
Enhanced Error Correction via Language Processing
Anxiao (Andrew) Jiang

Computer Science and Eng. Dept.
Texas A&M University

College Station, TX 77843
ajiang@cse.tamu.edu

Yue Li
Electrical Engineering Department
California Institute of Technology

Pasadena, CA 91125
yli@caltech.edu

Jehoshua Bruck
Electrical Engineering Dept.

California Institute of Technology
Pasadena, CA 91125

bruck@caltech.edu

I. INTRODUCTION

There are two fundamental approaches for error correction.
One approach is to add external redundancy to data. The
other approach is to use the redundancy inside data, even if
it is only the residual redundancy after a data compression
algorithm. The first approach, namely error-correcting codes
(ECCs), has been studied actively over the past seventy years.
In this work, we explore the second approach, and show that
it can substantially enhance the error-correction performance.

There are good practical reasons to study the second ap-
proach. In data storage, including flash-memory systems, the
amount of data institutions and individuals store keeps growing
fast, and our dependency on stored data has never been higher.
It is necessary to keep data highly reliable (ideally, never to be
lost), so all means are needed for this goal. The two approaches
– ECC and using internal redundancy – are compatible because
the latter requires no change to the stored data. At normal
times, the storage system can correct errors as usual using
ECCs. But if errors exceed the correction capability of the
ECC, – which is a rare but important event, – the second
approach can be combined with ECC for a more powerful error
correction performance. This way, a better balance between
data reliability and average efficiency can be achieved.

This work focuses on error correction of texts in English as
a case study. (For an illustrative example, see the full paper of
this work [2].) It proposes a scheme that combines language-
based decoding with ECC decoding. Both analysis and exper-
imental results are presented, and in particular, we have tested
its experimental performance in a flash memory testbed under
highly practical settings. The tested ECCs are LDPC codes,
a family of capacity-approaching codes important for memo-
ries, and our results show that language-based decoding can
very significantly enhance the error correction performance of
LDPC codes by providing useful soft information.

This work is a continuation of Shannon’s well known 1951
paper on the entropy of the English language. It is also
related to our prior work [3], where a decoding algorithm by
dynamic programming was used. The work here is new in
several significant ways. First, its decoding is based on new
algorithms and techniques, which achieves faster decoding
speed and more robust decoding performance. Second, it
uses soft decoding instead of hard decoding, with a clear

This work was supported in part by the NSF Grant CCF-1217944, a grant
from Intellectual Ventures, and the BSF Grant 2010075.

performance gain. Due to space limitation, we skip many
details here. Interested readers may refer to the full paper [2].
And part of the results here are also presented in our work [1].

II. LANGUAGE-BASED ERROR CORRECTION

Let us first introduce the ideas and practice of language-
based decoding. Consider a text file compressed by a Huffman
code into a binary string B = (b1, b2, · · · , bn), where the
Huffman code is optimized for English texts with characters
(letters, punctation marks, etc.) as its alphabet. Add i.i.d.
errors to the binary string with BER (bit-error rate) p, and
we get a noisy binary string B′ = (b′1, b

′
2, · · · , b′n). When

we greedily decompress B′ back into a text file, as long as
p is not too large (e.g., p < 2%), it can be experimentally
found that typically many segments of it are correct and easily
recognizable, because the other segments are meaningless
strings of random characters. (See [2] for a concrete example.)
In other words, the greedily recovered text file typically
consists of alternating “good” and “bad” segments, where good
segments consist of valid words that can be easily collected
from any large text corpus, while bad segments are just the
opposite. This phase-transition phenomenon enables efficient
language-based decoding: first, we can greedily decompress a
file, and recognize the good segments (which we call stable
regions) using a dictionary of words; second, for the bad
segments (which we call unstable regions), we can search for
nearby solutions by flipping at most a few bits, and recognize
more good segments; the process can be repeated recursively
until we reach a satisfactory solution or a time bound. Data
structures can be used to further reduce time complexity.

The binary string B corresponds to the information bits
of a systematic ECC. Our decoding consists of two steps:
language-based decoding and ECC decoding. The language-
based decoding algorithm partitions information bits into sta-
ble and unstable regions, where bits in stable (resp., unstable)
regions can be assigned an updated BER pst < p (resp.,
pun > p). (That is, the decoding helps polarize the distribution
of BERs across bits.) This updated soft information is given to
the ECC (which is an LDPC code in our work) as the update
intrinsic information for information bits. The ECC performs
its regular soft decoding algorithm and outputs the final result.

Two important properties make language-based decoding
effective. First, the recognized words (in stable regions) are
correct solutions with high probability. This is mainly due to
the high sparsity of words. Second, errors in a compressed



file do not cause substantial error propagation in the de-
compressed file. This is mainly due to fast synchronization
of characters with prefix-free codes. We present theoretical
analysis of the two properties in the full paper [2], which
considers a number of parameters including word length
distribution, word frequencies, BERs, etc.

III. EXPERIMENTAL PERFORMANCE

We now show by experiments that the language-based
decoding algorithm can significantly improve error correction
performance. The data source for experiments is Wikipedia,
a very large and commonly used corpus for text analysis.
We use around 2/3 of its English texts as training data and
around 1/3 for tests. The training texts contain more than 1
million distinct words, which are recorded along with their
counts (numbers of appearances). The size of such a dictionary
is negligible for most storage systems. We also design a
Huffman code for the 117 characters in the used articles, which
include letters, numbers, punctuation marks and other special
characters, based on the characters’ frequencies.

The ECC we use is an (4376, 4095) LDPC code designed
by MacKay [4]. It has a rate of 0.936 and is designed for
BSC of error probability 0.2%, a typical parameter setting in
storage systems. In experiments, randomly chosen texts are
compressed by the Huffman code, partitioned into 4095-bit
segments, and encoded by the LDPC code. Then random bit
errors are added to codewords, and decoding is performed. We
show the estimated bit error probabilities for stable regions
(resp., unstable regions) as pst (resp., pun) in Fig. 1, which
were set empirically before the experiments.

BER 0.2% 0.3% 0.4% 0.5% 0.6% 0.7%
pst 0.05% 0.065% 0.085% 0.095% 0.11% 0.13%
pun 0.65% 0.95% 1.3% 1.6% 1.9% 2.1%

BER 0.8% 0.9% 1.0% 1.1% 1.2% 1.3%
Pst 0.14% 0.15% 0.16% 0.18% 0.19% 0.2%
Pun 2.3% 2.6% 2.8% 2.9% 3.1% 3.2%

Fig. 1. Estimated bit error probability for stable regions (pst) and unstable
regions (pun) for different BER.

We let the error probability (BER) range from 0.2% to 1.3%,
and randomly generate 1000 codewords for each BER. We
measure performance by the percentage of codewords decoded
successfully (called success rate of decoding). The results are
shown in the table of Fig. 2, which also illustrates them in a
figure. Here Pldpc is the success rate of using the LDPC code
alone, and Psoft is the success rate of combining language-
based decoding with LDPC decoding. For comparison, we
also show Phard, defined as hard-decision language-based
decoding combined with LDPC decoding, where the LDPC
decoder uses the BER (instead of the soft information pst and
pun) as intrinsic information for codeword bits.

It is easy to see that language-based decoding combined
with LDPC decoding corrects errors significantly better than
the LDPC code alone. While Pldpc drops toward 0 quickly
after BER exceeds 0.4%, the combined language-LDPC de-
coding can still correct a significant fraction of codewords.

BER 0.2% 0.3% 0.4% 0.5% 0.6% 0.7%
Pldpc 100% 98.2% 77.5% 27.4% 2.9% 0
Phard 100% 99.8% 98.6% 93.9% 78.1% 51.5%
Psoft 100% 99.9% 99.5% 97.9% 94.2% 84.6%

BER 0.8% 0.9% 1.0% 1.1% 1.2% 1.3%
Pldpc 0 0 0 0 0 0
Phard 27.6% 9.8% 2.2% 0.3% 0.1% 0
Psoft 67.1% 47.8% 26.7% 12.4% 3.9% 1.4%

0%

20%

40%

60%

80%

100%

0.2% 0.4% 0.6% 0.8% 1% 1.2% 1.4%

D
e

co
d

in
g

 S
u

cc
e

ss
 R

a
te

BER

Pldpc
Phard
Psoft

Fig. 2. The success rate of decoding with LDPC code alone (Pldpc) and
hard or soft language-based decoding combined with LDPC decoding (Phard

and Psoft, respectively), when the bit error probability (BER of a binary-
symmetric channel) increases from 0.2% to 1.3%.

And the difference between Psoft and Phard clearly shows
the importance of soft information pst and pun.

We can also roughly estimate the reduction in storage re-
dundancy the language-based decoding achieves. For any BER
= p ≥ 0.2%, if an ECC alone is used, to achieve the same suc-
cess rate as Psoft, a fraction of Psoft codewords would need to
use an ECC of rate at least 1−H(p) instead of 1−H(0.002).
For i = 1, 2, · · · , 12, let pi = 0.2%, 0.3%, · · · , 1.3% as in
Fig. 2, and let Psoft,i be the Psoft corresponding to p = pi. So
given k →∞ information bits, the “ECC alone” approach will
assign at least R =

∑11
i=1

(Psoft,i−Psoft,i+1)k
1−H(pi)

+
Psoft,12k
1−H(p12)

− k
parity-check bits, while the language-ECC approach will as-
sign approximately r = k

1−H(0.002) − k parity-check bits. The
“ECC alone” approach needs R/r times the redundancy as
the language-ECC approach does. We get R/r = 3.52, a very
significant improvement in redundancy.

Our scheme has also been tested in a flash memory testbed
using 16nm MLC NAND flash under practical settings. The
results again show significant performance improvement in
error correction. Interested readers can refer to [2] for details.

REFERENCES

[1] A. Jiang, Y. Li and J. Bruck, “Error correction through language process-
ing,” to appear in Proc. IEEE Information Theory Workshop, 2015.

[2] A. Jiang, Y. Li and J. Bruck, “Enhanced error correction via lan-
guage processing,” full paper, 2014. Available online at http :
//faculty.cs.tamu.edu/ajiang/enhanced.pdf .

[3] Y. Li, Y. Wang, A. Jiang and J. Bruck, “Content-assisted file decoding
for nonvolatile memories,” in Proc. 46th Asilomar Conference on Signals,
Systems and Computers, pp. 937–941, 2012.

[4] D. MacKay, Encyclopedia of Sparse Graph Codes, http : //
www.inference.phy.cam.ac.uk/mackay/codes/data.html#l132.


