∞ αt = 0 and limt→∞ βt = 0. (The same happens for
ε0 < 0.065.) So with NR-decoding, ε∗ ≥ 0.065, which means
the improvement in erasure threshold is more than 80.5%.

For LZW-compressed texts, when ε0 = 0.3, the NR-decoder
gives p0 = 0.156 and γ0 = 0.0008, for which the LDPC
decoder has limt→∞ αt = 0 and limt→∞ βt = 0. (The same
happens for ε0 < 0.3.) So with NR-decoding, ε∗ ≥ 0.3,
which means the improvement in erasure threshold is more
than 733.3%.

V. ITERATIVE LDPC DECODING WITH NR

In this section, we study the decoding performance when
we use iterative decoding between the LDPC decoder and
NR-decoder, as shown in Fig. 3 (e). (In last section’s study,

the NR-decoder is followed by the LDPC decoder, without
iterations between them.) We focus on languages, and present
a theoretical model for compressed languages as follows.

A. NR Decoder For Compressed Languages

Let T = (b0, b1, b2, · · ·) be a compressed text. Parti-
tion T into segments S0, S1, S2 · · · , where each segment
Si = (bil, bil+1, · · · , bil+l−1) has l bits. Consider erasures.
Let θ ∈ [0, 1], lθ , blθc and p ∈ [0, 1] be parameters.
We assume that when a segment Si has at most lθ erasures,
the NR-decoder can decode it by checking the validity of
the up to 2lθ candidate solutions (based on the validity of
their corresponding words/phrases, grammar, etc.), and either
determines (independently) the correct solution with probabil-
ity p or makes no decision with probability 1 − p. And this
NR-decoding operation can be performed only once for each
segment.

Here lθ models the limit on time complexity (because the
decoder needs to check 2lθ solutions), and p models the proba-
bility of making an error-free decision. This is a simplification
of the practical NR-decoders shown in the last section that
make very high-confidence, although not totally error-free,
decisions. The model is suitable for compression algorithms
such as LZW coding with a fixed dictionary, Huffman coding,
etc., where each segment can be decompressed to a piece of
text. The greater l is, the better the model is.

B. Iteration with LDPC Decoder

The compressed text T is protected as information bits by
a systematic LDPC code. The LDPC code uses the peeling
decoder for BEC (where dc− 1 incoming messages of known
values at a check node determine the value of the outgoing
message on the remaining edge) to correct erasures. See the
decoding model in Fig. 3 (e). In each iteration, the LDPC
decoder runs one iteration of BP decoding, then the NR-
decoder tries to correct those l-information-bit segments that
contain at most lθ erasures (if those segments were never
decoded by the NR-decoder in any of the previous iterations).
Let ε0 < 1 be the BEC’s erasure rate. Let ε′t and εt be the
LDPC codeword’s erasure rate after the t-th iteration of the
LDPC decoder and the NR-decoder, respectively. Next, we
analyze the density evolution for regular (dv, dc) LDPC codes
of rate R = 1− dv

dc
.

Note that since the NR-decoder decodes only information
bits, for the LDPC decoder, the information bits and parity-
check bits will have different erasure rates during decoding.
Furthermore, information bits consist of l-bit segments, while
parity-check bits do not. For such an l-bit segment, if the
NR-decoder can decode it successfully when it has no more
than lθ erasures, let us call the segment lucky; otherwise, call
it unlucky. Lucky and unlucky segments will have different
erasure rates during decoding, too.

Every l-information-bit segment is lucky with probability
p, and unlucky with probability 1 − p. A lucky segment is
guaranteed to be decoded successfully by the NR-decoder
once the number of erasures in it becomes less than or equal

to lθ; and an unlucky segment can be considered as never
to be decoded by the NR-decoder (because such decoding
will not succeed). Since whether a segment is lucky or not
is independent of the party-check constraints and the LDPC-
decoder, for analysis we can consider it as an inherent property
of the segment (which exists even before the decoding begins).

C. Density Evolution Analysis

Define q0 = 1, qt , εt
ε′t

and dt ,
ε′t
εt−1

for t ≥ 1. Note that
decoding will end after t iterations if one of these conditions
occurs: (1) ε′t = 0, because all erasures are corrected by the
t-th iteration; (2) dt = 1, because the LDPC decoder corrects
no erasure in the t-th iteration, and nor will the NR-decoder
since the input codeword is identical to its previous output.
We now study density evolution before those boundary cases
occur.

For t = 1, 2, 3 · · · and k = 0, 1, · · · , l, let fk(t) denote the
probability that a lucky segment contains k erasures after t
iterations of decoding by the NR-decoder.

Lemma 5.

fk(1) =


lθ∑
i=0

(
l
i

)
(ε′1)

i(1− ε′1)l−i if k = 0

0 if 1 ≤ k ≤ lθ(
l
k

)
(ε′1)

k(1− ε′1)l−k if lθ + 1 ≤ k ≤ l

Proof: Consider the LDPC-decoding and the NR-
decoding in the first iteration. Since the initial erasure rate
is ε0, the erasure rate after LDPC decoding will now be
ε′1 = q0ε0(1− (1− ε0)dc−1)dv−1 where q0 = 1 by definition.
The probability that an l-information-bit segment contains
exactly i erasures is given by

(
l
i

)
(ε′1)

i(1 − ε′1)l−i, which is
independent of whether the segment is lucky or unlucky. Thus
the probability that a lucky segment contains up to lθ erasures
is given by

∑lθ
i=0

(
l
i

)
(ε′1)

i(1− ε′1)l−i. All such segments are
decoded by the NR-decoder successfully, while the remaining
segments are not. That leads to the conclusion.

Lemma 6. The erasure rate after the first iteration of NR-
decoding is

ε1 = ε0d1((1−R) +R(1− p)) + (

l∑
k=lθ+1

k

l
fk(1))Rp

Proof: After NR-decoding, the erasure rate of a lucky
segment with k erasures is k

l , and the erasure rate for
unlucky segments and parity-check bits is still ε′1. We have
d1 = ε′1/ε0. Hence the overall erasure rate after the 1st
iteration of NR-decoding is ε1 = ε0d1((1−R)+R(1− p))+
(
∑l
k=lθ+1

k
l fk(1))Rp. (See Fig. 4 (b) for an illustration of

the computation tree for density evolution. For comparison,
we show the tree for classic BP decoding for BEC in Fig. 4
(a).)

Lemma 7. The erasure rate after the second iteration of
LDPC-decoding is

ε′2 = q0q1ε0(1− (1− ε1)dc−1)dv−1

.

Proof: We have q1 = ε1
ε′1

. Since the NR-decoding of
the 1st iteration reduces the overall erasure probability by a
factor of q1 (from ε′1 to ε1), and the root variable node of
a computation tree is chosen uniformly at random from the
infinitely long and randomly constructed LDPC code, the root
node in the tree for the 2nd iteration of LDPC decoding now
has the erasure probability q1ε0. (See Fig. 4 (b).) Hence the
equation for the LDPC-decoder for the 2nd iteration will be
given by ε′2 = q0q1ε0(1− (1− ε1)dc−1)dv−1. Note that LDPC
decoding is independent of NR-decoding because the parity-
check constraints are independent of the bits being lucky-
segment bits, unlucky-segment bits or parity-check bits. And
note that d2 =

ε′2
ε1

is the probability that an erasure remains
as an erasure after the LDPC decoding. If d2 = 1, no change
was made by the LDPC-decoder; if d2 = 0, all erasures have
been corrected. In both cases, the decoding will end.

Lemma 8. For t ≥ 2,

fk(t) =



fk(t− 1) +
l∑

i=lθ+1

lθ∑
j=0

fi(t− 1)
(
i
j

)
(dt)

j(1− dt)i−j

if k = 0

0 if 1 ≤ k ≤ lθ
l∑

i=k

fi(t− 1)
(
i
k

)
(dt)

k(1− dt)i−k if lθ + 1 ≤ k ≤ l

Proof: Now consider the second iteration of NR-
decoding. We only consider the case when 0 < d2 < 1. A
lucky segment has zero errors after the second iteration if
an only if either one of the two cases happen : a) that the
segment already has zero errors after the first iteration, or b)
the segment had lθ + 1 or more errors after the first iteration
and it has at most lθ erasures after second iteration of the
LDPC-decoding. Thus if k = 0,

fk(2) = fk(1) +

l∑
i=lθ+1

lθ∑
j=0

fi(1)

(
i

j

)
(d2)

j(1− d2)i−j

A lucky segment cannot have k ≤ lθ erasures (with k ≥ 1)
after the second iteration of NR-decoding (because if so, it
would have corrected those erasures). So we have fk(2) = 0
for that case. Finally, a lucky segment has lθ + 1 ≤ k ≤ l
erasures if and only if it had k or more erasures after the first
iteration of NR-decoding and it has k erasures after the second
iteration of LDPC-decoding. Thus

fk(2) =

l∑
i=k

fi(1)

(
i

k

)
(d2)

k(1− d2)i−k if lθ + 1 ≤ k ≤ l

The remaining cases can be analyzed similarly. That leads
to the conclusion.

We now present the analytical formulas for the density
evolution of the iterative LDPC-NR decoding scheme. Its
proof follows the previous lemmas.

Theorem 9. For t ≥ 1,

εt = ((1−R) +R(1− p))ε0(
t∏
i=1

dt) +Rp

l∑
k=lθ+1

k

l
fk(t),

ε′t = (

t−1∏
m=0

qm)ε0(1− (1− εt−1)dc−1)dv−1.

Proof: The decoding performance for the 2nd iteration
of the LDPC-decoding has been analyzed in Lemma 7. The
erasure rate in unlucky-segment bits and parity-check bits
was decreased from ε′1 to ε′1d2 = ε0d1d2 by the LDPC-
decoding. Now the NR-decoder corrects those lucky segments
that had more than lθ erasures before the LDPC-decoding but
now has at most lθ erasures after the LDPC-decoding. So

ε2 = ε0d1d2((1−R) +R(1− p)) + (
l∑

k=lθ+1

k
l fk(2))Rp.

The analysis for the following iterations is similar to the 2nd
iteration. In general, since in the i-th iteration the NR-decoder
reduces the overall erasure rate by a factor of qi, the root
variable node in the computation tree for the t-th iteration of
LDPC decoding has the erasure probability (

∏t−1
i=0 qi)ε0. That

leads to the conclusion.

VN

CN CN

VN

CN CN

VN

CN CN

(a) 1st
iteration

2nd
iteration

3rd
iteration

VN

CN CN

VN

CN CN

VN

CN CN

(b) 1st
iteration

2nd
iteration

3rd
iteration

Fig. 4. (a) First three iterations of classic BP decoding (alone) for BEC. (b)
First three iterations of BP-decoding and NR decoding.

VI. UPPER BOUND TO ECC SIZES WITH NR

The previous analysis has been specifically for LDPC codes
with belief-propagation decoding algorithms. Let us now con-
sider more general ECCs and their capacity. The NR-decoders
for images and languages presented in Section III have a
common feature: they both have very low error probabilities
introduced by NR-decoding, namely, the corrections are made

with high confidence by NR-decoders. That motivates us to
study the following theoretical model for error correction.

Let A = {0, 1, · · · , q−1} be an alphabet, where q ≥ 2. Let
C ⊆ An be a code of length n. Let r and t be integer parame-
ters with r+t ≤ n. Let the decoding process be an NR-decoder
followed by an ECC-decoder (similar to Fig. 3 (d)). Given a
noisy word y = (y1, y2, · · · , yn) ∈ An, assume that the NR-
decoder can determine the correct values of at least r symbols
with certainty, without introducing additional errors. (Note that
in practice, the errors corrected by the NR-decoder are only a
small portion of such bits (symbols with q = 2). Many more
such bits are non-errors, and the NR-decoder can determine
that they are error-free because they belong to highly likely
patterns, such as long and common phrases. Also note that in
general, the NR-decoder can decode both information bits and
parity-check bits.) Let P ⊆ {1, 2, · · · , n} denote the indexes
of such determined symbols (where |P | ≥ r), and without
loss of generality (WLOG), we may assume |P | = r for code
analysis (because having larger |P | only helps more). WLOG,
we may also assume that the symbols of y with indexes
in P are already correct symbols (because the NR-decoder
determines their values anyway). After the NR-decoding, the
ECC-decoder takes the pair (y, P) as input, and decodes it
using maximum-likelihood (ML) decoding: the output is a
codeword x = (x1, x2, · · · , xn) ∈ C such that: (1) ∀ i ∈ P ,
xi = yi; (2) the Hamming distance dH(x,y) , |{i | 1 ≤ i ≤
n, xi 6= yi}| = |{i | 1 ≤ i ≤ n, i /∈ P, xi 6= yi}| is minimized.
∀ x,y ∈ An and P ⊆ {1, 2, · · · , n}, if xi = yi for every

i ∈ P , we say x =P y. We define St,P (x) , {(y, P) | x =P
y, dH(x,y) ≤ t}. If ∀ x1,x2 ∈ C and P ⊆ {1, 2, · · · , n}
with |P | = r, we have St,P (x1)∩St,P (x2) = ∅, we call C an
(r, t)-ECC. An (r, t)-ECC is an error-correcting code that can
correct t Hamming errors when the NR-decoder determines the
values of any r symbols. It is an extension of t-error correcting
codes. We have the following sphere packing bound.

Theorem10. For an (r, t)-ECC C with code length n, alphabet
size q and r + t ≤ n, the code’s size

|C| ≤ qn∑t
i=0

(
n−r
i

)
(q − 1)i

.

Proof: Define Pr , {P | P ⊆ {1, 2, · · · , n}, |P | =
r}, and define St,r(x) = ∪P∈PrSt,P (x). It is not hard
to see |St,P (x)| =

∑t
i=0

(
n−|P |
i

)
(q − 1)i. Since ∀ P1 6=

P2, St,P1(x) ∩ St,P2(x) = ∅, we get |St,r(x)| =(
n
r

)∑t
i=0

(
n−r
i

)
(q − 1)i. We now show that C is an (r, t)-

ECC if and only if for any two codewords x1,x2 ∈ C, we
have St,r(x1) ∩ St,r(x2) = ∅: (1) If St,r(x1) ∩ St,r(x2) = ∅,
then for any P ∈ Pr, since St,P (x1) ⊆ St,r(x1) and
St,P (x2) ⊆ St,r(x2), we have St,P (x1) ∩ St,P (x2) = ∅. So
C is an (r, t)-ECC; (2) If St,r(x1) ∩ St,r(x2) 6= ∅, then there
exists some P1, P2 ∈ Pr such that St,P1(x1)∩St,P2(x2) 6= ∅;
and we must have P1 = P2 (otherwise the two sets are
disjoint). So C is not an (r, t)-ECC. So by the sphere-packing
bound, since there are totally qn

(
n
r

)
pairs of the form (x, P)

where x ∈ An and P ∈ Pr, we get |C| ≤ qn(nr)
|St,r(x)| =

qn(nr)
(nr)

∑t
i=0 (

n−r
i)(q−1)i

= qn∑t
i=0 (

n−r
i)(q−1)i

.

VII. CONCLUSIONS

This paper studies the discovery and utilization of NR in
data for error correction, including for languages and images.
It proposes non-iterative and iterative coding schemes that
combine NR-decoding with LDPC-decoding, and analyzes
their performance. A sphere-packing upper bound is also
shown for general ECCs that receive assistance from NR-
decoders.

REFERENCES

[1] R. Bauer and J. Hagenauer, “On Variable Length Codes for Iterative
Source/Channel Decoding,” in Proceedings of Data Compression Con-
ference, pp. 273–282, 2001.

[2] L. Guivarch, J. Carlach and P. Siohan, “Joint Source-channel Soft
Decoding of Huffman Codes with Turbo-codes,” in Proceedings of Data
Compression Conference (DCC), pp. 83-92, 2000.

[3] J. Hagenauer, “Source-controlled Channel Decoding,” in IEEE Transac-
tions on Communications, vol. 43, no. 9, pp. 2449–2457, 1995.

[4] M. Jeanne, J. Carlach and P. Siohan, “Joint Source-channel Decoding
of Variable-length Codes for Convolutional Codes and Turbo Codes,” in
IEEE Transactions on Communications, vol. 53, no. 1, pp. 10-15, 2005.

[5] A. Jiang, Y. Li and J. Bruck, “Error Correction through Language
Processing,” in Proc. IEEE Information Theory Workshop (ITW), 2015.

[6] J. Lansky, K. Chernik and Z. Vlckova. “Syllable-Based Burrows-Wheeler
Transform,” 2007.

[7] Y. Li, Y. Wang, A. Jiang and J. Bruck, “Content-assisted File Decoding for
Nonvolatile Memories,” in Proc. 46th Asilomar Conference on Signals,
Systems and Computers, pp. 937–941, Pacific Grove, CA, 2012.

[8] M. Lindenbaum, M. Fischer, and A. Bruckstein, “On Gabor’s Contribu-
tion to Image Enhancement,” in Pattern Recognition, vol. 27, no. 1, pp.
18, 1994.

[9] J. Luo, Q. Huang, S. Wang and Z. Wang, “Error Control Coding Com-
bined with Content Recognition,” in Proc. 8th International Conference
on Wireless Communications and Signal Processing, pp. 1–5, 2016.

[10] C. D. Manning and H. Schutze, Foundations of Statistical Natural
Language Processing, MIT Press, 1999.

[11] E. Ordentlich, G. Seroussi, S. Verdu, and K. Viswanathan, “Universal
Algorithms for Channel Decoding of Uncompressed Sources,” IEEE
Trans. Information Theory, vol.

[12] E. Ordentlich, G. Seroussi, S. Verdu, M. Weinberger and T. Weissman,
“A Discrete Universal Denoiser and Its Application to Binary Images,”
in Proc. International Conference on Image Processing, vol. 1, pp. 117,
2003.

[13] C. Poulliat, D. Declercq, C. Lamy-Bergot, and I. Fijalkow, “Analysis
and Optimization of Irregular LDPC Codes for Joint Source-channel
Decoding,” in IEEE Communications Letter, vol. 9, no. 12, pp. 1064–
1066, 2005.

[14] L. Pu, Z. Wu, A. Bilgin, M. Marcellin, and B. Vasic, “LDPC-based
Iterative Joint Source-channel Decoding for JPEG2000,” in IEEE Trans-
actions on Image Processing, vol. 16, no. 2, pp. 577–581, 2007.

[15] L. Rudin, S. Osher and E. Fatemi, “Nonlinear Total Variation based
Noise Removal Algorithms,” in Physica D: Nonlinear Phenomena, vol.
60, no. 1, pp. 259–268, 1992.

[16] C. E Shannon, “Prediction and Entropy of Printed English,” in Bell
System Technical Journal, vol. 30, no. 1, pp. 50–64, 1951.

[17] Y. Wang, K. R. Narayanan and A. Jiang, “Exploiting Source Redundancy
to Improve the Rate of Polar Codes,” in IEEE International Symposium
on Information Theory (ISIT), Aachen, Germany, June 2017.

[18] Y. Wang, M. Qin, K. R. Narayanan, A. Jiang and Z. Bandic, “Joint
Source-channel Decoding of Polar Codes for Language-based Sources,” in
Proc. IEEE Global Communications Conference (Globecom), Washington
D.C., December 2016.

[19] T. Weissman, E. Ordentlich, G. Seroussi, S. Verdu and M. Weinberger,
“Universal Discrete Denoising: Known Channel,” in IEEE Transactions
on Information Theory, vol. 51, no. 1, pp. 5–28, 2005.

[20] L. Yaroslavsky and M. Eden, Fundamentals of Digital Optics: Digital
Signal Processing in Optics and Holography, Springer-Verlag New York,
Inc., 1996.

