
Joint Source-Channel Decoding of Polar Codes for
Language-Based Sources

Ying Wang†, Minghai Qin§, Krishna R. Narayanan†, Anxiao (Andrew) Jiang‡, and Zvonimir Bandic§
†Department of Electrical and Computer Engineering, Texas A&M University
‡Department of Computer Science and Engineering, Texas A&M University
§Next Generation Platform Technologies, Western Digital Research

{yingwang@tamu.edu, minghai.Qin@hgst.com, krn@ece.tamu.edu,

ajiang@cse.tamu.edu, and zvonimir.bandic@wdc.com}

Abstract—We propose a joint list decoder and language de-
coder that exploits the redundancy of language-based sources
during polar decoding. By judging the validity of decoded words
in the decoded sequence with the help of a dictionary, the polar
list decoder constantly detects erroneous paths after the decoding
of every few bits. This path-pruning technique based on joint
decoding has advantages over stand-alone polar list decoding
in that most decoding errors in early stages are corrected. We
show that if the language structure can be modeled as erasure
correcting outer block codes, the rate of inner polar code can
be increased while still guaranteeing a vanishing probability of
error. To facilitate practical joint decoding, we first propose a
construction of a dynamic dictionary using a trie and show an
efficient way to trace the dictionary during decoding. Then we
propose a joint decoding scheme for polar codes taking into
account both information from the channel and the source. The
proposed scheme has the same decoding complexity as the list
decoding of polar codes. A list-size adaptive joint decoding is
further implemented to largely reduce the decoding complex-
ity. Simulation results show that the joint decoding schemes
outperform stand-alone polar codes with CRC-aided successive
cancellation list decoding by over 0.6 dB.

I. INTRODUCTION

Shannon’s theorem [1] shows that separate optimization
of source and channel codes suffices for communicating
sources over a large class of channels. However, such a
separation-based scheme is often subject to impractical com-
putational complexity and unlimited delay. It is well known
that joint source and channel decoding (JSCD) can outperform
separation-based schemes in the presence of complexity and
delay constraints. It is based on the fact that source coding
is often not perfect and that the leftover redundancy can be
exploited in the channel decoder. In particular, for language-
based sources, the left over redundancy from the source
encoder allows us to exploit features such as the meaning of
words, grammar and syntax.

Several works have considered JSCD schemes that exploit
the left over redundancy from the source encoder. In [2], JSCD
using a soft-output Viterbi algorithm is considered. In [3], a
trellis based decoder is used as a source decoder in an iterative
decoding scheme. Joint decoding of Huffman and Turbo codes

This work was supported in part by the National Science Foundation under
grants IIP-1439722 and CCF-1217944.

Eb

N0
(dB)

3 3.5 4 4.5 5 5.5 6

B
lo

ck
 e

rr
or

 r
at

e

10-5

10-4

10-3

10-2

10-1

100

0.6 dB

polar SC
polar CRC-aided SCL, L = 8
polar CRC-aided SCL, L = 32
polar Adpt. CRC-aided SCL, L

max
 = 1024

JSCD with polar, L = 8
JSCD with polar , L = 32
Adpt. JSCD with polar, L

max
 = 1024

Fig. 1: Block error rate of different decoding schemes over
AWGN channels: a) SC decoding; b) CRC-aided SCL de-
coding (L = 8, 32); c) List-size adaptive CRC-aided SCL
decoding (Lmax = 1024); d) JSCD (L = 8, 32); e) List-
size adaptive JSCD (Lmax = 1024). All codes have length
n = 8192 and k = 7561.

is proposed in [4]. In [5], joint decoding of variable length
codes (VLCs) and convolutional/Turbo codes is analyzed.
Applications of turbo codes to image/video transmission are
shown in [6] and [7]. Joint decoding using LDPC codes for
VLCs and images are illustrated in [8] and [9], respectively.
However, few works have considered JSCD specifically for
language-based sources. In [10], LDPC codes are combined
with a language decoder and a message passing algorithm is
designed to exploit the redundancy in the source.

Polar codes are gaining more attention due to their capacity
achieving property [11] and advantages such as low encod-
ing/decoding complexity and good error floor performance
[12]. In particular, it is shown in [13] that with successive
cancellation list (SCL) decoding, the concatenation of polar
codes with a few bits cyclic redundancy check (CRC) can
outperform some LDPC codes. We denote the concatenated
codes as polar-CRC codes.

In this paper, we propose a joint source-channel decoding
scheme where the source is encoded by Huffman codes
and transmitted through noisy channels by polar codes. The

978-1-5090-1328-9/16/$31.00 ©2016 IEEE

proposed scheme decodes polar codes jointly with a language
decoder based on a word dictionary. We assume the dictionary
is only available and used on the decoder side, which is a
reasonable assumption when the decoder has larger storage
space and stronger calculation power, e.g., uplink channels
where the source is compressed at a mobile device and
uploaded to a data center. The language decoder has a similar
function to that of a CRC. Instead of picking a valid path
from the list, the language decoder uses the word dictionary
to select most probable paths, where the word dictionary can
be viewed as local constraints on the decoded subsequences.
A critical advantage of the language decoder over global
CRC constraints is that it can detect the validity of partially
decoded paths before decoding the whole codeword. In this
way, incorrect paths can be pruned at early stages, resulting
in a larger probability that the correct path survives in the
list. The proposed decoder exploits the fact that the language
decoder and the polar decoder both work over trees and that
they can be combined in a computationally efficient way.
We provide an analysis of the increase in the rate of the
polar code that can be obtained by modeling the language-
based source as t-erasure correcting outer codes. The proposed
decoder provides substantial improvement in performance over
the stand-alone CRC-aided SCL decoding. Fig. 1 shows a
block error rate comparison of different polar decoders for
transmitting English text as sources. It can be observed that
over 0.6 dB gain can be achieved by JSCD over stand-alone
CRC-aided SCL decoding with comparable code parameters.

II. BACKGROUND

In this section, we give a brief review of polar codes
and SCL decoding. Throughout the paper, we will denote
a vector (xi, xi+1, . . . , xj) by x

j
i , denote the set of integers

{1, 2, . . . , n} by [n], denote the complement of a set F by F c,
and denote a probability measure by P (·).

A. Polar codes

Polar codes are recursively encoded with the generator
matrix Gn = RnG

⊗m
2 , where Rn is a n × n bit-reversal

permutation matrix, G2 =

[

1 0
1 1

]

, and ⊗ is the Kronecker

product. The length of the code is n = 2m. Arıkan’s channel
polarization principle consists of two phases, namely channel
combining and channel splitting. Let un

1 be the bits to be
encoded, xn

1 be the coded bits and yn1 be the received sequence.
Let W (y|x) be the transition probability of a binary-input dis-
crete memoryless channel (B-DMC). For channel combining,
N copies of the channel are combined to create the channel

Wn(y
n
1 |u

n
1) , Wn(yn1 |u

n
1Gn) =

n
∏

i=1

W (yi|xi),

where the last equality is due to the memoryless property of
the channel. The channel splitting phase splits Wn back into
a set of n bit channels

W (i)
n (yn1 , u

i−1
1 |ui) ,

1

2n−1

∑

un

i+1

Wn(y
n
1 |u

n
1), i = 1, . . . , n.

��������

��	
���

����

��	
���
�������

����

��	
���

��������

��	
���

��	��
�����

���	���

�� � �

Fig. 2: A system model for joint source-channel decoding

Let I(W) be the channel capacity of W . The bit channels
W

(i)
n will polarize in the sense that a fraction of bit channels

will have I(W
(i)
n) converging to 1 as n → ∞ and the rest

will have I(W
(i)
n) converging to 0. Arıkan shows in [11] that

for the binary-input discrete memoryless channels, the fraction
of I(W

(i)
n) converging to 1 equals I(W). Let us define the

frozen set as F , {i ∈ [0, 2n − 1] : I(W
(i)
n) ∈ [0, 1 − ǫ)}

where ǫ ∈ (0, 1). If we fix bits in F and transmit information
bits only through the rest of bit channels, an arbitrarily small
transmission error probability can be guaranteed.

B. Decoding of polar codes

Successive cancellation (SC) decoding makes decision se-
quentially on ui, i ∈ [n] based on W

(i)
n (yn1 , u

i−1
1 |ui) and the

hard decision of SC decoder of polar codes can lead to severe
error propagation. Instead, SCL decoder keeps a list of most
probable paths. In each stage, the decoder extends a path
by hypothesizing both 0 and 1 for the unfrozen bit and the
number of paths doubles. Assume the list size is L. When
the number of paths exceeds L, the decoder picks L most
probable paths and prunes the rest. After decoding the last
bit, the most probable path is picked. The complexity of SCL
decoding is O(Ln logn), where n is the block length. An
extra improvement can be brought by CRC, which increases
the minimum distance of polar codes and helps to select the
most probable path in the list. The adaptive SCL decoder with
a large list size can be used to fully exploit the benefit of CRC
while largely reducing the decoder complexity [14].

III. SYSTEM MODEL AND JOINT SOURCE-CHANNEL

DECODING

Fig. 2 illustrates the framework of the proposed coding
scheme. We consider text in English, and the extension to
other languages is straightforward. In our framework, the text
is first compressed by Huffman codes and then encoded by
polar codes. On the decoder side, the received sequence is
jointly decoded by the polar code and a language decoder. The
language decoder consists of Huffman decoding and dictionary
tracing. It checks the validity of the decoded sequence by
recognizing words in the dictionary. A detailed description of
the proposed JSCD scheme is given below.

The maximum a posteriori decoder aims to find
maxun

1
P (un

1 |y
n
1). To avoid exponential complexity in n, we

use SCL decoding to maximize P (ui
1|y

n
1), i = [n] progres-

sively by breadth-first search of a path in the decoding tree,

where for each length-i path, a constant number, often denoted
by L, of most probable paths are kept to search for length-
(i+ 1) paths. Since

P (ui
1|y

n
1) =

P (ui
1, y

n
1)

P (yn1)
∝ P (yn1 |u

i
1)P (ui

1),

by source-channel separation theorem, a stand-alone polar
decoder calculates the first term P (yn1 |u

i
1) ∝ P (yn1 , u

i−1
1 |ui)

by a recursive structure, assuming ui
1 are independently and

identically distributed (i.i.d.) Bernoulli(0.5) random variables,
and thus the second term can be obliterated since P (ui

1) =
2−i, ∀ui

1 ∈ {0, 1}
i. However, in the language-based JSCD

framework, ui
1 are no longer i.i.d., one obvious consequence

of which is that ui
1 is feasible only if the decoded text,

translated from ui
1 by Huffman decoder, consists words in the

dictionary. Therefore, P (ui
1) contributes critically to the path

metric P (ui
1|y

n
1), and in particular, if P (ui

1) = 0, this path
should be pruned despite the metric P (yn1 |u

i
1) obtained from

the channel. This pruning technique enables early detection of
decoding errors and is critical in keeping the correct path in
the list. Algorithm 1 shows a high-level description of JSCD.

Algorithm 1 A high-level description of JSCD
Input: yn1 , L
Output: un

1

1: Initialize: i← 1; lact ← 1;
2: while i ≤ n do
3: if i ∈ F then
4: ui ← 0 for each active path;
5: else
6: k ← 1;
7: for each active path lj , j ∈ [lact] do
8: for ui = 0, 1 do
9: Compute P (yn1 , u

i−1
1 |ui);

10: Update P (ui
1);

11: Mk ← P (yn1 , u
i−1
1 |ui)P (ui

1) ;
12: k ← k + 1;
13: ρ← min(2lact, L) ;
14: Keep most probable ρ paths according to M2lact

1 ;
15: lact ← ρ;

16: i← i + 1;
17: Select the most probable path and output un

1 .

IV. RATE IMPROVEMENT BY JSCD

As seen in the previous section, compressed language-based
sources still have redundancy. In this section, we show that if
the redundancy can be modeled as outer codes of n0 bits that
correct t erasures, which refer to as [n0, t] outer codes, the rate
of the inner polar codes can be increased while maintaining a
vanishing error probability. For SC decoders, if the first n0− t

bits of the n0 bits are decoded correctly, the last t bits can be
filled in by the outer erasure code, regardless of the decisions
on the last t bits made by the SC decoder. Equivalently, the
rate of the polar code can be increased by sending those last
t bits in frozen bit positions. We give a simple example.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

1

x

f
n
(x

)

n=1024
n=4096
n=32768
n=65536

Fig. 3: Distributions of frozen bits with different code lengths

Example 1. Consider an (8, 4) polar code and let the outer
code be a [2, 1] code. Let u1, u2, u3 and u5 be the frozen
bits. We can unfreeze u5 by grouping u5 with u4 into a
codeword of the [2, 1] outer code that corrects 1 erasure. If
u4 is decoded correctly by the polar code, the outer code can
correctly decode u5. The rate of inner polar code is therefore
increased by 1

8 without increasing the block error rate.

Define fn(x) : [0, 1] 7→ [0, 1] as the proportion of frozen
bits in the first nx bits of a polar code of rate R and length
n. Fig. 3 shows the function fn(x) for increasing n and fixed
R = 0.5 where polar codes are optimized at BEC (0.5). It
can be seen that fn(x) appears to converge to some function
f(x) : [0, 1] 7→ [0, 1] as n → ∞. Based on this numerical
plot, we will assume that is indeed the case for this part of
the paper. A proof for this is beyond the scope of this paper.

A. [2, 1] outer codes

We start by considering [2, 1] outer codes. Among the first
n(1 − R) bits, there are n(1 − R) (1− fn(1 −R)) unfrozen
bits. This is equal to the number of frozen bits among the last
nR bits. Therefore from the polar code perspective, all frozen
bits in the last nR bits can be unfrozen and can be used to
transmit repeated bits from the first n(1 −R) bits.

Theorem 2. For [2, 1] outer codes, the rate of the polar code
can be increased by

∆R = lim
n→∞

n(1−R) (1− fn(1−R))

n

= (1 −R) (1− f(1− R))

B. [n0, t] outer codes

Theorem 3. Let h(x) be an upper bound on f(x). If outer
codes can be modeled as length-n0 codes that correct t

erasures, the rate of polar code can be increased by ∆R =
1−R− x0h(x0), where x0 ∈ (0, 1) satisfies the condition

nx0(1− h(x0))

n0 − t
≥

n− k − nx0h(x0)

t
. (1)

Proof: Let hn(x) upper bounds fn(x) for each n and
assume h(x) = limn→∞ hn(x). Let x0 ∈ (0, 1). Among the
first nx0 bits, there are nx0(1− fn(x0)) ≥ nx0(1− hn(x0))
unfrozen bits. Among the last n(1 − x0) bits, there are

n − k − nx0fn(x0) ≥ n − k − nx0hn(x0) frozen bits. If
inequality (1) holds, we can unfreeze n−k−nx0hn(x0) frozen
bits among the last n(1− x0) bits, and take nx0(1− hn(x0))
unfrozen bits among the first nx0 bits and group them into
length-n0 outer codes. Then the increased rate is ∆R =
limn→∞

n−k−nx0hn(x0)
n

= 1−R − x0h(x0).
A simple yet useful choice of h(x) is a piece-wise linear

function as follows. Let α > 0 and β > max(1, α) be two
constant real numbers. Then h(x) can be chosen as

h(x) =

1, if 0 < x ≤
β − 1

α
(2)

−αx+ β, if
β − 1

α
< x ≤ 1.

Example 4. We choose h(x) in Eq. (2) with α = 0.6 and
β = 1.1. If outer codes are [7, 2] codes that correct 2 erasures,
x0 = 0.59 satisfies inequality (1). Then we can derive ∆R =
0.06. If outer codes are [8, 3] codes that correct 3 erasures, we
can derive that ∆R = 0.076.

Note that in Theorem 2 and Theorem 3, n bits are parti-
tioned into two segments, where frozen bits in the second seg-
ment are then unfrozen to transmit bits that are correctable by
unfrozen bits in the first segment. This idea can be generalized
by partitioning the n bits into m+ 1 ≥ 2 segments. Let h(x)
and g(x) be upper and lower bounds on f(x), respectively.
Let x1, x2, . . . , xm satisfy β−1

α
< x1 < x2 < · · · < xm < 1.

They partition the codewords into m+ 1 segments.

Theorem 5. If outer codes can be modeled as length-n0 codes
correcting t erasures, we partition the codewords into m + 1
segments. The rate of polar code can be increased by

∆R = lim
n→∞

∑m
i=1 Fi+1

n
=

m
∑

i=1

(xi+1g(xi+1)− xih(xi)) ,

where x1, . . . , xm satisfy Ui

n−t
= Fi+1

t
, ∀i ∈ [m], Fi and Ui

are defined as

Fi , nxig(xi)− nxi−1h(xi−1),

Ui , nxi − nxi−1 − nxih(xi) + nxi−1g(xi−1),

i.e., lower bounds on number of frozen and unfrozen bits in
the ith segment.

V. IMPLEMENTATION OF JSCD

In this section we show practical implementation of JSCD.
Let A be the alphabet of symbols in text (e.g., {a, b, . . . , z} for
lowercase English letters, {0, . . . , 127} for symbols in ASCII
table). Let D be the set of words in the dictionary. We assume
a first order approximation of English words where all words
are independent. The performance improvement of considering
higher order Markov models of words [15] in languages is
diminishing since redundancy within a Huffman-encoded word
are much larger than redundancy across a sequence of words.

Proposition 6. The prior probability of source P (ui
1) can be

efficiently computed from dictionary as follows:

P (ui
1) =

j−1
∏

m=1

P (wm)P (lk1r) =

j−1
∏

m=1

P (wm)
∑

w

P (w), (3)

where w
j−1
1 are j − 1 uniquely decoded words in D, lk1

are k uniquely Huffman-decoded symbols in A and r is the
remaining bit sequence. In the summation, w ∈ D satisfies that
in binary Huffman-coded representation, the first k symbols
equals lk1 and r is a prefix of the remaining bit sequences.

Remark 7. The calculation of P (ui
1) should also take into

account the probability of spaces (or punctuations) between
words. We append a space mark to all words and omit the
details of implementation due to space limitations.

Now we focus on the efficient calculation of Eq. (3). Two
trees are used to facilitate the calculation, one is a tree for
Huffman coding and the other is a prefix tree (i.e., a trie) for
tracing a partially decoded word in the dictionary.

A. Trie representation of the dictionary

A trie is an ordered tree data structure that is used to store
a dynamic set or associative array where the keys are usually
strings [16]. In our implementation, each node in the trie is
instantiated as an object of a class named DictNode. As
shown in Table I, it has 4 data members, a symbol c (e.g.,
English letter), a variable count representing the frequency
of the presence of this prefix, an indicator is_a_word
indicating if the path from root to this node is a whole word,
and a vector of pointers child[] pointing to their children.
Fig. 4 is an illustrative example of the dictionary represented
by a trie. In an established trie, if the pointer that points to
the end of a word (or a partial word) w is known, then the
calculation of P (w) can be accomplished in O(1) by dividing
the count of the end node of the path associated with w by
the count of the root node.

TABLE I: DictNode members

member type

c char
count int

is_a_word bool
child[] DictNode*

TABLE II: HuffNode members

member type

p double
leftChild huffNode*

rightChild huffNode*
symSet char*

�������

����	�

�
�����������

�������

������

������

����	� ����� ������ ������

������ ������
�������

������ ������ ����	�

���������
���� �����

�	
 �

�	� �

�	�

�� �

��� �

�� �

�� �

��� �

���

��� �

Fig. 4: An illustrative example of a trie to represent the
dictionary

In order to establish the trie from extracted text (e.g., from
books, websites, etc.), an algorithm with an inductive process
can be used. The algorithm is depicted in Algorithm 2 and
detailed explanations can be found in [17].

Since searching for a symbol as a child of a node in
T can be accomplished in O(1) using a Hash table (e.g.,

Algorithm 2 Establish a trie for the dictionary from text

Input: a sequence of words (wN
1 w2 . . . wN), each word is

represented as a string
Output: a trie T

1: Initialize: Create a root node of T as an object of
DictNode;

2: for k = 1 to N do
3: Let p_dict point to the root of T ;
4: for i = 1 to the length of wk do
5: if *p_dict has no child or wk[i] is not in the

children set of *p_dict then
6: Create a new node as an object of DictNode

with c ← wk[i], count ← 1 and is_a_word ←
False;

7: Insert the new node as a child of *p_dict;
8: Move p_dict to the new node;
9: if i == the length of wk then

10: p_dict->is_a_word ← True;
11: else
12: Find j, s.t. wk[i] ==p_dict->child[j]->c;
13: p_dict->count++;
14: p_dict ← p_dict->child[j];

unordered_map STL container in C++), the time complex-
ity of establishing the trie would be O(NlengthNword), where
Nlength is the average length of a word and Nword is the number
of words extracted from some resource.
B. Tree representation of Huffman codes

The Huffman codes for source coding are for 1-grams,
namely characters, or more specifically, letters and space mark.
In principle, we can also build a Huffman code for n-grams.
The Huffman codes are represented as a binary tree. Each node
in the tree is instantiated as an object of a class HuffNode
whose members are shown in Table II. In a typical Huffman
tree realization, a node m consists of three members: the
probability p of the associated symbol and two pointers to their
left and right children (leftChild and rightChild). In
addition, we implement a fourth data member symSet, that
is, a set of symbols that are descendants of m. This extra data
member helps in simplifying the calculation of Eq. (3) in the
following manner. Note that in Eq. (3), P (lk1r), the probability
of a partial word is required. Assume lk1 is a path that ends in
a node nk in the trie-represented dictionary T and r is a path
that ends in a node nr in the Huffman tree H. Then P (lk1r)
can be calculated by summing up the counts (or probability)
of the subset of children of nk ∈ T , such that the symbols
associated with this subset are all descendants of nr ∈ H.
By associating all descendants of nr as a data member to the
node itself, the complexity of calculating P (lk1r) is linear in
the number of descendants of nr, which is typically a small
number and decreases exponentially in the depth of nr.

C. Calculation of P (ui
1) with T and H

Next, we will present an algorithm to calculate P (ui
1)

progressively according to Eq. (3). In each of T and H,

two pointers, denoted by p_dict and p_huff, are used
respectively to locate the current decoding stages i ∈ [n]. They
are initiated to point to the root of T and H, respectively. A
simple description of the algorithm is as follows. Let ui−1

1 be
represented as (wj−1

1 lk1r) and suppose each term in Eq. (3) is
known up to index i−1. Suppose p_dict and p_huff point
to two nodes in T and H. To update P (ui

1), first, p_huff
moves to its left or right child according to ui. Let S denote
all descendant symbols of *p_huff. Replace P (lk1r) by the
summation of probabilities associated with a set of children,
denoted by C, of *p_dict such that ∀a ∈ C, the symbols
associated with a belongs to S; If *p_huff is a leaf, then
p_dict moves to its child according to the symbol *p_huff
associates and p_huff is reset to point to the root of H. If
the symbol that *p_huff associates with does not exist in
the children of *p_dict, that means P (ui

1) should be set
to 0 and this path has a decoding error and thus be pruned.
If furthermore *p_dict is an end node of a word in T ,
replace P (lk1r) by P (wj) and p_dict is reset to point to the
root of T . Let the multiplication of probabilities in Eq. (3) be
denoted by Pwd, i.e., Pwd =

∏j−1
m=1 P (wm), where Pwd can be

updated recursively. A detailed description of this algorithm is
presented in Algorithm 3. Functions in Line 1 and Line 2 are
literally described above and details on complexity analysis
are provided in [17].

Algorithm 3 Update P (ui
1)

Input: ui, T , H, p_dict, p_huff, Pwd

Output: p_dict, p_huff, P (ui
1), Pwd

1: S ←TraceHuffmanTree(H,p_huff,ui);
2: C ←TraceDict(T ,p_dict,S);
3: P (lk1r)←

∑

w∈C
P (w);

4: P (ui
1)← Pwd · P (lk1r);

5: if p_huff points to a leaf in H then
6: Move p_dict to its child according to p_huff ;
7: Move p_huff to the root of H;
8: if p_dict points to a leaf in T then
9: P (wj)← P (lk1r);

10: Pwd ← Pwd · P (wj);

Theorem 8. The overall decoding complexity of JSCD in
Algorithm 1 and 3 is O(Ln(log n)).

D. List-size adaptive JSCD

To improve the efficiency of JSCD, we implement the list-
size adaptive SCL decoders as in [14]. A few CRC bits are
added for error detection. The adaptive SCL decoders start
with L = 1 and computes an estimate un

1 . If un
1 satisfies the

CRCs, then un
1 are output as the decoded bits, otherwise, the

list size doubles and the SCL JSCD is repeated. This process
continues until un

1 satisfies the CRCs for some Lsuccess or the
list size reaches a threshold Lmax.

VI. NUMERICAL RESULTS

In this section, we present some numerical results that show
the superiority of JSCD over the stand-alone SCL decoder.

A. Dictionary

The dictionary is built from about 10 million extracted
words in Wikipedia pages. According to a word frequecy
analysis in [18], the top 3000 most frequent words take 81%
of the probability. In the dictionary tree implemented in this
paper, there are Ns = 180133 nodes of type DictNode.

B. Polar codes and channel parameters

In our simulation, the length of polar codes is fixed to
n = 8192 and the code rate is 0.923. Two typical B-DMCs
are assumed, namely, AWGN channels and binary symmetric
channels (BSCs). The polar code used for AWGN channels is
constructed by density evolution in [19] at Eb

N0
= 4 dB. The

polar code used for BSCs is similarly constructed for a BSC
with cross-over probability 0.002, which is the same as the
channel parameter for LDPC designs in [10].

C. Results

Fig. 1 shows a comparison of different decoders for AWGN
channels. It can be seen that at block error rate below 10−3,
more than 0.6 dB gain over stand-alone CRC-aided SCL
decoders with L = 1024 can be realized by the list-size
adaptive SCL JSCD decoders. It is observed in our simulation
that L = 1024 would be large enough such that further
increase of the list size will not contribute much to the
performance. The decoding complexity of the list-size adaptive
SCL JSCD is much lower than that of SCL JSCD with fixed
list size. Table III shows that the average list size Lsuccess

decreases dramatically with the increase of SNRs. We see that
at Eb

N0
= 4 dB, Lsuccess = 2.24 for all Lmax = 128 and 1024.

Fig. 5 shows a comparison of 4 decoders for BSCs. The
results consistently show the superiority of JSCD over CRC-
aided SCL decoding. Fig. 6 shows a comparison of joint
decoding using LDPC codes [10] and our schemes. The polar
code has length n = 4096 and rate 0.936, which is smaller
in length and the same in rate as in [10]. We should note
that dictionaries for two schemes are built separately. The
dictionary in [10] is incomplete, i.e., not all words in sources
are in the dictionary, while our dictionary is complete. Thus
the comparison is not entirely fair.

TABLE III: Average list size of JSCD

Eb/N0 (dB) 3 3.25 3.5 3.75 4
Lmax = 32 30.89 25.94 13.68 5.46 2.22
Lmax = 128 113.09 59.27 21.84 5.66 2.24
Lmax = 1024 547.66 177.57 34.12 6.08 2.24

VII. CONCLUSION

We exploit the redundancy in the language-based source to
help polar decoding. We propose a joint list decoding scheme
of polar codes taking into account the source information
using a dictionary. The decoding complexity is the same as
list decoding of stand-alone polar codes. Simulation results
show that our scheme significantly outperforms list decoding
of CRC-aided polar codes.

Crossover probability of BSC×10-3

2 4 6 8 10 12 14

B
lo

ck
 e

rr
or

 r
at

e

10-4

10-3

10-2

10-1

100

polar SC
polar SCL, L = 8
polar CRC-aided SCL, L = 8
JSCD with polar, L = 8

Fig. 5: Block error rate of dif-
ferent decoding schemes over
BSCs

Crossover probability of BSC×10-3

2 4 6 8 10 12 14

B
lo

ck
 e

rr
or

 r
at

e

10-4

10-3

10-2

10-1

100

JSCD with LDPC
JSCD with polar, L = 32

Fig. 6: Comparison of JSCD
with LDPC codes [10] over
BSCs

REFERENCES

[1] C. E. Shannon, “A mathematical theory of communication,” Bell System
Technical Journal, vol. 27, pp. 379–423, 1948.

[2] J. Hagenauer, “Source-controlled channel decoding,” IEEE Trans. Com-
mun., vol. 43, no. 9, pp. 2449–2457, 1995.

[3] R. Bauer and J. Hagenauer, “On variable length codes for iterative
source/channel decoding,” in Proc. 2001 Data Compress. Conf., 2001,
pp. 273–282.

[4] L. Guivarch, J.-C. Carlach, and P. Siohan, “Joint source-channel soft
decoding of Huffman codes with Turbo-codes,” in Proc. DCC 2000, pp.
83–92.

[5] M. Jeanne, J.-C. Carlach, and P. Siohan, “Joint source-channel decoding
of variable-length codes for convolutional codes and Turbo codes,” IEEE
Trans. Commun., vol. 53, no. 1, pp. 10–15, 2005.

[6] Z. Peng, Y.-F. Huang, and D. J. Costello Jr, “Turbo codes for image
transmission-a joint channel and source decoding approach,” IEEE J.
Sel. Areas Commun., vol. 18, no. 6, pp. 868–879, 2000.

[7] A. N. Kim, S. Sesia, T. Ramstad, and G. Caire, “Combined error
protection and compression using Turbo codes for error resilient image
transmission,” in Proc. Int. Conf. Image Process. (ICIP), vol. 3, 2005,
pp. III–912–15.

[8] C. Poulliat, D. Declercq, C. Lamy-Bergot, and I. Fijalkow, “Analysis
and optimization of irregular LDPC codes for joint source-channel
decoding,” IEEE Commun. Lett., vol. 9, no. 12, pp. 1064–1066, 2005.

[9] L. Pu, Z. Wu, A. Bilgin, M. W. Marcellin, and B. Vasic, “LDPC-based
iterative joint source-channel decoding for JPEG2000,” IEEE Trans.
Image Process., vol. 16, no. 2, pp. 577–581, 2007.

[10] A. Jiang, Y. Li, and J. Bruck, “Enhanced error correction via language
processing,” in Proc. Non-Volatile Memories Workshop (NMVW), 2015.

[11] E. Arıkan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,” IEEE
Trans. Inf. Theory, vol. 55, no. 7, pp. 3051–3073, 2009.

[12] A. Eslami and H. Pishro-Nik, “On finite-length performance of polar
codes: stopping sets, error floor, and concatenated design,” IEEE Trans.
Commun., vol. 61, no. 3, pp. 919–929, 2013.

[13] I. Tal and A. Vardy, “List decoding of polar codes,” in Proc. IEEE ISIT,
2011, pp. 1–5.

[14] B. Li, H. Shen, and D. Tse, “An adaptive successive cancellation list
decoder for polar codes with cyclic redundancy check,” IEEE Commun.
Lett., vol. 16, no. 12, pp. 2044–2047, 2012.

[15] P. F. Brown, P. V. Desouza, R. L. Mercer, V. J. D. Pietra, and J. C.
Lai, “Class-based n-gram models of natural language,” Computational
linguistics, vol. 18, no. 4, pp. 467–479, 1992.

[16] E. Fredkin, “Trie memory,” Communications of the ACM, vol. 3, no. 9,
pp. 490–499, 1960.

[17] Y. Wang, M. Qin, K. R. Narayanan, A. Jiang, and Z. Bandic, “Joint
source-channel decoding of polar codes for language-based source,”
arXiv:1601.06184.

[18] “Word frequency data,” http://www.wordfrequency.info/free.asp.
[19] R. Mori and T. Tanaka, “Performance of polar codes with the construc-

tion using density evolution,” IEEE Commun. Lett., vol. 13, no. 7, pp.
519–521, 2009.

