
Error Correction through Language Processing
Anxiao (Andrew) Jiang

Computer Science and Eng. Dept.
Texas A&M University

College Station, TX 77843
ajiang@cse.tamu.edu

Yue Li
Electrical Engineering Department
California Institute of Technology

Pasadena, CA 91125
yli@caltech.edu

Jehoshua Bruck
Electrical Engineering Dept.

California Institute of Technology
Pasadena, CA 91125

bruck@caltech.edu

Abstract—There are two fundamental approaches for error
correction. One approach is to add external redundancy to data.
The other approach is to use the redundancy inside data, even
if it is only the residual redundancy after a data compression
algorithm. The first approach, namely error-correcting codes
(ECCs), has been studied actively over the past seventy years. In
this work, we explore the second approach, and show that it can
substantially enhance the error-correction performance.

This work focuses on error correction of texts in English as a
case study. It proposes a scheme that combines language-based
decoding with ECC decoding. Both analysis and experimental
results are presented. The scheme can be extended to content-
based decoding for more types of data with rich structures.

I. INTRODUCTION

There are two fundamental information-theoretic ap-
proaches for error correction. The first one is to add external
redundancy to data, namely, to use error-correcting codes
(ECCs). A vast amount of effort has been devoted to this area
in the past seventy years, and many significant results have
been obtained. Today we have capacity-achieving LDPC codes
and polar codes, along with other successful codes including
Turbo codes, BCH codes, Reed-Solomon codes, etc.

In this work, we explore the second approach, which is to
use the redundancy inside data for error correction. Compared
to ECCs, study in this area has been much more limited.
(There is related work in joint-source-channel coding [1],
denoising [7] and language modeling [4]. Yet the problem
addressed here still has its uniqueness due to its pure focus on
error correction, the open language model and its integration
with ECC decoding.) There has been lots of research effort on
data compression, and excellent compression algorithms (e.g,
Huffman, Arithmetic and LZ coding) have been developed.
However, they do not fully remove redundancy for many
feature-rich data, such as languages, for multiple reasons. On
the theoretical side, languages lead to some of the deepest
problems in artificial intelligence, for which our understanding
is still limited. On the practical side, most storage and com-
munication devices require economic hardware or software
implementations, and a compression algorithm that dives fully
into language-like data can be too complex to use. So even
with compression, there can still be residual redundancy in
data to use for error correction. And our conjecture is that for
many types of data, such redundancy can be plenty.

There are good practical reasons to study the second ap-
proach. In data storage, the amount of data institutions and
individuals store keeps growing fast, and our dependency on
stored data has never been higher. It is necessary to keep data

highly reliable (ideally, never to be lost), so all means are
needed for this goal. The two approaches – ECC and using in-
ternal redundancy – are compatible because the latter requires
no change to the stored data. At normal times, the storage
system can correct errors as usual using ECCs. But if errors
exceed the correction capability of the ECC, – which is a rare
but important event, – the second approach can be combined
with ECC for a more powerful error correction performance.
This way, a better balance between data reliability and average
efficiency can be achieved.

We illustrate a framework for error correction in Fig. 1. A
systematic (n, k) ECC codeword (x1, · · · , xk, xk+1, · · · , xn)
is transmitted through a channel, where (x1, · · · , xk) are
information bits. The channel outputs a noisy codeword
(y1, · · · , yk, yk+1, · · · , yn). A content-based decoder uses the
redundancy in information bits to decode (y1, · · · , yk) as
(z1, · · · , zk). (In this paper we focus on language, and the
decoder becomes a language-based decoder.) The noisy code-
word (z1, · · · , zk, yk+1, · · · , yn), possibly along with its soft
information output by the content-based decoder, continues
to be decoded by a regular ECC decoder, which outputs an
estimation of the original codeword. The dotted line shows
that the output of the ECC decoder may be given to the
content-based decoder as input again, thus forming an iter-
ative decoding system (although this method is not explored
here). The framework can be extended to non-binary or non-
systematic codes, and joint decoding algorithms for content-
based decoding and ECC may also be used.

x1
xn

xk
x k+1

......
......

(
),,

,, ,

channel

y1
yn

yk
y k+1

......
......

(
),,

,, ,
Content-based

Decoder

z1
yn

zk
y k+1

......
......

(
),,

,, ,

ECC Decoder
x1 xnxk x k+1......(),,,, ,
~ ~ ~ ~

Fig. 1. A framework for error correction that combines content-based
decoding with ECC decoding.

Let us use an example to illustrate the potential of language-
based decoding.

Example 1 Consider the well known paragraph by Shannon in
Fig. 2 (a). We compress it using a Huffman code designed for

Wikipedia texts in English, and show the binary codeword in
Fig. 2 (b). We then add i.i.d. errors to the codeword with BER
(bit error rate) 1%, and show the noisy codeword in Fig. 2 (c).

To decode the noisy codeword, we first use Huffman code
to decode it, and show the resulting character string in Fig. 2
(d). It is worthwhile to note that although the errors in bits
have an error-propagation effect for characters, there are still
many character substrings that we can recognize as (probably)
correct. Let us consider those recognized substrings as decoded,
and show the result in Fig. 2 (e); for clarity, the unrecognized
segments are surrounded by angled brackets “<” and “>”.

To decode an unrecognized segment, let us use exhaustive
search by first checking all error patterns of 1 error, then 2
errors, and so on. We stop as soon as a solution emerges that can
be recognized as (probably) correct. If a segment has n bits and
t errors, at most

∑t
i=0

(
n
i

)
solutions will be checked (where we

include the trivial error pattern of no error for completeness).
That “number of all solutions” can be large; so to reduce the
effort of human scanning, we narrow it down to solutions with
two properties: (1) the bit string can be mapped successfully to a
character string by Huffman code; (2) all words in the character
string appear at least 500 times in Wikipedia (which is a quite
small word-count threshold for Wikipedia). We call solutions
with property (1) decodable solutions, and call solutions of
both properties “valid” solutions.

There are 15 unrecognized segments in total. We show their
statistics and valid solutions in Fig. 2 (f). It is noticeable that
valid solutions are very sparse; and among them, it is easy for
a human to recognize which one is the (probably) correct so-
lution. For example, for the 9th unrecognized segment, among
438128 solutions, only 4 are valid solutions; and based on the
text, it is easy to see that only “the actual message is one
selected” is the correct answer. In fact, it is easy to recognize the
correct answer for all 15 segments. (We comment that although
some words might look strange in the valid solutions, they do
appear in large text corpuses.)

Note that 1% is a large BER for storage systems. (Many
storage systems use error-correcting codes designed for BER
of 0.4% or less.) However, the noisy paragraph here has been
corrected completely via human scanning without using any
additional redundancy (as ECCs do).

The objective of our work is to replace human scanning
by machine computation, namely, to make language-based
decoding fully automated. And instead of fully correcting
data by language alone (namely, hard decoding), we are more
interested in soft decoding by language and combining it with
ECCs. As illustrated in Fig. 1, the ECC decoder can receive
soft information from the content-based decoder as improved
intrinsic information on its codeword bits.

This paper focuses on a technique we call word recognition,
namely, to recognize words in a noisy codeword by flipping no
or only a few bits. This leads to the partition of codeword bits
into stable and unstable regions based on whether a region
consists of recognized words/characters or not. The regions
have polarized error probabilities, where stable regions exhibit

significantly lower BERs. We analyze the performance of the
error correction scheme both analytically and experimentally.

This work is a continuation of Shannon’s well known 1951
paper on the entropy of the English language [5]. We have
showed some preliminary results in [2], where a decoding
algorithm by dynamic programming was used. The work
here is new in several significant ways. First, its decoding
is based on new algorithms and techniques, which achieves
faster decoding speed and more robust decoding performance.
Second, it uses soft decoding instead of hard decoding, with a
clear performance gain. The technique of word recognition
can be extended to more advanced techniques in language
processing, which remain as our future work.

II. LANGUAGE-BASED DECODING BY WORD
RECOGNITION

In this section, we present and analyze an efficient language-
based decoding technique that we call word recognition.

A. Sparsity of Words and Word Recognition

We define a word as a maximal sequence of letters in a
text. For simplicity, we do not differentiate lowercased and
uppercased words, so “Information” and “information” are
seen as the same word (of two forms). Given this definition, we
can collect words and their counts (numbers of appearances)
from a large set of texts (called a corpus). The count C(w)
of a word w approximates its likelihood of appearance. A
text can contain words, punctuation marks, numbers and
special characters (such as Latin symbols). We use this generic
language model for our decoding technique that focuses on
words. Note that if more rules are adopted in the language
model, the accuracy of decoding can be further improved.

The redundancy of language comes from multiple factors,
one of which is the sparsity of words. For i ∈ N+, let Li
denote the number of words of i letters. A first-step approxi-

mation for Li is a Gaussian distribution Li ≈ 1√
2πσ

e−
(i−µ)2

2σ2 ,
with the average word length µ ≈ 8 [6]. Since there are 26i

possible letter strings of length i, the density of words of length

i, Di , Li
26i ≈

1√
2πσ

e−
(i−µ)2

2σ2 26−i, decreases exponentially
fast for large word length.

In the following, we analyze the effectiveness of word
recognition given the sparsity of words. Let H be a Huffman
code that maps characters to binary codewords. Then for a
word w = (l1l2 · · · lm) of m letters, its Huffman codeword
is H(w) , (H(l1),H(l2), · · · ,H(lm)). Let C be the set
of characters (including letters and other characters). Let
c ∈ C be a character, whose frequency of appearance is
f(c). Then for a Huffman code optimized for this frequency
distribution, the length of the binary Huffman codeword for c
is |H(c)| ≈ − log2 f(c).

Assume that a word w appears with probability p(w) =
C(w)
CT

, where C(w) is the count of w and CT is the total count
of words (i.e., a normalization factor). Let dH(·, ·) denote
the Hamming distance between two vectors. Now consider
a communication model. A sender chooses a word w with

The fundamental problem of communication is that of reproducing at one point either exactly or approximately a message selected at
another point. Frequently the messages have meaning; that is they refer to or are correlated according to some system with certain
physical or conceptual entities. These semantic aspects of communication are irrelevant to the engineering problem. The significant
aspect is that the actual message is one selected from a set of possible messages. The system must be designed to operate for
each possible selection, not just the one which will actually be chosen since this is unknown at the time of design.

(a)

(b) 101101100001111100101101000001110010111101000001001111001010101000110000101110111001010000010001100111......000

(c) 101101100001111100101101000001110000111101000001001111001010101000110000101110111001010000000001100111......000

(d) The fuidamental proc nra of communication is that of reproducing at one point eithea exactly or approximatelorgaaessage selected at
another point. Frecduently the messages have meaning; that is they epoer to y(nri,rrelated according to some system with certain
pnsesica.sl c aih0ohal entities. These semantic aspects of communication are irrelevast to the engineering problem. The tignificant
atpecs is that thloc a o iaaessa nrrffnledlected from a set of possible ne0nles. The system muszae designed to operquttidach
possible selection, 0t just the one which wil)cohally be chosen since t, olfa rig iwn at the time of design.

(e) The <fuidamental proc nra >of communication is that of reproducing at one point <eithea> exactly or <approximatelorgaaessage>
selected at another point. <Frecduently> the messages have meaning; that is they <epoer to y(nri,rrelated> according to some
system with certain <pnsesica.sl c aih0ohal >entities. These semantic aspects of communication are <irrelevast> to the engineering
problem. The <tignificant atpecs> is that <thloc a o iaaessa nrrffnledlected> from a set of possible < ne0nles>. The system
<muszae> designed to <operquttidach> possible selection, <0t> just the one which <wil)cohally> be chosen since <t, olfa rig iwn> at
the time of design.

(f)
Segment

index
Number
of bits

Number
of errors

Number of
all solutions

Number of
decodable
solutions

Number of
"valid"

solutions

"Valid" solutions

1 92 2 4279 3547 6 (1) fundamental proc ira (2) fundamental proc-m
(3) fundamental problem (4) fundamental pro w ra
(5) fundamental pr ch ra (6) fundamental t9ch ra

2 23 1 24 8 1 (1) either

3 2105 5566 4564 2 (1) approximately a message (2) approximate tna message

......

15 68 3 52463 27689 21 (1) t, ol8 ri il; (2) t, ol8 ri i.un (3) t, e is un,uc1 (4) t, e is un g
own (5) t, is unknown (6) t, is un,uc1 (7) t, is un g own
(8) t,p is unknown (9) t,p is un,uc1 (10) t,p is un g own (11)
this is unknown (12) this is un,uc1 (13) t, old unknown (14)
this is un g own (15) t, old un,uc1 (16) t, old un g own (17) t,
ol ai9ti.un (18) t, ol ai"ti.un (19) t, o"nun,uc1 (20) t, o"nun g
own (21) t, e is unknown

9 138 3 438128 373033 4 (1) th actual message is on selected (2) th actual message
is one selected (3) the actual message is on selected (4) the
actual message is one selected

......

Fig. 2. Illustration of the potential of error correction through language processing (namely, language-based decoding).

probability p(w), compresses it into a Huffman codeword
X = (x1, x2, · · · , xn) ∈ {0, 1}n, and transmits X through
a binary symmetric channel (BSC) with error probability pb.
A receiver receives a noisy codeword Y = (y1, y2, · · · , yn).
If there happens to be a word v such that dH(Y,H(v)) ≤ δ
for some small integer δ (namely, the receiver recognizes a
word v from the received binary codeword by flipping at most
δ bits), what is the likelihood that w = v (namely, the word
recognition is correct)? Let us denote this likelihood by Pw=v ,
and call it the confidence of word recognition.

The exact computation of Pw=v is complex because it
depends on the distribution of letter compositions in words

(namely, the letters in words are not i.i.d. in practice) and
numerous other factors. For practical decoding, we are more
interested in how different parameters, – including word
length, word count and δ – impact the value of Pw=v , which
is important for optimizing decoding algorithms. We estimate
the impact of these parameters as follows.

1) Impact of Word Length: For simplicity, assume all
letters have the same frequency of appearance, and their
Huffman codewords have the same length. Then the receiver
can determine the number of letters in word w, which we
denote by m. (In practice, a reasonably small range for m
may be determined for long words.) Since the character

set is fixed, n = Θ(m). Let W1 = v,W2, · · · ,WLm

denote the words of m letters. For i = 2, 3, · · · , Lm,
we have Pr{w=Wi|Y}

Pr{w=W1|Y} = Pr{w=Wi}Pr{Y|w=Wi}
Pr{w=W1}Pr{Y|w=W1} =

C(Wi)p
dH (Y,H(Wi))

b (1−pb)n−dH (Y,H(Wi))

C(W1)p
dH (Y,H(W1))

b (1−pb)n−dH (Y,H(W1))
. Let us denote

dH(H(W1),H(Wi)) by di. Given that pb < 0.5,
dH(Y,H(W1)) ≤ δ and the triangle inequality
dH(Y,H(Wi)) ≥ dH(H(W1),H(Wi)) − dH(Y,H(W1)) ≥
di−δ, we get Pr{w=Wi|Y}

Pr{w=W1|Y} ≤
C(Wi)p

di−δ
b (1−pb)n−di+δ

C(W1)pδb(1−pb)n−δ
. Notice

that for large word length m = Θ(n), Lm (the number of
words of length m) decreases exponentially fast. If we assume
the Huffman codewords H(W1), · · · ,H(WLm) are uniformly
distributed in the binary vector space {0, 1}n, for large m,
the minimum distance between words (including di) grows at
the order of Θ(n). So the ratio Pr{w=Wi|Y}

Pr{w=W1|Y} , αi decreases
exponentially in m. And the confidence of word recognition
Pw=v = Pr{w = W1|Y} = Pr{w=W1|Y}∑Lm

i=1 Pr{w=Wi|Y}
= 1

1+
∑Lm
i=2 αi

approaches one exponentially fast in the word length m.
2) Impact of Word Count: By the above analysis, we see

that Pr{w=Wi|Y}
Pr{w=W1|Y} is proportional to C(Wi) and inversely pro-

portional to C(W1). So when the word count of the recognized
word v increases, the confidence of word recognition increases
steadily, but not exponentially fast.

3) Impact of Number of Flipped Bits: To recognize a word
v given the noisy Huffman codeword Y , we need to flip up to
δ bits. By the above analysis, we see that the upper bound to
Pr{w=Wi|Y}
Pr{w=W1|Y} increases exponentially in δ. So as the number
of bits we need to flip in the received noisy codeword Y
increases in order to recognize a word, the confidence of word
recognition decreases exponentially fast.

The above observations through analysis is consistent with
our experimental observations. Therefore, in our language-
based decoding algorithm, we assign great weights to long
recognized words, moderate weights to recognized words of
large counts, and very small weights to words that require
flipping multiple bits before they can be recognized.

B. Greedy Huffman Decoding and Its Synchronization

A fast speed of word recognition in a noisy bit sequence can
be obtained for a reason we call character synchronization. As
we have observed in Fig. 2, after a character string has been
compressed by a Huffman code and then errors are added
to its bits, when we decompress it, we still recognize many
words. This means error propagation in recovered characters
is not serious. More generally, given a noisy binary substring
of the Huffman codeword for a character string, if it is not
known where the error-free words begin in the substring, we
can start decompressing at any position and still may recognize
words. This enables us to use a greedy algorithm to recognize
words, and quickly partition the binary string into “segments
with recognized words” and the remaining segments, and
consequently, quickly reduce the decoding problem with a
large input to subproblems with small inputs.

Given a Huffman code for a character set C =
{c1, c2, · · · , cm}, assuming the characters in a character string

are i.i.d. with probabilities f(c) for c ∈ C, the rate of
synchronization can be analyzed. Let us illustrate it with
a basic case. Assume there are m = 3 characters, with
H(c1) = (0), H(c2) = (10) and H(c3) = (11). Consider
a binary string B1 = (b0, b1, b2, b3, · · ·) that is the Huffman
codeword for a character string, and suppose an error changes
its first bit, therefore changing the binary string to B2 = (b′0 =
1 − b0, b1, b2, b3, · · ·). We define the synchronization delay
Dsync ∈ {1, 2, 3 · · · } to be bit index such that starting at
bDsync , the Huffman code decodes B1 and B2 to the same
characters. (For example, if B1 = (0, 1, 0, 1, 1, 0, 1, 1, · · ·)
and B2 = (1, 1, 0, 1, 1, 0, 1, 1, · · ·), we have Dsync = 3,
because H−1(B1) = (c1, c2, c3, c1, c3, · · ·) and H−1(B2) =
(c3, c1, c3, c1, c3, · · ·), which become synchronized at bit b3.)

Proposition 2 When b0 = 0, for i = 0, 1, 2 · · · , Pr{Dsync =
2i+1} = pi3p1, and Pr{Dsync = 2i+2} = pi3p2; the expected
synchronization delay is E(Dsync) = 2−p1

1−p3 .
When b0 = 1, we have Pr{Dsync = 1} = 0, Pr{Dsync =

2} = p2
p2+p3

, and for i = 1, 2, 3 · · · , Pr{Dsync = 2i + 1} =
pi3p1
p2+p3

and Pr{Dsync = 2i + 2} =
pi3p2
p2+p3

; the expected
synchronization delay is E(Dsync) = 2

1−p3 + p1p3
(1−p1)(1−p3) .

We see that Pr{Dsync = i} decreases exponentially in i.
This means synchronization is fast and is helpful for decoding.

C. Combined Language-ECC Decoding Algorithm

We now present our error correction scheme. It has two
steps: language-based decoding, and ECC decoding. (See
Fig. 1.) The language-based decoding algorithm takes the
noisy Huffman codeword for a text as input, and keeps
finding more substrings that consist of recognized words as
follows: (1) Decompress the codeword into characters, and
greedily find substrings that consist of words of sufficiently
great total length and count (let us call such a substring a
“good n-gram”); (2) For a substring that is not a good n-
gram, try decompressing it starting at a few different bit
positions (to further reduce the effect of error propagation),
to recognize more good n-grams; or flip one bit in it and then
recognize more good n-grams in the same way. The algorithm
is greedy and efficient. Each substring of the noisy Huffman
codeword that corresponds to a recognized good n-gram is
called a stable region. The remaining substrings are called
unstable regions. In the end, the language-based decoding
algorithm partitions the noisy Huffman codeword into stable
and unstable regions. (Note that some bits may have been
flipped.) Since stable/unstable regions reflect our observation
on where errors concentrate, stable regions tend to have a
much lower error probability than unstable regions.

The ECC decoder then decodes the noisy ECC codeword
(which contains the updated noisy Huffman codeword as
its information bits) with soft decoding as usual, with one
modification: stable (resp., unstable) regions are assumed to
have error probability pst (resp., pun), while the parity-check
bits are still assumed to have the original error probability.
(pst and pun are parameters set empirically beforehand.) It can

be shown that for LDPC codes, with this improved intrinsic
information, a better decoding threshold can be achieved. We
skip its details due to space limitation.

III. EXPERIMENTAL PERFORMANCE

We now show by experiments that the language-based
decoding algorithm can significantly improve error correction
performance. The data source for experiments is Wikipedia,
a very large and commonly used corpus for text analysis.
We use around 2/3 of its English texts as training data and
around 1/3 for tests. The training texts contain over 1 million
distinct words, which are recorded along with their counts
(numbers of appearances). The size of such a dictionary
is negligible for most storage systems. We also design a
Huffman code for the 117 characters in the used articles, which
include letters, numbers, punctuation marks and other special
characters, based on the characters’ frequencies.

The ECC we use is an (4376, 4095) LDPC code designed
by MacKay [3]. It has a rate of 0.936 and is designed for
BSC of error probability 0.2%, a typical parameter setting in
storage systems. In experiments, randomly chosen texts are
compressed by the Huffman code, partitioned into 4095-bit
segments, and encoded by the LDPC code. Then random bit
errors are added to codewords, and decoding is performed. We
show the estimated bit error probabilities for stable regions
(resp., unstable regions) as pst (resp., pun) in Fig. 3, which
were set empirically before the experiments.

BER 0.2% 0.3% 0.4% 0.5% 0.6% 0.7%
pst 0.05% 0.065% 0.085% 0.095% 0.11% 0.13%
pun 0.65% 0.95% 1.3% 1.6% 1.9% 2.1%

BER 0.8% 0.9% 1.0% 1.1% 1.2% 1.3%
Pst 0.14% 0.15% 0.16% 0.18% 0.19% 0.2%
Pun 2.3% 2.6% 2.8% 2.9% 3.1% 3.2%

Fig. 3. Estimated bit error probability for stable regions (pst) and unstable
regions (pun) for different BER.

We let the error probability (BER) range from 0.2% to 1.3%,
and randomly generate 1000 codewords for each BER. We
measure performance by the percentage of codewords decoded
successfully (called success rate of decoding). The results are
shown in the table of Fig. 4, which also illustrates them in a
figure. Here Pldpc is the success rate of using the LDPC code
alone, and Psoft is the success rate of combining language-
based decoding with LDPC decoding. For comparison, we
also show Phard, defined as hard-decision language-based
decoding combined with LDPC decoding, where the LDPC
decoder uses the BER (instead of the soft information pst and
pun) as intrinsic information for codeword bits.

It is easy to see that language-based decoding combined
with LDPC decoding corrects errors significantly better than
the LDPC code alone. While Pldpc drops toward 0 quickly
after BER exceeds 0.4%, the combined language-LDPC de-
coding can still correct a significant fraction of codewords.
And the difference between Psoft and Phard clearly shows
the importance of soft information pst and pun.

BER 0.2% 0.3% 0.4% 0.5% 0.6% 0.7%
Pldpc 100% 98.2% 77.5% 27.4% 2.9% 0
Phard 100% 99.8% 98.6% 93.9% 78.1% 51.5%
Psoft 100% 99.9% 99.5% 97.9% 94.2% 84.6%

BER 0.8% 0.9% 1.0% 1.1% 1.2% 1.3%
Pldpc 0 0 0 0 0 0
Phard 27.6% 9.8% 2.2% 0.3% 0.1% 0
Psoft 67.1% 47.8% 26.7% 12.4% 3.9% 1.4%

0%

20%

40%

60%

80%

100%

0.2% 0.4% 0.6% 0.8% 1% 1.2% 1.4%

D
e

co
d

in
g

 S
u

cc
e

ss
 R

a
te

BER

Pldpc
Phard
Psoft

Fig. 4. The success rate of decoding with LDPC code alone (Pldpc) and
hard or soft language-based decoding combined with LDPC decoding (Phard

and Psoft, respectively), when the bit error probability (BER of a binary-
symmetric channel) increases from 0.2% to 1.3%.

We can also roughly estimate the reduction in storage re-
dundancy the language-based decoding achieves. For any BER
= p ≥ 0.2%, if an ECC alone is used, to achieve the same suc-
cess rate as Psoft, a fraction of Psoft codewords would need to
use an ECC of rate at least 1−H(p) instead of 1−H(0.002).
For i = 1, 2, · · · , 12, let pi = 0.2%, 0.3%, · · · , 1.3% as in
Fig. 4, and let Psoft,i be the Psoft corresponding to p = pi. So
given k →∞ information bits, the “ECC alone” approach will
assign at least R =

∑11
i=1

(Psoft,i−Psoft,i+1)k
1−H(pi)

+
Psoft,12k
1−H(p12)

− k
parity-check bits, while the language-ECC approach will as-
sign approximately r = k

1−H(0.002) − k parity-check bits. The
“ECC alone” approach needs R/r times the redundancy as
the language-ECC approach does. We get R/r = 3.52, a very
significant improvement in redundancy.

REFERENCES

[1] E. Akyol, K. Rose and T. Ramstad, “Optimal mappings for joint source
channel coding,” in Proc. ITW, pp. 150–154, 2010.

[2] Y. Li, Y. Wang, A. Jiang and J. Bruck, “Content-assisted file decoding
for nonvolatile memories,” in Proc. 46th Asilomar Conference on Signals,
Systems and Computers, pp. 937–941, 2012.

[3] D. MacKay, Encyclopedia of Sparse Graph Codes, http : //www.
inference.phy.cam.ac.uk/mackay/codes/data.html#l132.

[4] A. Orlitsky and N. P. Santhanam, “Performance of universal codes over
infinite alphabets,” in Proc. Data Compression Conference, pp. 402–410,
2003.

[5] C. Shannon, “Prediction and entropy of printed English,” in Bell System
Technical Journal, vol. 30, no. 1, pp. 50–64, 1951.

[6] R. Smith, “Distinct word length frequencies: distributions and symbol
entropies,” in Glottometrics, vol. 23, pp. 7-22, 2012.

[7] T. Weissman, E. Ordentlich, G. Seroussi, S. Verdu and M. J. Weinberger,
“Universal discrete denoising: Known channel,” in IEEE Trans. Informa-
tion Theory, vol. 51, no. 1, pp. 5-28, 2005.

