
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 61, NO. 8, AUGUST 2015 4209

Rank-Modulation Rewrite Coding
for Flash Memories

Eyal En Gad, Student Member, IEEE, Eitan Yaakobi, Member, IEEE,
Anxiao (Andrew) Jiang, Senior Member, IEEE, and Jehoshua Bruck, Fellow, IEEE

Abstract— The current flash memory technology focuses on
the cost minimization of its static storage capacity. However,
the resulting approach supports a relatively small number of
program-erase cycles. This technology is effective for consumer
devices (e.g., smartphones and cameras) where the number of
program-erase cycles is small. However, it is not economical for
enterprise storage systems that require a large number of lifetime
writes. The proposed approach in this paper for alleviating
this problem consists of the efficient integration of two key
ideas: 1) improving reliability and endurance by representing
the information using relative values via the rank modulation
scheme and 2) increasing the overall (lifetime) capacity of the
flash device via rewriting codes, namely, performing multiple
writes per cell before erasure. This paper presents a new coding
scheme that combines rank-modulation with rewriting. The key
benefits of the new scheme include: 1) the ability to store close to
2 bit per cell on each write with minimal impact on the lifetime of
the memory and 2) efficient encoding and decoding algorithms
that make use of capacity-achieving write-once-memory codes
that were proposed recently.

Index Terms— Rank modulation, permutations of multisets,
flash memories, WOM codes, side-information coding.

I. INTRODUCTION

RANK modulation is a data-representation scheme which
was recently proposed for non-volatile storage devices

such flash memories [18]. Flash memories are composed of
cells which store electric charge, where the amount of charge
is quantized to represent information. Flash memory cells
are quantized typically into 2, 4 or 8 disecrate levels, and
represent, respectively, 1, 2 or 3 information bits.

In the proposed rank-modulation scheme, a set of n memory
cells represents information according to the ranking of the

Manuscript received December 3, 2013; revised December 17, 2014;
accepted April 9, 2015. Date of publication June 8, 2015; date of current
version July 10, 2015. This work was supported in part by NSF under
Grant ECCS-0801795, Grant CCF-1217944, and Grant CCF-1218005, in
part by NSF CAREER under Award CCF-0747415, in part by an U.S.-
Israel Bi-National Science Foundation under Grant 2010075, and in part by
a Grant from Intellectual Ventures. This paper was presented at the 2011
IEEE International Symposium on Information Theory [8], at the 2012 IEEE
International Symposium on Information Theory [9], and at the 2013
IEEE International Symposium on Information Theory [7].

E. En Gad is with the Department of Electrical Engineering, University of
Southern California, Los Angeles, CA 90089 USA (e-mail: engad@usc.edu).

E. Yaakobi is with the Department of Computer Science, Technion–Israel
Institute of Technology, Haifa 32000, Israel (e-mail: yaakobi@technion.ac.il).

A. Jiang is with the Department of Computer Science and Engineering
and the Department of Electrical and Computer Engineering, Texas A&M
University, College Station, TX 77843 USA (e-mail: ajiang@cse.tamu.edu).

J. Bruck is with the Department of Electrical Engineering, California Insti-
tute of Technology, Pasadena, CA 91125 USA (e-mail: bruck@caltech.edu).

Communicated by A. Ashikhmin, Associate Editor for Coding Techniques.
Digital Object Identifier 10.1109/TIT.2015.2442579

cell levels. For example, we can use a set of 3 cells, labeled
from 1 to 3, such that each cell has a distinct charge level.
We then rank the cells according to their charge levels,
and obtain one of 3! = 6 possible permutations over the
set {1, 2, 3}. A possible ranking would be, for example, cell 3
with the highest level, then cell 1 and then cell 2 with the
lowest level. Each ranking can represent a distinct information
message, and so the 3 cells in this example store together
log2 6 bits. It is suggested in [18] that rank modulation could
significantly improve the reliability and writing speed of flash
memories.

An important concept in rank modulation is that of
rewriting. Rewriting refers to the writing of information into
the flash cells by solely increasing the cell levels (without
decreasing the level of any cell). It is motivated by the fact
that decreasing the cell levels is an expensive operation in flash
memory, called “block erasure”. When a user wishes to update
the data stored in the memory, she increases the cells’ charge
levels such that they form a ranking that corresponds to the
desired updated data message. The cells, however, have an
upper limit on their possible charge levels. Therefore, after
a certain number of updates, the user must resort to the
expensive erasure operation in order to continue updating the
memory. The concept of rewriting codes was proposed in order
to control the trade-off between the number of data updates
and the amount of data stored in each update. A similar
notion of rewriting codes is also studied in conventional
data-representation scheme (i.e. vectors of independent
symbols as opposed to rankings), with models such as
“write-once memory” [24], [29], “floating codes” and “buffer
codes” (both in [16]).

Rank-modulation rewriting codes were proposed
in [18, Sec. IV], with respect to a rewriting method
called “push-to-the-top”. In this rewriting method, the charge
level of a single cell is pushed up to be higher than that of any
other cell in the ranking. In other words, a push-to-the-top
operation changes the rank of a single cell to be the highest.
A rewriting operation involves a sequence of push-to-the-top
operations that transforms the cell ranking to represent a
desired updated data. Note that the number of performed
push-to-the-top operations determines when an expensive
block erasure is required. However, the number of rewriting
operations itself does not affect the triggering of the block
erasure. Therefore, rewriting operations that require fewer
push-to-the-top operations can be seen as cheaper, and are
therefore more desirable. Nevertheless, limiting the memory

0018-9448 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

4210 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 61, NO. 8, AUGUST 2015

to cheap rewriting operations would reduce the number of
potential rankings to write, and therefore would reduce the
amount of information that could be stored. We refer to the
number of push-to-the-top operations in a given rewriting
operation as the cost of rewriting. The study in [18, Sec. IV]
considers rewriting codes with a constrained rewriting cost.

The first contribution of this paper is a modification
of the framework of rank-modulation rewriting codes, in
two ways. First, we modify the rank-modulation scheme to
allow rankings with repetitions, meaning that multiple cells
can share the same rank, where the number of cells in each
rank is predetermined. And second, we extend the rewriting
operation, to allow pushing a cell’s level above that of any
desired cell, instead of only above the level of the top cell.
We justify both modifications and devise and appropriate
notion of rewriting cost. Specifically, we define the cost to
be the difference between the charge level of the highest cell,
after the writing operation, to the charge level of the highest
cell before the rewriting operation. We suggest and explain
why the new cost function compares fairly to that of the push-
to-the-top model. We then go on to study rewriting codes in
the modified framework.

We measure the storage rate of rewriting codes by the ratio
between the number of stored information bits in each write, to
the number of cells in the ranking. We study the case in which
the number of cells is large (and asymptotically growing),
while the cost constraint is a constant, as this case appears
to be fairly relevant for practical applications. In the model of
push-to-the-top rewriting which was studied in [18, Sec. IV],
the storage rate vanishes when the number of cells grows.
Our first interesting result is that the asymptotic storage
rate in our modified framework converges into a positive
value (that depends on the cost constraint). Specifically, using
rankings without repetitions, i.e. the original rank modulation
scheme with the modified rewriting operation, and the minimal
cost constraint of a single unit, the best storage rate converges
to a value of 1 bit per cell. Moreover, when ranking with
repetitions is allowed, the best storage rate with a minimal
cost constraint converges to a value of 2 bits per cell.

Motivated by these positive results, the rest of the paper
is dedicated to the explicit construction of rank-modulation
rewriting codes, together with computationally efficient
encoding and decoding algorithms. The main ingredients in
the code construction are recently-devised constructions of
“write-once memory” (WOM) codes. We focus on ranking
with repetitions, where both the number of cells in each
rank and the number of ranks are growing. In this case, we
show how to make use of capacity-achieving WOM codes to
construct rank-modulation rewriting codes with an asymptot-
ically optimal rate for any given cost constraint.

The current paper does not consider the issue of
error correction. However, error-correcting codes for the
rank-modulation scheme were studied extensively in
recent years, as in [3], [11], [19], [26]. In addition, several
variations of rank modulation were proposed and studied
in [12] and [13].

The rest of the paper is organized as follows: In Section II
we define the rank-modultion scheme and explain the proposed

modifications to the scheme. In Section III we define the
rank-modulation rewriting codes and study their information
limits. Section IV describes the higher level of the construction
we propose in this paper, and Sections V and VI describe
two alternative implementations of the building blocks of
the construction. Finally, concluding remarks are provided
in Section VII.

II. MODIFICATIONS TO THE RANK-MODULATION SCHEME

In this section we motivate and define the rank-modulation
scheme, together with the proposed modification to the scheme
and to the rewriting process.

A. Motivation for Rank Modulation

The rank-modulation scheme is motivated by the physical
and architectural properties of flash memories (and similar
non-volatile memories). First, the charge injection in flash
memories is a noisy process, in which an overshooting may
occur. When the cells represent data by their absolute value,
such overshooting results in a different stored data than the
desired one. And since the cell level cannot be decreased, the
charge injection is typically performed iteratively and therefore
slowly, to avoid such errors. However, in rank modulation
such overshooting errors can be corrected without decreasing
the cell levels, by pushing other cells to form the desired
ranking. An additional issue in flash memories is the leakage
of charge from the cells over time, which introduces additional
errors. In rank modulation, such leakage is significantly less
problematic, since it behaves similarly in spatially close cells,
and thus is not likely to change the cells’ ranking. A hardware
implementation of the scheme was recently designed on flash
memories [20].

We note that the motivation above is valid also for the
case of ranking with repetitions, which was not considered in
previous literature with respect to the rank-modulation scheme.
We also note that the rank-modulation scheme in some sense
reduces the amount of information that can be stored, since it
limits the possible state that the cells can take. For example,
it is not allowed for all the cell levels to be the same. However,
this disadvantage might be worth taking for the benefits of rank
modulation, and this is the case in which we are interested in
this paper.

B. Representing Data by Rankings With Repetitions

In this subsection we extend the rank-modulation scheme
to allow rankings with repetitions, and formally define the
extended demodulation process. We refer to rankings with rep-
etitions as permutations of multisets, where rankings without
repetitions are permutations of sets. Let M = {az1

1 , . . . , a
zq
q }

be a multiset of q distinct elements, where each element ai

appears zi times. The positive integer zi is called the multi-
plicity of the element ai , and the cardinality of the multiset
is n = ∑q

i=1 zi . For a positive integer n, the set {1, 2, . . . , n}
is labeled by [n]. We think of a permutation σ of the multiset
M as a partition of the set [n] into q disjoint subsets,
σ = (σ (1), σ (2), . . . , σ (q)), such that |σ(i)| = zi for each

EN GAD et al.: RANK-MODULATION REWRITE CODING FOR FLASH MEMORIES 4211

i ∈ [q], and ∪i∈[q]σ(i) = [n]. We also define the inverse
permutation σ−1 such that for each i ∈ [q] and j ∈ [n],
σ−1(j) = i if j is a member of the subset σ(i). We label σ−1

as the length-n vector σ−1 = (σ−1(1), σ−1(2), . . . , σ−1(n)).
For example, if M = {1, 1, 2, 2} and σ = ({1, 3}, {2, 4}),
then σ−1 = (1, 2, 1, 2). We refer to both σ and σ−1 as a
permutation, since they represent the same object.

Let SM be the set of all permutations of the multiset M .
By abuse of notation, we view SM also as the set of the inverse
permutations of the multiset M . For a given cardinality n and
number of elements q , it is easy to show that the number
of multiset permutations is maximized if the multiplicities
of all of the elements are equal. Therefore, to simplify the
presentation, we take most of the multisets in this paper to
be of the form M = {1z, 2z, . . . , qz}, and label the set SM

by Sq,z .
Consider a set of n memory cells, and denote

x = (x1, x2, . . . , xn) ∈ R
n as the cell-state vector. The

values of the cells represent voltage levels, but we do not pay
attention to the units of these values (i.e. Volt). We represent
information on the cells according to the mutiset permutation
that their values induce. This permutation is derived by a
demodulation process.

Demodulation: Given positive integers q and z, a cell-state
vector x of length n = qz is demodulated into a permutation
π−1

x = (π−1
x (1), π−1

x (2), . . . , π−1
x (n)). Note that while π−1

x
is a function of q, z and x, q and z are not specified in
the notation since they will be clear from the context. The
demodulation is performed as follows: First, let k1, . . . , kn be
an order of the cells such that xk1 ≤ xk2 ≤ · · · ≤ xkn . Then,
for each j ∈ [n], assign π−1

x (k j) = � j/z�.
Example 1: Let q = 3, z = 2 and so n = qz = 6.

Assume that we wish to demodulate the cell-state vector
x = (1, 1.5, 0.3, 0.5, 2, 0.3). We first order the cells according
to their values: (k1, k2, . . . , k6) = (3, 6, 4, 1, 2, 5), since the
third and sixth cells have the smallest value, and so on. Then
we assign

π−1
x (k1 = 3) = �1/2� = 1,

π−1
x (k2 = 6) = �2/2� = 1,

π−1
x (k3 = 4) = �3/2� = 2,

and so on, and get the permutation π−1
x = (2, 3, 1, 2, 3, 1).

Note that π−1
x is in S3,2.

Note that πx is not unique if for some i ∈ [q], xkzi = xkzi+1 .
In this case, we define πx to be illegal and denote
πx = F. We label QM as the set of all cell-state vectors
that demodulate into a valid permutation of M . That is,
QM = {x ∈ R

n|πx �= F}. So for all x ∈ QM and i ∈ [q],
we have xkzi < xkzi+1 . For j ∈ [n], the value π−1(j) is called
the rank of cell j in the permutation π .

C. Rewriting in Rank Modulation

In this subsection we extend the rewriting operation in the
rank-modulation scheme. Previous work considered a writing
operation called “push-to-the-top”, in which a certain cell
is pushed to be the highest in the ranking [18]. Here we
suggest to allow to push a cell to be higher than the level

of any specific other cell. We note that this operation is still
resilient to overshooting errors, and therefore benefits from the
advantage of fast writing, as the push-to-the-top operations.

We model the flash memory such that when a user wishes
to store a message on the memory, the cell levels can only
increase. When the cells reach their maximal levels, an
expensive erasure operation is required. Therefore, in order
to maximize the number of writes between erasures, it is
desirable to raise the cell levels as little as possible on
each write. For a cell-state vector x ∈ QM , denote by �x(i)
the highest level among the cells with rank i in πx . That is,

�x(i) = max
j∈πx(i)

{x j }.
Let s be the cell-state vector of the memory before the writing
process takes place, and let x be the cell-state vector after
the write. In order to reduce the possibility of error in the
demodulation process, a certain gap must be placed between
the levels of cells with different ranks. Since the cell levels’s
units are somewhat arbitrary, we set this gap to be the value 1,
for convenience. The following modulation method minimizes
the increase in the cell levels.

Modulation: Writing a permutation π on a memory with
state s. The output is the new memory state, denoted by x.

1) For each j ∈ π(1), assign x j ⇐ s j .
2) For i = 2, 3, . . . , q , for each j ∈ π(i), assign

x j ⇐ max{s j , �x(i − 1) + 1}.
Example 2: Let q = 3, z = 2 and so n = qz = 6.

Let the state be s = (2.7, 4, 1.5, 2.5, 3.8, 0.5) and the target
permutation be π−1 = (1, 1, 2, 2, 3, 3). In step 1 of the
modulation process, we notice that π(1) = {1, 2} and so we set

x1 ⇐ s1 = 2.7

and

x2 ⇐ s2 = 4.

In step 2 we have π(2) = {3, 4} and �x(1) = max {x1, x2} =
max {2.7, 4} = 4, so we set

x3 ⇐ max {s3, �x(1) + 1} = max {1.5, 5} = 5

and

x4 ⇐ max {s4, �x(1) + 1} = max {2.5, 5} = 5.

And in the last step we have π(3) = {5, 6} and �x(2) = 5,
so we set

x5 ⇐ max {3.8, 6} = 6

and

x6 ⇐ max {0.5, 6} = 6.

In summary, we get x = (2.7, 4, 5, 5, 6, 6), which demodulates
into π−1

x = (1, 1, 2, 2, 3, 3) = π−1, as required.
Since the cell levels cannot decrease, we must have x j ≥ s j

for each j ∈ [n]. In addition, for each j1 and j2 in [n]
for which π−1(j1) > π−1(j2), we must have x j1 > x j2 .
Therefore, the proposed modulation process minimizes the
increase in the levels of all the cells.

4212 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 61, NO. 8, AUGUST 2015

III. DEFINITION AND LIMITS OF RANK-MODULATION

REWRITING CODES

Remember that the level x j of each cell is upper bounded
by a certain value. Therefore, given a state s, certain
permutations π might require a block erasure before writing,
while others might not. In addition, some permutations
might get the memory state closer to a state in which an
erasure is required than other permutations. In order to
maximize the number of writes between block erasures,
we add redundancy by letting multiple permutations represent
the same information message. This way, when a user
wishes to store a certain message, she could choose one
of the permutations that represent the required message
such that the chosen permutation will increase the cell
levels in the least amount. Such a method can increase the
longevity of the memory in the expense of the amount of
information stored on each write. The mapping between the
permutations and the messages they represent is called a
rewriting code.

To analyze and design rewriting codes, we focus on the
difference between �x(q) and �s(q). Using the modulation
process we defined above, the vector x is a function of
s and π , and therefore the difference �x(q) − �s(q) is
also a function of s and π . We label this difference by
α(s → π) = �x(q) − �s(q) and call it the rewriting cost,
or simply the cost. We motivate this choice by the following
example. Assume that the difference between the maximum
level of the cells and �s(q) is 10 levels. Then only the
permutations π which satisfy α(s → π) ≤ 10 can be written
to the memory without erasure. Alternatively, if we use a
rewriting code that guarantees that for any state s, any message
can be stored with, say, cost no greater than 1, then we can
guarantee to write 10 more times to the memory before an
erasure will be required. Such rewriting codes are the focus
of this paper.

The cost α(s → π) is defined according to the vectors s
and x. However, it will be helpful for the study of rewriting
codes to have some understanding of the cost in terms of the
demodulation of the state s and the permutation π . To establish
such connection, we assume that the state s is a result of a
previous modulation process. This assumption is reasonable,
since we are interested in the scenario of multiple successive
rewriting operations. In this case, for each i ∈ [q − 1],
�s(i + 1) − �s(i) ≥ 1, by the modulation process. Let σs
be the permutation obtained from the demodulation of
the state s. We present the connection in the following
proposition.

Proposition 3: Let M be a multiset of cardinality n.
If �s(i + 1) − �s(i) ≥ 1 for all i ∈ [q − 1], and π is in SM ,
then

α(s → π) ≤ max
j∈[n]{σ

−1
s (j) − π−1(j)} (1)

with equality if �q(s) − �1(s) = q − 1.
The proof of Proposition 3 is brought in Appendix A.

We would take a worst-case approach, and opt to design
codes that guarantee that on each rewriting, the value
max j∈[n]{σ−1

s (j) − π−1(j)} is bounded. For permutations

σ and π in Sq,z , the rewriting cost α(σ → π) is defined as

α(σ → π) = max
j∈[n]{σ

−1(j) − π−1(j)}. (2)

This expression is an asymmetric version of the Chebyshev
distance (also known as the L∞ distance). For simplicity,
we assume that the channel is noiseless and don’t consider
the error-correction capability of the codes. However, such
consideration would be essential for practical applications.

A. Definition of Rank-Modulation Rewriting Codes

A rank-modulation rewriting code is a partition of the set of
multiset permutations, such that each part represents a different
information message, and each message can be written on
each state with a cost that is bounded by some parameter r .
A formal definition follows.

Definition 4 (Rank-Modulation Rewriting Codes): Let
q, z, r and K R be positive integers, and let C be a subset
of Sq,z called the codebook. Then a surjective function
DR : C → [K R] is a (q, z, K R, r) rank-modulation rewriting
code (RM rewriting code) if for each message m ∈ [K R] and
state σ ∈ C, there exists a permutation π in D−1

R (m) ⊆ C
such that α(σ → π) ≤ r .

D−1
R (m) is the set of permutations that represent the

message m. It could also be insightful to study rewriting
codes according to an average cost constraint, assuming some
distribution on the source and/or the state. However, we use the
wort-case constraint since it is easier to analyze. The amount
of information stored with a (q, z, K R, r) RM rewriting
code is log K R bits (all of the logarithms in this paper are
binary). Since it is possible to store up to log |Sq,z| bits with
permutations of a multiset {1z, . . . , qz}, it could be natural to
define the code rate as:

R′ = log K R

log |Sq,z| .

However, this definition doesn’t give much engineering insight
into the amount of information stored in a set of memory cells.
Therefore, we define the rate of the code as the amount of
information stored per memory cell:

R = log K R

qz
.

An encoding function ER for a code DR maps each pair
of message m and state σ into a permutation π such that
DR(π) = m and α(σ → π) ≤ r . By abuse of notation,
let the symbols ER and DR represent both the functions
and the algorithms that compute those functions. If DR is a
RM rewriting code and ER is its associated encoding function,
we call the pair (ER, DR) a rank-modulation rewrite coding
scheme.

Rank-modulation rewriting codes were proposed by
Jiang et al. in [18], in a more restrictive model than the
one we defined above. The model in [18] is more restrictive
in two senses. First, the mentioned model used the rank-
modulation scheme with permutations of sets only, while here
we also consider permutations of multisets. And second, the
rewriting operation in the mentioned model was composed

EN GAD et al.: RANK-MODULATION REWRITE CODING FOR FLASH MEMORIES 4213

only of a cell programming operation called “push to the top”,
while here we allow a more opportunistic programming
approach. A push-to-the-top operation raises the charge level
of a single cell above the rest of the cells in the set.
As described above, the model of this paper allows to raise a
cell level above a subset of the rest of the cells. The rate of
RM rewriting codes with push-to-the-top operations and cost
of r = 1 tends to zero with the increase in the block length n.
On the contrary, we will show that the rate of RM rewriting
codes with cost r = 1 and the model of this paper tends to
1 bit per cell with permutations of sets, and 2 bits per cell
with permutations of multisets.

B. Limits of Rank-Modulation Rewriting Codes

For the purpose of studying the limits of RM rewriting
codes, we define the ball of radius r around a permutation σ
in Sq,z by

Bq,z,r (σ) = {π ∈ Sq,z|α(σ → π) ≤ r},
and derive its size in the following lemma.

Lemma 5: For positive integers q and z, if σ is in Sq,z then

|Bq,z,r (σ)| =
(

(r + 1)z

z

)q−r r∏

i=1

(
i z

z

)

.

Proof: Let π ∈ Bq,z,r (σ). By the definition of Bq,z,r(σ),
for any j ∈ π(1), σ−1(j) − 1 ≤ r , and thus σ−1(j) ≤ r + 1.
Therefore, there are

((r+1)z
z

)
possibilities for the set π(1) of

cardinality z. Similarly, for any i ∈ π(2), σ(i)−1 ≤ r + 2.
So for each fixed set π(1), there are

((r+1)z
z

)
possibilities for

π(2), and in total
((r+1)z

z

)2
possibilities for the pair of sets

(π(1), π(2)). The same argument follows for all i ∈ [q − r],
so there are

((r+1)z
z

)q−r
possibilities for the sets (π(1), . . . ,

π(q − r)). The rest of the sets of π : π(q − r + 1),
π(q −r +2), . . . , π(q), can take any permutation of the multi-
set {(q − r + 1)z, (q − r + 2)z, . . . , qz}, giving the statement
of the lemma.

Note that the size of Bq,z,r(σ) is actually not a function
of σ . Therefore we denote it by |Bq,z,r |.

Proposition 6: Let DR be a (q, z, K R, r) RM rewriting
code. Then

K R ≤ |Bq,z,r |.

Proof: Fix a state σ ∈ C. By Definition 4 of RM rewriting
codes, for any message m ∈ [K R] there exists a permutation π
such that DR(π) = m and π is in Bq,z,r(σ). It follows that
Bq,z,r (σ) must contain K R different permutations, and so its
size must be at least K R .

Corollary 7: Let R(r) be the rate of an (q, z, K R, r)-RM
rewriting code. Then

R(r) < (r + 1)H

(
1

r + 1

)

,

where H (p) = −p log p − (1 − p) log(1 − p). In particular,
R(1) < 2.

Proof:

log |Bq,z,r | =
r∑

i=1

log

(
i z

z

)

+ (q − r) log

(
(r + 1)z

z

)

< r log

(
(r + 1)z

z

)

+ (q − r) log

(
(r + 1)z

z

)

= q log

(
(r + 1)z

z

)

< q · (r + 1)z H

(
1

r + 1

)

,

where the last inequality follows from Stirling’s formula.
So we have

R(r) = log K R

qz
≤ log |Bq,z,r |

qz
< (r + 1)H

(
1

r + 1

)

.

The case of r = 1 follows immediately.
We will later show that this bound is in fact tight, and

therefore we call it the capacity of RM rewriting codes and
denote it as

CR(r) = (r + 1)H

(
1

r + 1

)

.

Henceforth we omit the radius r from the capacity notation
and denote it by CR . To further motivate the use of multiset
permutations rather than set permutation, we can observe the
following corollary.

Corollary 8: Let R(r) be the rate of an (q, 1, K R, r)-RM
rewriting code. Then R(r) < log(r + 1), and in particular,
R(1) < 1.

Proof: Note first that |Bq,z,r | = (r + 1)q−rr !. So we have

log |Bq,z,r | = log r ! + (q − r) log(r + 1)

< r log(r + 1) + (q − r) log(r + 1)

= q log(r + 1).

Therefore,

R(r) ≤ log |Bq,z,r |
q

< log(r + 1),

and the case of r = 1 follows immediately.
In the case of r = 1, codes with multiset permutations could

approach a rate close to 2 bits per cell, while there are no codes
with set permutations and rate greater than 1 bit per cell. The
constructions we present in this paper are analyzed only for the
case of multiset permutations with a large value of z. We now
define two properties that we would like to have in a family of
RM rewrite coding schemes. First, we would like the rate of
the codes to approach the upper bound of Corollary 7. We call
this property capacity achieving.

Definition 9 (Capacity-Achieving Family of RM Rewriting
Codes): For a positive integer i , let the positive integers
qi , zi and Ki be some functions of i , and let ni = qi zi and
Ri = (1/ni) log Ki . Then an infinite family of (qi , zi , Ki , r)
RM rewriting codes is called capacity achieving if

lim
i→∞ Ri = CR .

The second desired property is computational efficiency.
We say that a family of RM rewrite coding schemes

4214 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 61, NO. 8, AUGUST 2015

(ER,i , DR,i) is efficient if the algorithms ER,i and DR,i run
in polynomial time in ni = qi zi . The main result of this paper
is a construction of an efficient capacity-achieving family of
RM rewrite coding schemes.

IV. HIGH-LEVEL CONSTRUCTION

The proposed construction is composed of two layers. The
higher layer of the construction is described in this section,
and two alternative implementations of the lower layer are
described in the following two sections. The high-level
construction involves several concepts, which we introduce
one by one. The first concept is to divide the message into q−r
parts, and encode and decode each part separately. The codes
that are used for the different message parts are called ”ingre-
dient codes”. We demonstrate this concept in Subsection IV-A
by an example in which q = 3, z = 2 and r = 1, and the
RM code is divided into q − r = 2 ingredient codes.

The second concept involves the implementation of
the ingredient codes when the parameter z is greater
than 2. We show that in this case the construction problem
reduces to the construction of the so-called “constant-weight
WOM codes”. We demonstrate this in Subsection IV-B
with a construction for general values of z, where we
show that capacity-achieving constant-weight WOM codes
lead to capacity achieving RM rewriting codes. Next, in
Subsections IV-C and IV-D, we generalize the parameters q
and r , where these generalizations are conceptually simpler.

Once the construction is general for q , z and r , we modify
it slightly in Subsection IV-E to accommodate a weaker
notion of WOM codes, which are easier to construct. The
next two sections present two implementations of capacity-
achieving weak WOM codes, that can be used to construct
capacity-achieving RM rewriting codes.

A few additional definitions are needed for the description
of the construction. First, let 2[n] denote the set of all subsets
of [n]. Next, let the function θn : 2[n] → {0, 1}n be defined
such that for a subset S ⊆ [n], θn(S) = (θn,1, θn,2, . . . , θn,n)
is its characteristic vector, where

θn, j =
{

0 if j /∈ S
1 if j ∈ S.

For a vector x of length n and a subset S ⊆ [n], we denote
by xS the vector of length |S| which is obtained by “throwing
away” all the positions of x outside of S. For positive integers
n1 ≤ n2, the set {n1, n1 + 1, . . . , n2} is labeled by [n1 : n2].
Finally, for a permutation σ ∈ Sq,z , we define the set Ui1,i2 (σ)
as the union of the sets {σ(i)}i∈[i1 :i2] if i1 ≤ i2. If i1 > i2,
we define Ui1,i2 (σ) to be the empty set.

A. A Construction for q = 3, z = 2 and r = 1
In this construction we introduce the concept of dividing

the code into multiple ingredient codes. The motivation for
this concept comes from a view of the encoding process as a
sequence of choices. Given a message m and a state permuta-
tion σ , the encoding process needs to find a permutation π that
represents m, such that the cost α(σ → π) is no greater then
the cost constraint r. The cost function α(σ → π) is defined
in Equation 2 as the maximal drop in rank among the cells,

when moving from σ to π . In other words, we look for the cell
that dropped the most amount of ranks from σ to π , and the
cost is the number of ranks that this cell has dropped. If cell j
is at rank 3 in σ and its rank is changed to 1 in π , it dropped
2 ranks. In our example, since q = 3, a drop of 2 ranks is
the biggest possible drop, and therefore, if at least one cell
dropped by 2 ranks, the rewriting cost would be 2.

In the setting of q = 3 ranks, z = 2 cells per rank, and
cost constraint of r = 1, to make sure that a the rewriting cost
would not exceed 1, it is enough to ensure that the 2 cells
of rank 3 in σ do not drop into rank 1 in π . So the cells that
take rank 1 in π must come from ranks 1 or 2 in σ . This
motivates us to look at the encoding process as a sequence
of 2 decisions. First, the encoder chooses two cells out of the
4 cells in ranks 1 and 2 in σ , to occupy rank 1 in π . Next,
after the π(1) (the set of cells with rank 1 in π) is selected, the
encoder completes the encoding process by choosing a way
to arrange the remaining 4 cells in ranks 2 and 3 of π . There
are

(4
2

) = 6 such arrangements, and they all satisfy the cost
constraint, since a drop from a rank no greater than 3 into a
rank no smaller than 2 cannot exceed a magnitude of 1 rank.
So the encoding process is split into two decisions, which
define it entirely.

The main concept in this subsection is to think of the
message as a pair m = (m1, m2), such that the first step
of the encoding process encodes m1, and the second step
encodes m2. The first message part, m1, is encoded by the
set π(1). To satisfy the cost constraint of r = 1, the set π(1)
must be chosen from the 4 cells in ranks 1 and 2 in σ .
These 4 cells are denoted by U1,2(σ). For each m1 and set
U1,2(σ), the encoder needs to find 2 cells from U1,2(σ) that
represent m1. Therefore, there must be multiple selections
of 2 cells that represent m1.

The encoding function for m1 is denoted by
EW (m1, U1,2(σ)), and the corresponding decoding function is
denoted by DW (π(1)). We denote by D−1

W (m1) the set of sub-
sets that DW maps into m1. We denote the number of possible
values that m1 can take by KW . To demonstrate the code DW

for m1, we show an example that contains KW = 5 messages.
Example 10: Consider the following code DW , defined by

the values of D−1
W :

D−1
W (1) =

{
{1, 2}, {3, 4}, {5, 6}

}

D−1
W (2) =

{
{1, 3}, {2, 6}, {4, 5}

}

D−1
W (3) =

{
{1, 4}, {2, 5}, {3, 6}

}

D−1
W (4) =

{
{1, 5}, {2, 3}, {4, 6}

}

D−1
W (5) =

{
{1, 6}, {2, 4}, {3, 5}

}
.

To understand the code, assume that m1 = 3 and
σ−1 = (1, 2, 1, 3, 2, 3), so that the cells of ranks 1 and 2
in σ are U1,2(σ) = {1, 2, 3, 5}. The encoder needs to find
a set in D−1

W (3), that is a subset of U1,2(σ) = {1, 2, 3, 5}.
In this case, the only such set is {2, 5}. So the encoder chooses
cells 2 and 5 to occupy rank 1 of π , meaning that the rank of
cells 2 and 5 in π is 1, or that π(1) = {2, 5}. To find the value

EN GAD et al.: RANK-MODULATION REWRITE CODING FOR FLASH MEMORIES 4215

of m1, the decoder calculates the function DW (π(1)) = 3. It is
not hard to see that for any values of m1 and U1,2(σ) (that
contains 4 cells), the encoder can find 2 cells from U1,2(σ)
that represent m1.

The code for m2 is simpler to design. The encoder and
decoder both know the identity of the 4 cells in ranks 2 and 3
of π , so each arrangement of these two ranks can correspond
to a different message part m2. We denote the number of
messages in the code for m2 by KM , and define the multiset
M = {2, 2, 3, 3}. We also denote the pair of sets (π(2), π(3))
by π[2:3]. Each arrangement of π[2:3] corresponds to a different
permutation of M , and encodes a different message part m2.
So we let

KM = |SM | =
(

4

2

)

= 6.

For simplicity, we encode m2 according to the lexicographic
order of the permutations of M . For example, m2 = 1 is
encoded by the permutation (2, 2, 3, 3), m2 = 2 is encoded
by (2, 3, 2, 3), and so on. If, for example, the cells in
ranks 2 and 3 of π are {1, 3, 4, 6}, and the message part is
m2 = 2, the encoder sets

π[2:3] = (π(2), π(3)) = ({1, 4}, {3, 6}).
The bijective mapping form [KM] to the permutations of M is
denoted by hM (m2), and the inverse mapping by h−1(π[2:3]).
The code hM is called an enumerative code.

The message parts m1 and m2 are encoded sequentially, but
can be decoded in parallel. The number of messages that the
RM rewriting code in this example can store is

K R = KW × KM = 5 × 6 = 30,

as each rank stores information independently.
Construction 11: Let KW = 5, q = 3, z = 2, r = 1, let n =

qz = 6 and let (EW , DW) be defined according to Example 10.
Define the multiset M = {2, 2, 3, 3} and let KM = |SM | = 6
and K R = KW · KM = 30. The codebook C is defined to be
the entire set S3,2. A (q = 3, z = 2, K R = 30, r = 1) RM
rewrite coding scheme {ER, DR} is constructed as follows:

The encoding algorithm ER receives a message
m = (m1, m2) ∈ [KW] × [KM] and a state permutation σ
∈ S3,2, and returns a permutation π in B3,2,1(σ) ∩
D−1

R (m) to store in the memory. It is constructed
as follows:
1: π(1) ⇐ EW (m1, U1,2(σ))
2: π[2:3] ⇐ hM (m2)

The decoding algorithm DR receives the stored permutation
π ∈ S3,2, and returns the stored message m = (m1, m2) ∈
[KW]×[KM]. It is constructed as follows:
1: m1 ⇐ DW (π(1))
2: m2 ⇐ h−1

M (π[2:3])
The rate of the code DR is

RR = (1/n) log2(K R) = (1/6) log(30) ≈ 0.81.

The rate can be increased up to 2 bits per cell while keeping
r = 1, by increasing z and q . We continue by increasing the
parameter z.

B. Generalizing the Parameter z
In this subsection we generalize the construction to arbitrary

values for the number of cells in each rank, z. The code for the
second message part, hM , generalizes naturally for any value
of z, by taking M to be the multiset M = {2z, 3z}. Since z now
can be large, it is important to choose the bijective functions
hM and h−1

M such that they could be computed efficiently.
Luckily, several such efficient schemes exist in the literature,
such as the scheme described in [22].

The code DW for the part m1, on the contrary, does not
generalize naturally, since DW in Example 10 does not have
a natural generalization. To obtain such a generalization, we
think of the characteristic vectors of the subsets of interest. The
characteristic vector of U1,2(σ) is denoted as s = θn(U1,2(σ))
(where n = qz), and is referred to as the state vector. The
vector x = θn(π(1)) is called the codeword. The constraint
π(1) ⊂ U1,2(σ) is then translated to the constraint x ≤ s,
which means that for each j ∈ [n] we must have x j ≤ s j .
We now observe that this coding problem is similar to a
concept known in the literature as Write-Once Memory codes,
or WOM codes (see [24], [29]). In fact, the codes needed here
are WOM codes for which the Hamming weight (number of
non-zero bits) of the codewords is constant. Therefore, we say
that DW needs to be a “constant-weight WOM code”. We use
the word ‘weight’ from now on to denote the Hamming weight
of a vector.

We define next the requirements of DW in a vector notation.
For a positive integer n and a real number w ∈ [0, 1], we let
Jw(n) ⊂ {0, 1}n be the set of all vectors of n bits whose
weight equals �wn�. We use the name “constant-weight strong
WOM code”, since we will need to use a weaker version of this
definition later. The weight of s in DW is 2n/3, and the weight
of x is n/3. However, we allow for more general weight in
the following definition, in preperation for the generalization
of the number of ranks, q .

Definition 12 (Constant-Weight Strong WOM Codes): Let
KW and n be positive integers and let ws be a real number
in [0, 1] and wx be a real number in [0, ws]. A surjective
function DW : Jwx (n) → [KW] is an (n, KW , ws , wx)
constant-weight strong WOM code if for each message
m ∈ [KW] and state vector s ∈ Jws (n), there exists a

codeword vector x ≤ s in the subset D−1
W (m) ⊆ Jwx (n). The

rate of a constant-weight strong WOM code is defined as
RW = (1/n) log KW .

The code DW in Example 10 is a (n = 6, KW = 5,
ws = 2/3, wx = 1/3) constant-weight strong WOM code. It is
useful to know the tightest upper bound on the rate of constant-
weight strong WOM codes, which we call the capacity of
those codes.

Proposition 13: Let ws and wx be as defined in
Definition 12. Then the capacity of constant-weight strong
WOM codes is

CW = ws H (wx/ws).

The proof of Proposition 13 is brought in Appendix B.
We also define the notions of coding scheme, capacity

achieving and efficient family for constant-weight strong

4216 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 61, NO. 8, AUGUST 2015

WOM codes in the same way we defined it for RM rewriting
codes. To construct capacity-achieving RM rewriting codes,
we will need to use capacity-acheving constant-weight WOM
codes as ingredients codes. However, we do not know
how to construct an efficient capacity-achieving family of
constant-weight strong WOM coding schemes. Therefore, we
will present later a weaker notion of WOM codes, and
show how to use it for the construction of RM rewriting
codes.

C. Generalizing the Number of Ranks q

We continue with the generalization of the construction,
where the next parameter to generalize is the number of
ranks q . So the next scheme has general parameters q and z,
while the cost constraint r is still kept at r = 1. In this case, we
divide the message into q −1 parts, m1 to mq−1. The encoding
now starts in the same way as in the previous case, with the
encoding of the part m1 into the set π(1), using a constant-
weight strong WOM code. However, the parameters of the
WOM code need to be slightly generalized. The numbers of
cells now is n = qz, and EW still chooses z cells for rank 1
of π out of the 2z cells of ranks 1 and 2 of σ . So we need a
WOM code with the parameters ws = 2/q and wx = 1/q .

The next step is to encode the message part m2 into rank 2
of π. We can perform this encoding using the same WOM code
DW that was used for m1. However, there is a difference now
in the identity of the cells that are considered for occupying the
set π(2). In m1, the cells that were considered as candidates
to occupy π(1) were the 2z cells in the set U1,2(σ), since all
of these cell could be placed in π(1) without dropping their
rank (from σ to π) by more then 1. In the encoding of m2,
we choose cells for rank 2 of π, so the z cells from rank 3
of σ can also be considered. Another issue here is that the
cells that were already chosen for rank 1 of π should not be
considered as candidates for rank 2. Taking these consideration
into account, we see that the candidate cells for π(2) are the
z cells that were considered but not chosen for π(1), together
with the z cells in rank 3 of σ. Since these are two disjoint
sets, the number of candidate cells for π(2) is 2z, the same
as the number of candidates that we had for π(1). The set
of cells that were considered but not chosen for π(1) are
denoted by the set-theoretic difference U1,2(σ) \π(1). Taking
the union of U1,2(σ) \ π(1) with the set σ(3), we get that the
set of candidate cells to occupy rank 2 of π can be denoted
by U1,3(σ) \ π(1).

Remark: In the coding of m2, we can in fact use a
WOM code with a shorter block length, since the cells
in π(1) do not need to take any part in the WOM code.
This slightly improves the rate and computation complexity
of the coding scheme. However, this improvement does
not affect the asymptotic analysis we make in this paper.
Therefore, for the ease of presentation, we did not use this
improvement.

We now apply the same idea to the rest of the sets of π,
iteratively. On each iteration i from 1 to q−2, the set π(i) must
be a subset of U1,i+1(σ), to keep the cost at no more than 1.
The sets {π(1), . . . , π(i − 1)} were already determined in pre-
vious iterations, and thus their members cannot belong to π(i).

The set U1,i−1(π) contains the members of those sets (where
U1,0(π) is the empty set). So we can say that the set π(i)
must be a subset of U1,i+1(σ) \ U1,i−1(π). We let the
state vector of the WOM code to be si = θn(U1,i+1(σ)\
U1,i−1(π)), and then use the WOM encoder EW (mi , si) to
find an appropriate vector xi ≤ si that represents mi . We then
assign π(i) = θ−1

n (xi), such that π(i) represents mi .
If we use a capacity achieving family of constant-weight

strong WOM codes, we store close to ws H (wx/ws) =
2(1/q)H (1

2) = 2/q bits per cell on each rank. Therefore,
each of the q −2 message parts m1, . . . , mq−2 can store close
to 2/q bits per cell. So the RM rewriting code can store a
total of 2(q − 2)/q bits per cell, approaching the upper bound
of 2 bits per cell (Corollary 8) when q grows. The last message
part, mq−1, is encoded with the same code hM that we used in
the previous subsection for q = 3. The amount of information
stored in the message mq−1 does not affect the asymptotic rate
analysis, but is still beneficial.

To decode a message vector m = (m1, m2, . . . , mq−1) from
the stored permutation π, we can just decode each of the q −1
message parts separately. For each rank i ∈ [q−2], the decoder
finds the vector xi = θn(π(i)), and then the message part mi is
calculated by the WOM decoder, mi ⇐ DW (xi). The message
part mq−1 is found by the decoder of the enumerative code,
mq−1 = h−1

M (π[q−1:q]).

D. Generalizing the Cost Constraint r

We note first that if r is larger than q−2, the coding problem
is trivial. When the cost constraint r is between 1 and q − 2,
the top r +1 cells of π can be occupied by any cell, since the
magnitude of a drop from a rank at most q to a rank at least
q − r − 1, is at most r ranks. Therefore, we let the top r + 1
ranks of π represents a single message part, named mq−r−1.
The message part mq−r−1 is mapped into the arraignment of
the sequence of sets (π(q − r), π(q − r + 1), . . . , π(q)) by a
generalization of the bijection hM , defined by generalizing the
multiset M into M = {(q − r)z, (q − r + 1)z, . . . , qz}. The
efficient coding scheme described in [22] for hM and h−1

M is
suitable for any multiset M .

The rest of the message is divided into q − r − 1 parts,
m1 to mq−r−1, and their codes also need to generalized. The
generalization of these coding scheme is also quite natural.
First, consider the code for the message part m1. When the
cost constraint r is larger than 1, more cells are allowed to
take rank 1 in π. Specifically, a cell whose rank in σ is at
most r + 1 and its rank in π is 1, drops by at most r ranks.
Such drop does not cause the rewriting cost to exceed r . So the
set of candidate cells for π(1) in this case can be taken to
be U1,r+1. In the same way, for each i in [1 : q − r − 1],
the set of candidate cells for π(i) is U1,i+r (σ) \ U1,i−1(π).
The parameter ws of the ingredient WOM is correspondingly
generalized to ws = (r + 1)/q . This generalized algorithm is
shown in Figure 1. We present now a formal description of
the construction.

Construction 14 (A RM Rewriting Code From a
Constant-Weight Strong WOM Code): Let KW , q, r, z be
positive integers, let n = qz and let (EW , DW) be an

EN GAD et al.: RANK-MODULATION REWRITE CODING FOR FLASH MEMORIES 4217

Fig. 1. Iteration i of the encoding algorithm, where 1 ≤ i ≤ q − r − 1.

(n, KW , (r + 1)/q, 1/q) constant-weight strong WOM coding
scheme. Define the multiset M = {(q − r)z, (q − r + 1)z,

. . . , qz} and let KM = |SM | and K R = K q−r−1
W · KM . The

codebook C is defined to be the entire set Sq,z . A (q, z, K R, r)
RM rewrite coding scheme {ER, DR} is constructed
as follows:

The encoding algorithm ER receives a message
m = (m1, m2, . . . , mq−r) ∈ [KW]q−r−1 × [KM] and a
state permutation σ ∈ Sq,z , and returns a permutation π in
Bq,z,r (σ) ∩ D−1

R (m) to store in the memory. It is constructed
as follows:
1: for i = 1 to q − r − 1 do
2: si ⇐ θn(U1,i+r (σ) \ U1,i−1(π))
3: xi ⇐ EW (mi , si)
4: π(i) ⇐ θ−1

n (xi)
5: end for
6: π[q−r :q] ⇐ hM (mq−r)

The decoding algorithm DR receives the stored
permutation π ∈ Sq,z, and returns the stored message
m = (m1, m2, . . . , mq−r) ∈ [KW]q−r−1 × [KM]. It is
constructed as follows:
1: for i = 1 to q − r − 1 do
2: xi ⇐ θn(π(i))
3: mi ⇐ DW (xi)
4: end for
5: mq−r ⇐ h−1

M (π[q−r :q])
Theorem 15: Let {EW , DW } be a member of an efficient

capacity-achieving family of constant-weight strong
WOM coding schemes. Then the family of RM rewrite
coding schemes in Construction 14 is efficient and capacity-
achieving.

Proof: The decoded message is equal to the encoded
message by the property of the WOM code in Definition 12.
By the explanation above the construction, it is clear that
the cost is bounded by r , and therefore {ER, DR} is a RM
rewrite coding scheme. We will first show that {ER, DR}
is capacity achieving, and then show that it is efficient. Let
RR = (1/n) log K R be the rate of a RM rewriting code.
To show that {ER, DR} is capacity achieving, we need to
show that for any εR > 0, RR > CR − εR , for some
q and z.

Since {EW , DW } is capacity achieving, RW > CW − εW

for any εW > 0 and large enough n. Remember that
CW = ws H (wx/ws). In {ER, DR} we use ws = (r + 1)/q

and wx = 1/q , and so CW = r+1
q H

(
1

r+1

)
. We have

RR = (1/n) log K R

= (1/n) log(KM · K q−r−1
W)

> (q − r − 1)(1/n) log KW

> (q − r − 1)(CW − εW)

= (q − r − 1)

(
r + 1

q
H

(
1

r + 1

)

− εW

)

= q − r − 1

q
(CR − qεW)

= (CR − qεW)(1 − (r + 1)/q)

> CR − (r + 1)2/q − qεW (3)

The idea is to take q = �(r + 1)/
√

εW � and εR =
3(r + 1)

√
εW , and get that

RR > CR − (r + 1)2

�(r + 1)/
√

εW � − �(r + 1)/
√

εW �εW

> CR − 2(r + 1)
√

εW − (r + 1)
√

εW

= CR − εR .

Formally, we say: for any εR > 0 and integer r , we set

εW = ε2
R

9(r+1)2 and q = �(r + 1)/
√

εW �. Now if z is

large enough then n = qz is also large enough so that
RW > CW − εW , and then Equation 3 holds and we have
RR > CR − εR , proving that the construction is capacity
achieving. Note that the family of coding schemes has a
constant value of q and a growing value of z, as permitted
by Definition 9 of capacity-achieving code families.

Next we show that {ER, DR} is efficient. If the scheme
(hM , h−1

M) is implemented as described in [22], then the time
complexity of hM and h−1

M is polynomial in n. In addition,
we assumed that EW and DW run in polynimial time in n.
So since hM and h−1

M are executed only once in ER and DR ,
and EW and DW are executed less than q times in ER and DR ,
where q < n, we get that the time complexity of ER and DR is
polynomial in n.

E. How to Use Weak WOM Schemes

As mentioned earlier, we are not familiar
with a family of efficient capacity-achieving constant-weight
strong WOM coding schemes. Nonetheless, it turns out that
we can construct efficient capacity-achieving WOM coding

4218 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 61, NO. 8, AUGUST 2015

schemes that meet a slightly weaker definition, and use them
to construct capacity-achieving RM rewriting codes. In this
subsection we will define a weak notion of constant-weight
WOM codes, and describe an associated RM rewriting coding
scheme. In Sections V and VI we will present yet weaker
definition of WOM codes, together with constructions of
appropriate WOM schemes and associated RM rewriting
schemes.

In the weak definition of WOM codes, each codeword is a
pair, composed of a constant-weight binary vector x and an
index integer ma . Meanwhile, the state is still a single vector s,
and the vector x in the codeword is required to be smaller than
the state vector. We say that these codes are weaker since there
is no restriction on the index integer in the codeword. This
allows the encoder to communicate some information to the
decoder without restrictions.

Definition 16 (Constant-Weight Weak WOM Codes): Let
KW , Ka, n be positive integers and let ws be a real number in
[0, 1] and wx be a real number in [0, ws]. A surjective function
DW : Jwx (n) × [Ka] → [KW] is an (n, KW , Ka, ws, wx)
constant-weight weak WOM code if for each message
m ∈ [KW] and state vector s ∈ Jws (n), there exists a
pair (x, ma) in the subset D−1

W (m) ⊆ Jwx (n) × [Ka] such
that x ≤ s. The rate of a constant-weight weak WOM code is
defined to be RW = (1/n) log(KW /Ka).

If Ka = 1, the code is in fact a constant-weight strong
WOM code. We will only be interested in the case in which
KW � Ka . Since RW is a decreasing function of Ka , it
follows that the capacity of constant-weight weak WOM code
is also CW = ws H (wx/ws). Consider now the encoder ER

of a (q, z, K R, r) RM rewriting code DR with a codebook C.
For a message m ∈ [K R] and a state permutation σ ∈ C,
the encoder needs to find a permutation π in the intersection
Bq,z,r (σ) ∩ D−1

R (m). As before, we let the encoder determine
the sets π(1), π(2), . . . , π(q − r − 1) sequentially, such that
each set π(i) represents a message part mi . If we were to
use the previous encoding algorithm (in Construction 14)
with a weak WOM code, the WOM encoding would find
a pair (xi , ma,i), and we could store the vector xi by the
set π(i). However, we would not have a way to store the
index ma,i that is also required for the decoding. To solve this,
we will add some cells that will serve for the sole purpose of
storing the index ma,i .

Since we use the WOM code q −r −1 times, once for each
rank i ∈ [q − r − 1], it follows that we need to add q − r − 1
different sets of cells. The added sets will take part in a larger
permutation, such that the code will still meet Definition 4
of RM rewriting codes. To achieve that property, we let each
added set of cells to represent a permutation. That way the
number of cells in each rank is constant, and a concatenation
(in the sense of sting concatenation) of those permutations
together results in a larger permutation. To keep the cost of
rewriting bounded by r , we let each added set to represent a
permutation with r + 1 ranks. That way each added set could
be rewritten arbitrarily with a cost no greater than r . We also
let the number of cells in each rank in those added sets to be
equal, in order to maximize the amount of stored information.

Denote the number of cells in each rank in each of the added
set as a. Since each added set needs to store an index from
the set [Ka] with r + 1 ranks, it follows that a must satisfy
the inequality |Sr+1,a | ≥ Ka . So to be economical with our
resources, we set a to be the smallest integer that satisfies this
inequality. We denote each of these additional permutations
as πa,i ∈ Sr+1,a . The main permutation is denoted by πW ,
and the number of cells in each rank in πW is denoted by zW .
The permutation π will be a string concatenation of the
main permutation together with the q − r − 1 added
permutations. Note that this way the number of cells in each
rank is not equal (there are more cells in the lowest r + 1
ranks). This is actually not a problem, but it will be cleaner to
present the construction if we add yet another permutation that
“balances” the code. Specifically, we let πb be a permutation of
the multiset

{
(r + 2)(q−r−1)a, (r + 3)(q−r−1)a, . . . , q(q−r−1)a

}

and let π−1 be the string concatenation
(π−1

a,1, . . . , π
−1
a,q−r−1, π

−1
b , π−1

W). This way in each rank
there are exactly zW + (q − r − 1)a cells. We denote
z = zW + (q − r − 1)a, and then we get that π is a member
of Sq,z .

On each iteration i from 1 to q − r − 1 we use a constant-
weight weak WOM code. The vectors si and xi of the WOM
code are now corresponding only to the main part of the
permutation, and we denote their length by nW = qzW .
We assign the state vector to be si = θnW (U1,i+r (σW)\
U1,i−1(πW)), where σW and πW are the main parts of σ
and π , accordingly. Note that U1,i+r (σW) and U1,i−1(πW) are
subsets of [nW] and that the characteristic vector θnW is taken
according to nW as well. The message part mi and the state
vector si are used by the encoder EW of an (nW , KW , Kb,
(r + 1)/q, 1/q) constant-weight weak WOM code DW .
The result of the encoding is the pair (xi , ma,i) = EW (mi , si).
The vector xi is stored on the main part of π , by assigning
πW (i) = θ−1

nW
(xi). The additional index ma,i is stored

on the additional cells corresponding to rank i . Using an
enumerative code hr+1,a : [|Sr+1,a|] → Sr+1,a , we assign
πa,i = hr+1,a(ma,i). After the lowest q − r − 1 ranks of
πW are determined, we determine the highest r + 1 ranks
by setting πW,[q−r,q] = hM (mq−r) where M = {(q − r)zW ,
(q − r + 1)zW , . . . , qzW }. Finally, the permutation πb can be
set arbitrarily, say, to σb .

The decoding is performed in accordance with the encoding.
For each rank i ∈ [q − r − 1], we first find xi = θnW (πW (i))
and ma,i = h−1

r+1,a(πa,i), and then assign mi = DW (xi , ma,i).
Finally, we assign mq−r = h−1

M (πW,[q−r :q]).
Construction 17 (A RM Rewriting Code From a Constant-

Weight Weak WOM Code): Let KW , Ka, q, r and zW be posi-
tive integers, and let nW = qzW . Let DW be an (nW , KW , Ka,
(r + 1)/q, 1/q) constant-weight weak WOM code with
encoding algorithm EW , and let a be the smallest integer for
which |Sr+1,a | ≥ Ka. Define the multiset M = {(q − r)zW ,
(q − r + 1)zW , . . . , qzW } and let KM = |SM | and
K = KM · K q−r−1

W .
Let z = zW + (q − r − 1)a and n = qz. Define a codebook

C ⊂ Sq,z as a set of permutations π ∈ C in which π−1 is
a string concatenation (π−1

W , π−1
a,1, . . . , π

−1
a,q−r−1, π

−1
b) such

EN GAD et al.: RANK-MODULATION REWRITE CODING FOR FLASH MEMORIES 4219

that the following conditions hold:
1) πW ∈ Sq,zW .
2) For each rank i ∈ [q − r − 1], πa,i ∈ Sr+1,a.
3) πb is a permutation of the multiset{

(r + 2)(q−r−1)a, (r + 3)(q−r−1)a, . . . , q(q−r−1)a
}
.

A (q, z, K R, r) RM rewrite coding scheme {ER, DR} is
constructed as follows:

The encoding function ER receives a message
m = (m1, m2, . . . , mq−r) ∈ [KW]q−r−1 × [KM] and a
state permutation σ ∈ C, and finds a permutation π in
Bq,z,r (σ) ∩ D−1

R (m) to store in the memory. It is constructed
as follows:
1: for i = 1 to q − r − 1 do
2: si ⇐ θnW (U1,i+r (σW) \ U1,i−1(πW))
3: (xi , ma,i) ⇐ EW (mi , si)
4: πW (i) ⇐ θ−1

nW
(xi)

5: πa,i ⇐ hr+1,a(ma,i)
6: end for
7: πW,[q−r :q] ⇐ hM (mq−r)
8: πb ⇐ σb

The decoding function DR receives the stored
permutation π ∈ C, and finds the stored message
m = (m1, m2, . . . , mq−r) ∈ [KW]q−r−1 × [KM]. It is
constructed as follows:
1: for i = 1 to q − r − 1 do
2: xi ⇐ θnW (πW (i))
3: ma,i ⇐ h−1

r+1,a(πa,i)
4: mi ⇐ DW (xi , ma,i)
5: end for
6: mq−r ⇐ h−1

M (πW,[q−r :q])
Remark: To be more economical with our resources, we

could use the added sets “on top of each other”, such that the
r+1 lowest ranks store one added set, the next r+1 ranks store
another added set, and so on. To ease the presentation, we did
not describe the construction this way, since the asymptotic
performance is not affected. However, such a method could
increase the performance of practical systems.

Theorem 18: Let {EW , DW } be a member of an efficient
capacity-achieving family of constant-weight weak WOM
coding schemes. Then the family of RM rewrite coding schemes
in Construction 17 is efficient and capacity-achieving.

The proof of Theorem 18 is similar to that of Theorem 15
and is brought in Appendix C.

V. CONSTANT-WEIGHT POLAR WOM CODES

In this section we consider the use of polar WOM
schemes [6] for the construction of constant-weight weak
WOM schemes. Polar WOM codes do not have a constant
weight, and thus require a modification in order to be used
in Construction 17 of RM rewriting codes. The modification
we propose in this section is exploiting the fact that while
polar WOM codes do not have a constant weight, their
weight is still concentrated around a constant value. This
section is composed of two subsections. In the first, we show
a general method to construct constant-weight weak WOM
codes from WOM codes with concentrated weight. The second
subsection describes the construction of polar WOM schemes

of Burshtein and Strugatski [6], and explains how they could
be used as concentrated-weight WOM schemes.

A. Constant-Weight Weak WOM Schemes From
Concentrated-Weight Strong Schemes

We first introduce additional notation. Label the weight of
a vector x by wH (x). For δ > 0, let Jwx (n, δ) be the set of
all n-bit vectors x such that |wx − wH (x)/n| ≤ δ.

Definition 19 (Concentrated-Weight WOM Codes): Let KC

and n be positive integers and let ws be in [0, 1],
wx be in [0, ws] and δ in [0, 1]. A surjective function DC :
Jwx (n, δ) → [KC] is an (n, KC , ws, wx , δ) concentrated-
weight WOM code if for each message m ∈ [KC] and state
vector s ∈ Jws (n), there exists a vector x ≤ s in the subset
D−1

C (m) ⊆ Jwx (n, δ).
From [17, Th. 1 and Proposition 13] we get that the capacity

of concentrated-weight WOM codes in CW = ws H (wx/ws).
We define the notion of efficient capacity-achieving family
of concentrated-weight WOM coding schemes accordingly.
For the construction of constant-weight weak WOM codes
from concentrated-weight WOM codes, we will use another
type of enumerative coding schemes. For an integer n and δ
in [0, 1/2], let J≤δ(n) be the set of all n-bit vectors of
weight at most δn, and define some bijective function

h≤δ :
[∑�δn�

j=1

(n
j

)] → J≤δ(n) with an inverse function h−1
≤δ .

The enumeration scheme (h≤δ, h−1
≤δ) can be implemented with

computational complexity polynomial in n by methods such
as [4, pp. 27–30], [23], [27].

We will now describe a construction of a constant-weight
weak WOM coding scheme from a concentrated-weight WOM
coding scheme. We start with the encoder EW of the constant-
weight weak WOM codes. According to Definition 16, given a
message m ∈ [KW] and a state s ∈ Jws (n), the encoder needs

to find a pair (x, ma) in the set D−1
W (m) such that x ≤ s.

We start the encoding by finding the vector xC = EC(m, s)
by the encoder of an (n, KC , ws , wx , δ) concentrated-weight
WOM code. We know that the weight of xC is “δ-close” to
wxn, but we need to find a vector with weight exactly �wxn�.
To do this, the main idea is to “flip” |�wxn� − wH (xC)| bits
in xC to get a vector x ≤ s of weight �wx n�, and store the
location of the flipped bits in ma . Let a be the n-bit vector
of the flipped locations, such that x = xC ⊕ a where ⊕ is
the bitwise XOR operation. It is clear that the weight of a
must be |�wx n� − wH (xC)|. Let xC = (xC,1, xC,2, . . . , xC,n).
If wH (xC) < wx n, we also must have ai = 0 wherever
xC,i = 1, since we only want to flip 0’s to 1’s to increase
the weight. In addition, we must have ai = 0 wherever
si = 0, since in those locations we have xC,i = 0 and we
want to get xi ≤ si . We can summarize those conditions by
requiring that a ≤ s ⊕ xC if wH (xC) < wxn. In the case that
wH (xC) > wx n, we should require that a ≤ xC , since ai can
be 1 only where xC,i = 1. In both cases we have the desired
properties x ≤ s, wH (x) = �wxn� and wH (a) ≤ δn.

To complete the encoding, we let ma be the index of the
vector a in an enumeration of the n-bit vectors of
weight at most δn. That will minimize the space
required to store a. Using an enumerative coding scheme,

4220 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 61, NO. 8, AUGUST 2015

we assign ma = h−1
≤δ (a). The decoding is now straight

forward, and is described in the following formal description
of the construction.

Construction 20 (A Constant-Weight Weak WOM Code
From a Concentrated-Weight WOM Code): Let KC and n
be positive integers and let ws be in [0, 1], wx be in [0, ws]
and δ in [0, 1/2]. Let DC be an (n, KC , ws , wx , δ)
concentrated-weight WOM code, and define KW = KC and
Ka = ∑�δn�

i=0

(n
i

)
.

An (n, KW , Ka, ws , wx) constant-weight weak WOM
coding scheme {EW , DW } is defined as follows:

The encoding function EW receives a message m ∈ [KW]
and a state vector s ∈ Jwx (n), and finds a pair (x, ma) in
D−1

W (m) ⊆ Jwx (n) × [Ka] such that x ≤ s. It is constructed
as follows:

1) Let xC ⇐ EC(s, m).
2) Let a be an arbitrary vector of weight |�wxn�−wH (xC)|

such that a ≤ s ⊕ xC if wH (xC) ≤ wx n and a ≤ xC

otherwise.
3) Return the pair (x, ma) ⇐ (xC ⊕ a, h−1

≤δ (a)).

The decoding function DW receives the stored pair
(x, ma) ∈ Jwx (n) × [Ka], and finds the stored message
m ∈ [KW]. It is constructed as follows:

1) Let a ⇐ h≤δ(ma).
2) Let xC ⇐ x ⊕ a.
3) Return m ⇐ DC(xC).

Theorem 21: Let {EC , DC } be a member of an efficient
capacity-achieving family of concentrated-weight WOM
coding schemes. Then Construction 20 describes an
efficient capacity-achieving family of constant-weight weak
WOM coding schemes for a sufficiently small δ.

Proof: First, since EC , DC , h≤δ and h−1
≤δ can be performed

in polynomial time in n, it follows directly that EW and DW

can also be performed in polynomial time in n. Next, we show
that the family of coding schemes is capacity achieving. For
large enough n we have (1/n) log KW > CW − εC . So

RW = (1/n) log(KW /Ka) > CW − εC − H (δ),

since log Ka = log
∑�δn�

i=0

(n
i

) ≤ nH (δ) by Stirling’s formula.
Now, given εW > 0, we let εC = εW /2 and δ = H −1(εW /2)
such that εC + H (δ) = εW . So for large enough n we have
RW > CW − εC − H (δ) = CW − εW .

B. Polar WOM Codes
There are two properties of polar WOM coding schemes

that do not fit well in our model. First, the scheme requires
the presence of common randomness, known both to the
encoder and to the decoder. Such an assumption brings some
weakness to the construction, but can find some justification
in a practical applications such as flash memory devices.
For example, the common randomness can be the address of
the storage location within the device. Second, the proposed
encoding algorithm for polar WOM coding schemes does not
always succeed in finding a correct codeword for the encoded
message. In particular the algorithm is randomized, and it only
guarantees to succeed with high probability, over the algorithm
randomness and the common randomness. Nonetheless, for

flash memory application, this assumption can be justified by
the fact that such failure probability is much smaller than
the unreliable nature of the devices. Therefore, some error-
correction capability must be included in the construction for
such practical implementation, and a failure of the encoding
algorithm will not significantly affect the decoding failure rate.
More approaches to tackle this issue are described in [6].

The construction is based on the method of channel
polarization, which was first proposed by Arikan in his seminal
paper [1] in the context of channel coding. We describe it here
briefly by its application for WOM coding. This application
is based on the use of polar coding for lossy source coding,
that was proposed by Korada and Urbanke [21].

Let n be a power of 2, and let G2 =
(

1 0
1 1

)

and G⊗ log n
2 be

its log n-th Kronecker product. Consider a memoryless channel
with a binary-input and transition probability W (y|x). Define
a vector u ∈ {0, 1}n , and let x = uG⊗ log n

2 , where the matrix
multiplication is over F2. The vector x is the input to the
channel, and y is the output vector. The main idea of polar
coding is to define n sub-channels

W (i)
n (y, u[i−1]|ui) = P(y, u[i−1]|ui) = 1

2n−1

∑

u[i+1:n]
P(y|u).

For large n, each sub-channel is either very reliable or very
noisy, and therefore it is said that the channel is polarized.
A useful measure for the reliability of a sub-channel W (i)

n is
its Bhattacharyya parameter, defined by

Z(W (i)
n) =

∑

y∈Y

√

W (i)
n (y|0)W (i)

n (y|1). (4)

Consider now a write-once memory. Let s ∈ {0, 1}n be the
state vector, and let ws be the fraction of 1’s in s. In addition,
assume that a user wishes to store the message m ∈ KC

with a codeword x ∈ Jwx (n, δ). The following scheme allows
a rate arbitrarily close to CW for n sufficiently large. The
construction uses a compression scheme, based on a test
channel. Let v be a binary input to the channel, and (s, g)
be the output, where s and g are binary variables as well.
Denote x = g ⊕ v. The probability transition function of the
channel is given by

W (s, g|v) =

⎧
⎪⎪⎨

⎪⎪⎩

ws − wx if (s, x) = (1, 0),
wx if (s, x) = (1, 1),
1 − ws if (s, x) = (0, 0),
0 if (s, x) = (0, 1).

The channel is polarized by the sub-channels W (i)
n of

Equation 4, and a frozen set F is defined by

F =
{

i ∈ [n] : Z(W (i)
n) ≥ 1 − 2δ2

n

}
,

where δn = 2−nβ
/(2n), for 0 < β < 1/2. It is easy to show

that the capacity of the test channel is CT = 1 − CW . It was
shown in [21] that |F | = n(CT + εC) = n(1 − CW + εC),
where εC is arbitrarily small for n sufficiently large. Let g be a
common randomness source from an n dimensional uniformly
distributed random binary vector. The coding scheme is the
following:

EN GAD et al.: RANK-MODULATION REWRITE CODING FOR FLASH MEMORIES 4221

Construction 22 (A Polar WOM Code [6]): Let n be a
positive integer and let ws be in [0, 1], wx be in [0, ws] and
δ in [0, 1/2]. Let εC be in [0, 1/2] such that KC = 2n(CW −εC)

is an integer.
The encoding function EC receives a message m ∈

{0, 1}�log KC�, a state vector s ∈ Jws (n) and the dither vector
g ∈ {0, 1}n, and returns a vector x ≤ s in D−1

C (m) ⊆
Jwx (n, δ) with high probability. It is constructed as follows:

1) Assign y j = (s j , g j) and y = (y1, y2, . . . , yn).
2) Define a vector u ∈ {0, 1}n such that uF = m.
3) Create a vector û ∈ {0, 1}n by compressing the

vector y according to the following successive cancel-
lation scheme: For i = 1, 2, . . . , n, let ûi = ui if i ∈ F.
Otherwise, let

ûi =
{

0 w.p. L(i)
n /(L(i)

n + 1)

1 w.p. 1/(L(i)
n + 1),

where w.p. denotes with probability and

L(i)
n = L(i)

n (y, û[i−1]) = W (i)
n (y, û[i−1]|ui = 0)

W (i)
n (y, û[i−1]|ui = 1)

.

4) Assign v ⇐ ûG⊗ log n
2 .

5) Return x ⇐ v ⊕ g.
The decoding function DC receives the stored

vector x ∈ Jwx (n, δ) and the dither vector g ∈ {0, 1}n,
and finds the stored message m ∈ {0, 1}�log KC�. It is
constructed as follows:

1) Assign v ⇐ x ⊕ g .

2) Assign û ⇐ v(G⊗ log n
2)−1.

3) Return m ⇐ ûF .
In [6], a few slight modifications for this scheme are

described, for the sake of the proof. We use the coding
scheme (EC , DC) of Construction 22 as an (N, KC , ws , wx , δ)
concentrated-weight WOM coding scheme, even though it
does not meet the definition precisely.

By [16, Proof of Lemma 1], for 0 < β < 1/2, the
vector x found by the above encoding algorithm is in D−1

C (m)

and in Jwx (n, δ) w.p. at least 1 − 2−nβ
for n sufficiently

large. Therefore, the polar WOM scheme of Construction 22
can be used as a practical concentrated-weight WOM coding
scheme for the construction of RM rewriting codes by
Constructions 17 and 20. [16, Lemma 1] also proves that this
scheme is capacity achieving. By the results in [21], the
encoding and the decoding complexities are O(n log n), and
therefore the scheme is efficient. This completes our first full
description of a RM rewrite coding scheme in this paper,
although it does not meet the definitions of Section II precisely.
In the next section we describe a construction of efficient
capacity-achieving RM rewrite coding schemes that meet the
definitions of Section II.

VI. RANK-MODULATION SCHEMES FROM

HASH WOM SCHEMES

The construction in this section is based on a recent con-
struction of WOM codes by Shpilka [25]. This will require
an additional modification to Construction 17 of RM rewrite
coding schemes.

A. Rank-Modulation Schemes From
Concatenated WOM Schemes

The construction of Shpilka does not meet any of our
previous definitions of WOM codes. Therefore, we define yet
another type of WOM codes, called “constant-weight concate-
nated WOM codes”. As the name implies, the definition is a
string concatenation of constant-weight WOM codes.

Definition 23 (Constant-Weight Concatenated WOM
Codes): Let KW , Ka, n and t be positive integers and let
ws be a real number in [0, 1] and wx be a real number in
[0, ws]. A surjective function DW : (Jwx (n))t ×[Ka] → [KW]
is an (n, t, KW , Ka, ws, wx) constant-weight concatenated
WOM code if for each message m ∈ [KW] and state vector
s ∈ (Jws (n))t , there exists a pair (x, ma) in the subset
D−1

W (m) ⊆ (Jwx (n))t × [Kb] such that x ≤ s.
Note that the block length of constant-weight concatenated

WOM codes is nt , and therefore their rate is defined to be
RW = 1

nt log KW . Since concatenation does not change the
code rate, the capacity of constant-weight concatenated WOM
codes is CW = ws H (wx/ws). We define the notion of coding
schemes, capacity achieving and efficient family of schemes
accordingly. Next, we use constant-weight concatenated WOM
coding schemes to construct RM rewrite coding schemes by
a similar concatenation.

Construction 24 (A RM Rewriting Scheme From a Constant-
Weight Concatenated WOM Scheme): Let KW , Ka, q, r, t
and zW be positive integers, and let nW = qzW .
Let DW be an (nW , t, KW , Ka, (r + 1)/q, 1/q) constant-
weight concatenated WOM code with encoding algo-
rithm EW , and let a be the smallest integer for which
|Sr+1,a| ≥ Kb. Define the multiset M = {(q − r)zW ,
(q − r + 1)zW , . . . , qzW } and let KM = |SM | and
K R = KM · K q−r−1

W .
Let z = tzW + (q − r − 1)a and n = qz. Define a

codebook C ⊂ Sq,z as a set of permutations π ∈ C in
which π−1 is a string concatenation (π−1

a,1, . . . , π
−1
a,q−r−1,

π−1
b , π−1

x,1, . . . , π
−1
x,t) such that the following conditions hold:

1) πx,i ∈ Sq,zW for each i ∈ [t].
2) πa,i ∈ Sr+1,a for each rank i ∈ [q − r − 1].
3) πb is a permutation of the multiset{

(r + 2)(q−r−1)a, (r + 3)(q−r−1)a, . . . , q(q−r−1)a
}
.

Denote the string concatenation (π−1
x,1, . . . , π

−1
x,t) by π−1

W , and
denote σW in the same way. A (q, z, K R, r) RM rewrite coding
scheme {ER, DR} is constructed as follows:

The encoding function ER receives a message
m = (m1, m2, . . . , mq−r) ∈ [KW]q−r−1 × [KM] and a
state permutation σ ∈ C, and finds a permutation π in
Bq,z,r(σ) ∩ D−1

R (m) to store in the memory. It is constructed
as follows:
1: for i = 1 to q − r − 1 do
2: si ⇐ θnW (U1,i+r (σW) \ U1,i−1(πW))
3: (xi , ma,i) ⇐ EW (mi , si)
4: πW (i) ⇐ θ−1

nW
(xi)

5: πa,i ⇐ hr+1,a(ma,i)
6: end for
7: πW,[q−r,q] ⇐ hM (mq−r)
8: πb = σb

4222 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 61, NO. 8, AUGUST 2015

The decoding function DR receives the stored permu-
tation π ∈ C, and finds the stored message m =
(m1, m2, . . . , mq−r) ∈ [KW]q−r−1 × [KM]. It is constructed
as follows:
1: for i = 1 to q − r − 1 do
2: xi ⇐ θnW (πW (i))
3: ma,i ⇐ h−1

r+1,a(πa,i)
4: mi ⇐ DW (xi , ma,i)
5: end for
6: mq−r ⇐ h−1

M (πW,[q−r,q])
Since again concatenation does not affect the rate of the

code, the argument of the proof of Theorem 18 gives the
following statement:

Theorem 25: Let {EW , DW } be a member of an efficient
capacity-achieving family of constant-weight concatenated
WOM coding schemes. Then the family of RM rewrite coding
schemes in Construction 24 is efficient and capacity-achieving.

B. Hash WOM Codes

In [25] Shpilka proposed a construction of efficient capacity-
achieving WOM coding scheme. The proposed scheme follows
the concatenated structure of Definition 23, but does not have
a constant weight. In this subsection we describe a slightly
modified version of the construction of Shpilka, that does
exhibit a constant weight.

To describe the construction, we follow the definitions
of Shpilka [25]. The construction is based on a set of
hash functions. For positive integers n, k, l and field

members a, b ∈ F2n , define a map H n,k,l
a,b : {0, 1}n → {0, 1}k−l

as H n,k,l
a,b (x) = (ax + b)[k−l]. This notation means that we

compute the affine transformation ax + b in F2n , represent
it as a vector of n bits using the natural map and then keep
the first k − l bits of this vector. We represent this family of
maps by Hn,k,l , namely

Hn,k,l =
{

H n,k,l
a,b |a, b ∈ F2n

}
.

The family Hn,k,l contains 22n functions. For an integer
ma ∈ [22n], we let Hma be the ma-th function in Hn,k,l .

Construction 26 (A Constant-Weight Concatenated WOM
Coding Scheme From Hash Functions): Let ε, δ be in
[0, 1/2], ws in [0, 1], wx in [0, ws] and c > 20. Let n =
�(c/ε) log(1/ε)�, k = �n(CW − 2ε/3)�, t1 = �(1/ε)c/12 − 1�
and t2 = 2

4n
δ . Finally, Let t = t1t2, Kb = 2k and Ka = 22n.

An (n, t, K t
b, K t2

a , ws , wx) constant-weight concatenated
WOM code is defined as follows:

The encoding function EW receives a message matrix
m ∈ [Kb]t1×t2 , a state matrix of vectors s ∈ (Jws (n))t1×t2 , and
returns a pair (x, ma) in D−1

W (m) ⊆ (Jwx (n))t1×t2 × [Ka]t2

such that for each (i, j) ∈ [t1] × [t2] we have xi, j ≤ si, j .
It is constructed as follows: For each j ∈ [t2], use a brute
force search to find an index ma, j ∈ [Ka] and a vector
x j = (x1, j , . . . , xt1, j) such that for all i ∈ [t1], the following
conditions hold:

1) xi, j ≤ si, j .
2) xi, j ∈ Jwx (n).
3) Hma, j (xi, j) = mi, j .

The decoding function DW receives the stored pair
(x, ma) ∈ (Jwx (n))t1×t2 × [Ka], and returns the stored
message m ∈ [Kb]t1×t2 . It is constructed as follows: For each
pair (i, j) ∈ [t1] × [t2], assign mi, j ⇐ Hma, j (xi, j).

The only conceptual difference between Construction 26
and the construction in [25] is that here we require the
vectors xi, j to have a constant weight of �wx n�, while the
construction in [25] requires the weight of those vectors to be
only bounded by wx n. This difference is crucial for the rank-
modulation application, but in fact it has almost no effect on
the proofs of the properties of the construction.

To prove that the code in Construction 26 is a constant-
weight concatenated WOM code, we will need the following
lemma from [25]:

Lemma 27 [25, Corollary 2.3]: Let k′,
, t1 and n be
positive integers such that
 ≤ k ′ ≤ n and t1 < 2
/4. Let
X1, . . . , X t1 ⊆ {0, 1}n be sets of size |X1|, . . . , |X t1 | ≥ 2k′

.
Then, for any m1, . . . , mt1 ∈ {0, 1}k′−
 there exists
Hm ∈ Hn,k′,
 and {xi ∈ X i } such that for all i ∈ [t1],
Hm(xi) = mi .

Lemma 27 is proven using the leftover hash
lemma [2, p. 445], [5], [15] and the probabilistic method.

Proposition 28: The code DW of Construction 26 is
an (n, t, K t

b, K t2
a , ws , wx) constant-weight concatenated

WOM code.
Proof: The proof is almost the same as [23, Proof

of Lemma 2.4], except that here the codewords’ weight is
constant. Let
 = �εn/3�, k ′ = k +
 and

X i = {x ∈ {0, 1}n|x ≤ si and x ∈ Jwx (n)}.
Since x ∈ Jwx (n), we have that

|X i | =
(�wsn�

�wxn�
)

which by Stirling’s formula can be lower bounded by

≥ 2ws nH(wx /ws)−log(wsn) ≥ 2nCW −log n

≥ 2nCW −εn/3 = 2k′

For the last inequality we need εn ≥ 3 log n, which follows
from

3 log n

εn
<

3 log[(2c/ε) log(1/ε)]
c log(1/ε)

<
3 log[(40/ε) log(1/ε)]

20 log(1/ε)
< 1.

Notice also that

t1 = �(1/ε)c/12 − 1� < (1/ε)c/12

= 2
1
4

ε
3

c
ε log(1/ε) ≤ 2

1
4

εn
3 ≤ 2
/4.

So all of the conditions of Lemma 27 are met, which implies
that the encoding of Construction 26 is always successful,
and thus that DW is a constant-weight concatenated
WOM code.

Theorem 29: Construction 26 describes an efficient
capacity-achieving family of concatenated WOM coding
schemes.

EN GAD et al.: RANK-MODULATION REWRITE CODING FOR FLASH MEMORIES 4223

Proof: We first show that the family is capacity achieving.
We will need the following inequality:

2

t1
= 2

�(1/ε)c/12 − 1� < 4ε5/3 < ε/3.

Now the rate can be bounded bellow as follows:

RW = t log Kb − t2 log Ka

nt

= t1 log Kb − log Ka

nt1

= t1k − 2n

nt1

≥ t1(CW − 2ε/3) − 2

t1
> CW − 2ε/3 − ε/3

= CW − ε,

and therefore the family is capacity achieving.
To show that the family is efficient, denote the

block length of the code as N = nt . The encoding
time is

t2|Hn,k,
| ·
t1∑

i=1

|X i | ≤ t2t123n < t224n = t1+δ
2 < N1+δ,

and the decoding time is

t2 · poly(kt1n) = 24n/δ(2/ε)O(c)

< N · 2O(nε) = N · N O(δε)

= N1+O(δε).

This completes the proof of the theorem.
Remark: Note that t2 is exponential in 1/ε, and therefore

the block length N is exponential in (1/ε). This can be an
important disadvantage for these codes. In comparison, it is
likely that the block length of polar WOM codes is only
polynomial in (1/ε), since a similar results was recently shown
in [13] for the case of polar lossy source codes, on which polar
WOM codes are based.

We also note here that it is possible that the WOM
codes of Gabizon and Shaltiel [12] could be modified for
constant weight, to give RM rewriting codes with short
block length without the dither and error probability of polar
WOM codes.

VII. CONCLUSIONS

In this paper we studied the limits of rank-modulation
rewriting codes, and presented two capacity-achieving code
constructions. The construction of Section VI, based on
hash functions, has no possibility of error, but require a
long block length that might not be considered practical.
On the other hand, the construction of section V, based
on polar codes, appears to have a shorter block length, but
requires the use of common randomness and exhibit a small
probability of error. Important open problems in this area
include the rate of convergence of polar WOM codes and
the study of error-correcting rewriting codes. Initial results
regarding error-correcting polar WOM codes were proposed
in [17].

APPENDIX A
Proof of Proposition 3: We want to prove that if

�s(i +1)−�s(i) ≥ 1 for all i ∈ [q −1], and π is in SM , then

α(s → π) ≤ max
j∈[n]{σ

−1
s (j) − π−1(j)}

with equality if �s(q) − �s(1) = q − 1.
The assumption implies that

�s(i) ≤ �s(q) + i − q (5)

for all i ∈ [q], with equality if �s(q) − �s(1) = q − 1.
Next, define a set Ui1,i2 (σs) to be the union of the sets

{σs(i)}i∈[i1 :i2], and remember that the writing process sets
x j = s j if π−1(j) = 1, and otherwise

x j = max{s j , �x(π−1(j) − 1) + 1}.
Now we claim by induction on i ∈ [q] that

�x(i) ≤ i + �s(q) − q + max
j∈U1,i (π)

{σ−1
s (j) − π−1(j)}. (6)

In the base case, i = 1, and

�x(1)
(a)= max

j∈π(1)
{x j } (b)= max

j∈π(1)
{s j }

(c)≤ max
j∈π(1)

{�s(σ
−1
s (j))}

(d)≤ max
j∈π(1)

{�s(q) − q + σ−1
s (j)}

(e)= �s(q) − q + max
j∈π(1)

{σ−1
s (j) + (1 − π−1(j))}

(f)= 1 + �s(q) − q + max
j∈U1,i (π)

{σ−1
s (j) − π−1(j)}

Where (a) follows from the definition of �x(1), (b) follows
from the modulation process, (c) follows since �s(σ

−1
s (j)) =

max j ′∈σs(σ
−1
s (j)){s j ′ }, and therefore �s(σ

−1
s (j)) ≥ s j for all

j ∈ [n], (d) follows from Equation 5, (e) follows since
j ∈ π(1), and therefore π−1(j) = 1, and (f) is just a rewriting
of the terms. Note that the condition �s(q) − �s(1) = q − 1
implies that s j = �s(σ

−1
s (j)) and �s(i) = �s(q) + i − q , and

therefore equality in (c) and (d).
For the inductive step, we have

�x(i)
(a)= max

j∈π(i)
{x j }

(b)= max
j∈π(i)

{max{s j , �x(i − 1) + 1}}
(c)≤ max{ max

j∈π(i)
{s j }, (i − 1) + �s(q) − q

+ max
j∈U1,i−1(π)

{σ−1
s (j) − π−1(j)} + 1}

(d)≤ max{ max
j∈π(i)

{�s(σ
−1
s (j))}, i + �s(q) − q

+ max
j∈U1,i−1(π)

{σ−1
s (j) − π−1(j)}}

(e)≤ max{ max
j∈π(i)

{�s(q) − q + σ−1
s (j)}, i + �s(q) − q

+ max
j∈U1,i−1(π)

{σ−1
s (j) − π−1(j)}}

(f)= �s(q) − q + max{ max
j∈π(i)

{σ−1
s (j) + (i − π−1(j))}, i

+ max
j∈U1,i−1(π)

{σ−1
s (j) − π−1(j)}}

4224 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 61, NO. 8, AUGUST 2015

(g)= i + �s(q) − q + max{ max
j∈π(i)

{σ−1
s (j) − π−1(j)},

max
j∈U1,i−1(π)

{σ−1
s (j) − π−1(j)}}

(h)= i + �s(q) − q + max
j∈U1,i (π)

{σ−1
s (j) − π−1(j)}

Where (a) follows from the definition of �x(i),
(b) follows from the modulation process, (c) follows
from the induction hypothesis, (d) follows from the definition
of �s(σ

−1
s (j)), (e) follows from Equation 5, (f) follows

since π−1(j) = i , and (g) and (h) are just rearrangements of
the terms. This completes the proof of the induction claim.
As in the base case, we see that if �s(q) − �s(1) = q − 1
then the inequality in Equation 6 becomes an
equality.

Finally, taking i = q in Equation 6 gives

�x(q) ≤ q + �s(q) − q + max
j∈U1,q(π)

{σ−1
s (j) − π−1(j)}

= �s(q) + max
j∈[n]{σ

−1
s (j) − π−1(j)}

with equality if �s(q) − �s(1) = q − 1, which completes
the proof of the proposition, since α(s → π) was defined as
�x(q) − �s(q). �

APPENDIX B

Proof of Proposition 13: The proof follows a similar
proof by Heegard [14], for the case where the codewords’
weight is not necessarily constant. Given a state s, the
number of vectors x of weight �wx n� such that x ≤ s
is

(�ws n�
�wx n�

)
. Since KW cannot be greater than this number,

we have

RW = (1/n) log KW ≤ (1/n) log

(�wsn�
�wxn�

)

≤ (1/n) log 2ws nH(wx /ws) = CW ,

where the last inequality follows from Stirling’s formula.
Therefore, the capacity is at most CW .

The lower bound on the capacity is proven by the proba-
bilistic method. Randomly and uniformly partition Jwx (n) into
KW subsets of equal size,

|D−1
W (m)| = |Jwx (n)|/2nRW .

Fix m ∈ [KW] and s ∈ Jws (n), and let β(s) be the set of
vectors x ∈ Jwx (n) such that x ≤ s. Then

P(D−1
W (m) ∩ β(s) = ∅) =

|D−1
W (m)|−1∏

i=0

|Jwx (n)| − |β(s)| − i

|Jwx (n)| − i

≤
(|Jwx (n)| − |β(s)|

|Jwx (n)|
)|D−1

W (m)|
.

|β(s)| ≥ 2nCW −log(ws n), and thus

P(D−1
W (m) ∩ β(s) = ∅)

≤ (1 − |Jwx (n)|−12nCW −log(ws n))|Jwx |2−nRW

< e−(2n(CW −RW)−log(wsn)),

where the last inequality follows from the fact that
(1 − x)y < e−xy for y > 0. If RW < CW , this probability
vanishes for large n. In addition,

P(∃m ∈ [KW] and s ∈ Jws (n) s.t. D−1
W (m) ∩ β(s) = ∅)

= P
(
∪m∈[KW] ∪s∈Jws (n)

{
D−1

W (m) ∩ β(s) = ∅
})

≤
∑

m∈[KW]

∑

s∈Jws (n)

P(D−1
W (m) ∩ β(s) = ∅)

≤ 2n(RW +H(ws))e−(2n(CW −RW)−log(ws n))

This means that if RW < CW and n is large enough, the
probability that the partition is not a constant-weight strong
WOM code approaches 0, and therefore there exists such a
code, completing the proof. �

APPENDIX C

Proof of Theorem 18: We will first show that {ER, DR}
is capacity achieving, and then show that it is efficient. Let
RR = (1/n) log K R be the rate of a RM rewriting code.
To show that {ER, DR} is capacity achieving, we need to
show that for any εR > 0, RR > CR − εR , for some
q and z.

Since {EW , DW } is capacity achieving, RW > CW − εW

for any εW > 0 and large enough n. Remember that
CW = ws H (wx/ws). In {ER, DR} we use ws = (r + 1)/q
and wx = 1/q , and so CW = r+1

q H
(

1
r+1

)
. We will need to

use the inequality log Ka > a, which follows from:

log Ka > log |Sr+1,a−1|> log |S2,a−1|>2a − 2 − log 2a > a

Where the last inequality requires a to be at least 6. In addition,
we will need the inequality nW /n > 1 − q2εW , which follows
form:

nW

n
= nW

nW + q(q − r − 1)a
>

nW

nW + q2a
> 1 − q2a

nW

> 1 − q2 log Ka

nW
= 1 − q2

(
log KW

nW
− log(KW /Ka)

nW

)

> 1 − q2(CW − (CW − εW)) = 1 − q2εW .

Now we can bound the rate from below, as follows:

RR = (1/n) log K R

= (1/n) log(KM · K q−r−1
W)

> (q − r − 1)(1/n) log KW

> (q − r − 1)(CW − εW)(nW /n) (7)

> (q − r − 1)

(
r + 1

q
H

(
1

r + 1

)

− εW

)

(1 − q2εW)

= q − r − 1

q
(CR − qεW)(1 − q2εW)

= (CR − qεW)(1 − (r + 1)/q)(1 − q2εW)

> CR − CRq2εW − CR(r + 1)/q

+ (CR(r + 1)qεW − qεW) + (q3ε2 − (r + 1)q2ε2
W)

> CR − (r + 1)q2εW − (r + 1)2/q

EN GAD et al.: RANK-MODULATION REWRITE CODING FOR FLASH MEMORIES 4225

The idea is to take q =
⌊(

r+1
εW

)1/3
⌋

and εR =
3(r + 1)2/3ε

1/3
W and get that

RR > CR − (r + 1)

⌊(
r + 1

εW

)1/3
⌋2

εW − (r + 1)2
⌊(

r+1
εW

)1/3
⌋

> CR − (r + 1)2/3ε
1/3
W − 2(r + 1)2/3ε

1/3
W = CR − εR .

So we can say that for any εR > 0 and integer r , we set

εW = ε2
R

9(r+1)2 and q = �(r + 1)/
√

εW �. Now if z is
large enough then n = qz is also large enough so that
RW > CW − εW , and then Equation 7 holds and we have
RR > CR − εR .

Finally, we show that {ER, DR} is efficient. If the scheme
(hM , h−1

M) is implemented as described in [22], then the time
complexity of hM and h−1

M is polynomial in n. In addition,
we assumed that EW and DW run in polynomial time in n.
So since hM and h−1

M are executed only once in ER and DR ,
and EW and DW are executed less than q times in ER and DR ,
where q < n, we get that the time complexity of ER and DR is
polynomial in n. �

REFERENCES

[1] E. Arikan, “Channel polarization: A method for constructing
capacity-achieving codes for symmetric binary-input memoryless
channels,” IEEE Trans. Inf. Theory, vol. 55, no. 7, pp. 3051–3073,
Jul. 2009.

[2] S. Arora and B. Barak, Computational Complexity: A Modern
Approach, 1st ed. New York, NY, USA: Cambridge Univ. Press,
2009.

[3] A. Barg and A. Mazumdar, “Codes in permutations and error correc-
tion for rank modulation,” IEEE Trans. Inf. Theory, vol. 56, no. 7,
pp. 3158–3165, Jul. 2010.

[4] E. F. Beckenbach, Ed., Applied Combinatorial Mathematics. New York,
NY, USA: Wiley, 1964.

[5] C. H. Bennett, G. Brassard, and J.-M. Robert, “Privacy amplification
by public discussion,” SIAM J. Comput., vol. 17, no. 2, pp. 210–229,
Apr. 1988.

[6] D. Burshtein and A. Strugatski, “Polar write once memory
codes,” IEEE Trans. Inf. Theory, vol. 59, no. 8, pp. 5088–5101,
Aug. 2013.

[7] E. En Gad, E. Yaakobi, A. Jiang, and J. Bruck, “Rank-modulation
rewriting codes for flash memories,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Jul. 2013, pp. 704–708.

[8] E. En Gad, A. Jiang, and J. Bruck, “Compressed encoding for rank
modulation,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jul./Aug. 2011,
pp. 884–888.

[9] E. En Gad, A. Jiang, and J. Bruck, “Trade-offs between instantaneous
and total capacity in multi-cell flash memories,” in Proc. IEEE Int. Symp.
Inf. Theory (ISIT), Jul. 2012, pp. 990–994.

[10] E. En Gad, M. Langberg, M. Schwartz, and J. Bruck, “Constant-weight
Gray codes for local rank modulation,” IEEE Trans. Inf. Theory, vol. 57,
no. 11, pp. 7431–7442, Nov. 2011.

[11] F. Farnoud, V. Skachek, and O. Milenkovic, “Error-correction in flash
memories via codes in the Ulam metric,” IEEE Trans. Inf. Theory,
vol. 59, no. 5, pp. 3003–3020, May 2013.

[12] A. Gabizon and R. Shaltiel, “Invertible zero-error dispersers and defec-
tive memory with stuck-at errors,” in Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques. Berlin,
Germany: Springer-Verlag, 2012, pp. 553–564.

[13] D. Goldin and D. Burshtein. (2013). “Improved bounds on
the finite length scaling of polar codes.” [Online]. Available:
http://arxiv.org/abs/1307.5510

[14] C. D. Heegard, “On the capacity of permanent memory,” IEEE Trans.
Inf. Theory, vol. 31, no. 1, pp. 34–42, Jan. 1985.

[15] R. Impagliazzo, L. A. Levin, and M. Luby, “Pseudo-random generation
from one-way functions,” in Proc. 21st Annu. ACM Symp. Theory
Comput. (STOC), 1989, pp. 12–24.

[16] A. Jiang, V. Bohossian, and J. Bruck, “Rewriting codes for joint
information storage in flash memories,” IEEE Trans. Inf. Theory, vol. 56,
no. 10, pp. 5300–5313, Oct. 2010.

[17] A. Jiang, Y. Li, E. En Gad, M. Langberg, and J. Bruck, “Joint rewriting
and error correction in write-once memories,” in Proc. IEEE Int. Symp.
Inf. Theory (ISIT), Jul. 2013, pp. 1067–1071.

[18] A. Jiang, R. Mateescu, M. Schwartz, and J. Bruck, “Rank modulation for
flash memories,” IEEE Trans. Inf. Theory, vol. 55, no. 6, pp. 2659–2673,
Jun. 2009.

[19] A. Jiang, M. Schwartz, and J. Bruck, “Correcting charge-constrained
errors in the rank-modulation scheme,” IEEE Trans. Inf. Theory, vol. 56,
no. 5, pp. 2112–2120, May 2010.

[20] M. Kim, J. K. Park, and C. Twigg, “Rank modulation hardware for
flash memories,” in Proc. IEEE 55th Int. Midwest Symp. Circuits
Syst. (MWSCAS), Aug. 2012, pp. 294–297.

[21] S. B. Korada and R. L. Urbanke, “Polar codes are optimal for lossy
source coding,” IEEE Trans. Inf. Theory, vol. 56, no. 4, pp. 1751–1768,
Apr. 2010.

[22] O. Milenkovic and B. Vasić, “Permutation (d, k) codes: Efficient enu-
merative coding and phrase length distribution shaping,” IEEE Trans.
Inf. Theory, vol. 46, no. 7, pp. 2671–2675, Jul. 2000.

[23] T. V. Ramabadran, “A coding scheme for m-out-of-n codes,” IEEE Trans.
Commun., vol. 38, no. 8, pp. 1156–1163, Aug. 1990.

[24] R. L. Rivest and A. Shamir, “How to reuse a ‘write-once’ memory,” Inf.
Control, vol. 55, nos. 1–3, pp. 1–19, 1982.

[25] A. Shpilka. (2012). “Capacity achieving multiwrite WOM codes.”
[Online]. Available: http://arxiv.org/abs/1209.1128

[26] I. Tamo and M. Schwartz, “Correcting limited-magnitude errors in the
rank-modulation scheme,” IEEE Trans. Inf. Theory, vol. 56, no. 6,
pp. 2551–2560, Jun. 2010.

[27] C. Tian, V. A. Vaishampayan, and N. Sloane, “A coding algorithm for
constant weight vectors: A geometric approach based on dissections,”
IEEE Trans. Inf. Theory, vol. 55, no. 3, pp. 1051–1060, Mar. 2009.

[28] Z. Wang and J. Bruck, “Partial rank modulation for flash memories,” in
Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2010, pp. 864–868.

[29] E. Yaakobi, S. Kayser, P. H. Siegel, A. Vardy, and J. K. Wolf, “Codes
for write-once memories,” IEEE Trans. Inf. Theory, vol. 58, no. 9,
pp. 5985–5999, Sep. 2012.

Eyal En Gad (S’09–M’15) is a postdoctoral researcher at the Electrical
Engineering Department at the University of Southern California. He received
the B.Sc. degree in electrical engineering from the Technion - Israel Institute
of Technology, in 2008, and the M.Sc and Ph.D. degrees in electrical
engineering from the California Institute of Technology, in 2012 and 2015,
respectively. His research interests include information theory, data storage,
and data acquisition.

Eitan Yaakobi (S’07–M’12) is an Assistant Professor at the Computer
Science Department at the Technion - Israel Institute of Technology. He
received the B.A. degrees in computer science and mathematics, and the
M.Sc. degree in computer science from the Technion - Israel Institute of
Technology, Haifa, Israel, in 2005 and 2007, respectively, and the Ph.D. degree
in electrical engineering from the University of California, San Diego, in 2011.
Between 2011-2013, he was a postdoctoral researcher in the department of
Electrical Engineering at the California Institute of Technology. His research
interests include information and coding theory with applications to non-
volatile memories, associative memories, data storage and retrieval, and voting
theory. He received the Marconi Society Young Scholar in 2009 and the Intel
Ph.D. Fellowship in 2010-2011.

4226 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 61, NO. 8, AUGUST 2015

Anxiao (Andrew) Jiang (S’00–M’05–SM’12) received the B.Sc. degree in
electronic engineering from Tsinghua University, Beijing, China in 1999, and
the M.Sc. and Ph.D. degrees in electrical engineering from the California
Institute of Technology, Pasadena, California in 2000 and 2004, respectively.

He is currently an Associate Professor in the Computer Science and Engi-
neering Department and the Electrical and Computer Engineering Department
at Texas A&M University in College Station, Texas. He has been a visiting
professor at California Institute of Technology, University of California in
San Diego, Ecole Polytechnique Federale de Lausanne (EPFL) and Singapore
Data Storage Institute (DSI), and a consulting researcher at HP Labs, EMC
and Microsoft Research. His research interests include information theory,
data storage, networks and algorithm design.

Prof. Jiang is a recipient of the NSF CAREER Award in 2008 for
his research on information theory for flash memories and a recipient of
the 2009 IEEE Communications Society Best Paper Award in Signal
Processing and Coding for Data Storage.

Jehoshua Bruck (S’86–M’89–SM’93–F’01) is the Gordon and Betty Moore
Professor of computation and neural systems and electrical engineering at the
California Institute of Technology (Caltech). His current research interests
include information theory and systems and the theory of computation in
nature.

Dr. Bruck received the B.Sc. and M.Sc. degrees in electrical engineering
from the Technion-Israel Institute of Technology, in 1982 and 1985, respec-
tively, and the Ph.D. degree in electrical engineering from Stanford University,
in 1989. His industrial and entrepreneurial experiences include working with
IBM Research where he participated in the design and implementation of
the first IBM parallel computer; cofounding and serving as Chairman of
Rainfinity (acquired in 2005 by EMC), a spin-off company from Caltech
that created the first virtualization solution for Network Attached Storage; as
well as cofounding and serving as Chairman of XtremIO (acquired in 2012
by EMC), a start-up company that created the first scalable all-flash enterprise
storage system.

Dr. Bruck is a recipient of the Feynman Prize for Excellence in
Teaching, the Sloan Research Fellowship, the National Science Foundation
Young Investigator Award, the IBM Outstanding Innovation Award and the
IBM Outstanding Technical Achievement Award.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

