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Abstract—Secure Write-Efficient Memory (WEM) was
proposed in [11] to solve the endurance and the insecure
deletion problems in flash memories. Information theo-
retical results, i.e., the achievable region and the secrecy
rewriting capacity, have been obtained. In this work, a code
construction for secure WEM is presented and it is optimal
for a large family of secure WEM.

I. INTRODUCTION

In this section, we present the background of secure
Write-Efficient Memories including their motivations
and formal definitions, brief obtained information theory
results in [11], and show our contributions.

A. Motivation of secure Write-Efficient Memories

Flash memories are significant non-volatile memory
techniques. The smallest unit of flash memory is a cell,
which contains a control gate, a floating gate and so on.
Data is represented by the number of electrons trapped
in the floating gate. There are three basic operations on
a cell, program, i.e., to eject electrons into the floating
gate, read, i.e., to measure the number of electrons in
the floating gate, and erase, i.e., to remove electrons
from the floating gate. Each flash chip is composed of
blocks, each block consists of pages, and a page is made
up of cells. Similarly, there are three operations for a
block, i.e., program, read and erase, however, the unit
of programming and reading is a page, and the unit of
erasing is a block.

There are two challenges in flash memories, one
is the well-known endurance problem and the other
one is the less well-known insecure deletion problem.
The endurance problem means flash memory can only
experience a limited number of program/erase cycles
after which its reliability can not be guaranteed. The
current code solution for endurance is the rewriting
codes, e.g., Write-Once Memories [15], and Write-
Efficient Memories (WEM) [1], etc. Recently there is
a large amount of work for rewriting code [3], [4], [6],
[12], [16] showing the existance of optimal constructions
for them and system work [14], [18] showing various
benefits rewriting code bringing to flash memories.

Insecure deletion means Flash Translation Layer
(FTL) produces multiple copies of data that can not
be deleted completely as they are either impossible or

costly, however, a sophisticated attacker can recover and
obtain information about the data.

We illustrate the insecure deletion in detail here. The
first reason causing this is the existence of multiple
copies of codewords in flash memories. Flash memories
are not perfect as there are various errors, thus a strong
error correcting code is used to combat errors. Memory
scrubbing is also used to protect flash memories, which
is to correct a noisy codeword and write a new error-free
codeword back to memories. However, due to the out-
of-place rewriting policy, the updated codeword is stored
at a new physical address and the original codeword re-
mains in memories. Those mechanisms lead to multiple
copies of codewords existing in memories. Other reasons
causing this are weal leveling and garbage collection. A
recent study by Desnoyers [5] theoretically estimates that
on overage 3 ∼ 13 copies of codewords can be generated
for one write issued by a user, and the exact number
depends on the work load traffic and various algorithms
(e.g., garbage collection algorithms) used.

For current flash memory solutions, when to delete
data, it is either impossible or costly to delete all copies
of codewords corresponding to the data due to the
imperfections of the physical erasure process and the
FTL [7]. However, when the flash memory is attacked
by an eavesdropper, (who is able to trace all copies of
codewords corresponding to the same data, and is aware
of all encoding and decoding algorithms, thus leading
to much stronger decoding ability than the decoder
having access to a single codeword [10]), the sensitive
information can be leaked. Unfortunately, there is barely
no coding solution to solve the insecure deletion for flash
memories.

In a recent paper [11], a new coding scheme was pro-
posed, Secure Write-Efficient Memories. The significance
of secure WEM is two-fold, on the practical side it is
the first coding model combating both the endurance and
the insecure deletion; on the theoretical side it extends
the current research scope of rewriting codes in a similar
way as wiretap channel coding [17] extends the channel
coding model.

B. Definition of secure WEM
In the secure WEM setting (shown in Figure 1),

Alice wishes to store messages in a limited lifetime
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Fig. 1. The secure WEM model. CH is the wiretap channel.
M,xN−1

0 , yN−1
0 , zN−1

0 and M̂ are the message to rewrite, the
current cell states, the rewrite codeword, the wiretap channel’s output
and the estimated message, respectively.

storage medium using a rewriting code, WEM [1], the
messages are accessible to Bob through a storage chan-
nel, which is assumed noiseless for simplicity, but her
transmissions also reach an eavesdropper Eve through
a wiretap channel. Alternatively, let M be the message
that Alice wishes to store. Based on the message M
and the current N cell state vector xN−10 , the rewriter
maps M to an N -bit codeword yN−10 . This codeword is
transmitted through the noiseless storage channel and the
wiretap channel resulting yN−10 and zN−10 . The decoder
estimates yN−10 to recover the message M .

The goal of secure WEM codes is to design a rewriting
coding scheme such that it is possible to store messages
cost-effectively and securely. Being cost-effective means
for each rewrite the defined rewriting cost, i.e., which
is measured by ϕ(xN−10 , yN−10 ) for a defined cost ϕ(·),
has to be less than a predefined number to solve the
endurance problem. Being secure means the uncertainty
of the eavesdropper about the message M after observing
the wiretap channel output zN−10 , i.e., which is measured
by 1

NH(M |zN−10 ) [17], also satisfies a predefined con-
straint to solve the insecure deletion problem.

The following notations will be used to define secure
WEM. For Alice and Bob, let X be the alphabet of
the symbols stored in a cell, and Z be that for Eve.
∀x, y ∈ X , let the rewriting cost of changing a cell’s
level from x to y be ϕ(x, y), which may be time or
energy taken. Given N cells and xN−10 , yN−10 ∈ XN ,

let ϕ(xN−10 , yN−10 ) = 1
N

N−1∑
i=0

ϕ(xi, yi) be the average

rewriting cost of changing the N cell levels from xN−10

to yN−10 .
Let D ⊆ N and it denotes the |D| possible values of

the data stored in the N cells. Let the decoding function
be D : XN → D, which maps the N cells’ levels to
the data they represent. Let the rewriting function be
R : XN ×D → XN , which changes the N cells’ levels
to represent the new input data.

We present the definition of secure WEM codes in the
following.

Definition 1. An (N, 2NR, Re, D) secure write-efficient
memory code with a wiretap channel P = (X ,Z, PZ|X)

and the rewriting cost function ϕ(·) consists of
• D = {0, 1, · · · , 2NR − 1} and its corresponding

codewords
⋃2NR−1
i=0 Ci, where Ci ⊆ XN is the set of

codewords representing data i. We require ∀i 6= j,
Ci
⋂
Cj = ∅;

• R(M,xN−10 ) such that
– ϕ(xN−10 ,R(M,xN−10 )) ≤ D for any M ∈ D

and xN−10 ∈ XN ;
– 1

NH(M |zN−10 ) ≥ Re − ε for any M ∈
D, zN−10 ∈ Zn, ε > 0 as N →∞.

• D(yN−10 ) such that D(R(xN−10 ,M)) = M for all
M ∈ D and xN−10 ∈ XN .

That is, the first condition indicates that each data is
represented by a group of codewords, the first require-
ment of the rewriting function indicates that during each
rewrite the average rewriting cost between the current
codeword xN−10 and the updated codeword yN−10 is less
than a predefined number, the second requirement of the
rewriting function indicates that the leaked information
of the message at the eavesdropper is limited, and the
last one indicates that the decoder knows the rewritting
message given a rewriting codeword.

C. Main results of secure WEM [11]

Previous work of [11] introduces us the model of
secure WEM, and presents us some information theory
results, for which we recap in the following.

The following notations will be used. Let P(X ×X )
be the set of joint probability distributions over X ×X .
For a pair of random variables (X,Y ) ∈ (X ,X ),
let PXY , PX , PX|Y denote the joint probability distri-
bution, the marginal distribution, and the conditional
probability distribution, respectively. E(·) denotes the
expectation operator. If X is uniformly distributed over
{0, 1, · · · , q − 1}, denote it by X ∼ U(q).

Fixed D, ϕ(·) and P = (X ,Z, PZ|X), (R,Re) ∈ R2

is achievable if there exists an (N, 2NR, Re, D) codes.
The set of all achievable tuples is denoted by Rswem,
rewriting-rate-equivocation region. The secrecy rewrit-
ing capacity is Cswem(D)

def
= supR{R : (R,R) ∈

Rswem}, i.e., the maximal R such that (R,R) is achiev-
able.

The Rswem was obtained in [11] and shown in the
following theorem:

Theorem [11] 2. Define R(PXY ) =

{(R,Re) :
R ≤ H(Y |X)
Re ≤ H(Y |Z)
Re ≤ R

},

where PXY ∈ P(D)
def
= {PXY : PX =

PY , E(ϕ(X,Y )) ≤ D}, the joint distribution of X,Y, Z
factorizes as PXPY |XPZ|Y , and the PZ|Y is given by
P = (X ,Z, PZ|Y ). Then Rswem =

⋃
PXY
R(PXY ).
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Fig. 2. Typical shape of R(PXY ).

The typical shapes of the above achievable region
R(PXY ) are presented in Figure 11: type one is the case
where H(Y |Z) ≤ H(Y |X) for a given PXY ∈ P(D),
and type two is the other case.

By specializing Theorem 2 to the case R = Re, we
obtain the following result for secrecy rewriting capacity.

Corollary 3. The secrecy rewriting capacity of secure
WEM (N, 2NR, Re, D) code with wiretap channel P =
(X ,Z, PZ|Y ) and the rewriting cost function ϕ(·) is:
Cswem(D) = max

PXY ∈P(D)
{min{H(Y |X), H(Y |Z)}},

where the definition of P(D) is the same as above.

D. Contribution and structure of this paper

In this paper, we present an optimal (i.e., achieve the
whole rewriting-rate-equivocation region) code construc-
tion based on polar codes for secure WEM for a large
family of secure WEM. The remaining of this paper is
structured as follows: in Section II, we present a brief
introduction of polar codes and some useful terms; in
Section III, we present a polar code construction for
secure WEM, which achieves the whole region of secure
WEM.

II. POLAR CODE TERMS AND NOTATIONS

In this part, we present a brief introduction to polar
codes [2] so that some terms can be understood later.

Let W = (X ,Y,WY |X) be a binary-input dis-
crete memoryless channel. Let G⊗n2 be n-th Kro-
necker product of

(
1 0
1 1

)
for n ∈ N. Let Z(W ) =∑

y∈Y

√
WY |X(y|0)WY |X(y|1) be the Bhattacharyya pa-

rameter.
Let N = 2n, and the polar code, which is denoted as

CN (F, uF ), is {xN−10 = uN−10 G⊗n2 : uF c ∈ {0, 1}|F
c|},

where ∀F ⊆ {0, 1, · · · , N − 1}, uF is the subvector
ui : i ∈ F , and uF ∈ {0, 1}|F |. By convention, F is the
frozen set and uF is the frozen set value.

Denote W (i)
N : {0, 1} → YN × {0, 1}i the i-th sub-

channel with input set {0, 1}, output set YN × {0, 1}i,
and the transition probability W

(i)
N (yN−10 , ui−10 |ui)

def
=

1
2N−1

∑
uN−1
i+1

WN (yN−10 |uN−10 ), where WN (yN−10 |uN−10 )

is
N−1∏
i=0

WY |X(yi|(uN−10 G⊗n2 )i), and (uN−10 G⊗n2 )i de-

notes the i-th element of uN−10 G⊗n2 .
Let β < 1/2 be a fixed positive constant, define a good

sub-channel set as GN (W,β) = {i ∈ {0, 1, · · · , N−1} :

I(W
(i)
N ) > 1

N 2−N
β}, and define a bad sub-channel set

as BN (W,β) = {i ∈ {0, 1, · · · , N − 1} : I(W
(i)
N ) ≤

1
N 2−N

β}. By abusing notations, we also define a good
sub-channel set as G′N (W,β) = {i ∈ {0, 1, · · · , N −
1} : Z(W

(i)
N ) < 1− ( 1

N 2−N
β

)2} and define a bad sub-
channel set as B′N (W,β) = {i ∈ {0, 1, · · · , N − 1} :

Z(W
(i)
N ) ≥ 1− ( 1

N 2−N
β

)2}.
Based on [9, Lemma 2.6], lim

N→∞
1
N |BN (W,β)| =

lim
N→∞

1
N |B

′
N (W,β)| = 1 − I(W ), and

lim
N→∞

1
N |GN (W,β)| = lim

N→∞
1
N |G

′
N (W,β)| = I(W ).

III. OPTIMAL CODE CONSTRUCTION

In this section, we present a polar code construction
for a special case of secure WEM and prove that the code
construction achieves the whole achievable region. Due
to space limitation, we only present the code construc-
tions for type one rewriting-rate-equivocation region of
secure WEM.

A. Symmetric secure WEM
In this subsection, we define symmetric secure WEM,

which is a large family of secure WEM, and it is the
symmetric secure WEM that our polar code construction
is focusing in this paper.

Recall that the rewriting capacity of WEM is R(D) =
max

PXY ∈P(D)
H(Y |X) [1]. Analogous to a symmetric chan-

nel, a symmetric WEM is such a WEM that its rewriting
capacity is achieved when current cell state alphabet
(i.e., X) and updated cell state alphabet (i.e., Y ) are
uniformly distributed. That is, for symmetric WEM its
capacity is determined as R(D) = max

PXY ∈Ps(D)
H(Y |X),

where Ps(D)
def
= {PXY : PX = PY , X ∼

U(q), E(ϕ(X,Y )) ≤ D} and q is the number of states
for X .

For a PXY achieving rewriting capacity of a symmet-
ric WEM, it induces a channel W = (X,Y,WY |X), and
we term it WEM channel. A symmetric secure WEM
is such a secure WEM model that both the WEM and
the wiretap channel are symmetric. Further, we consider
the case where the WEM channel is stochastically de-
graded with respect to the wiretap channel, i.e., the type
one rewriting-rate-equivocation region of secure WEM.
Besides, the code construction presented here focuses
on symmetric rewriting cost, i.e., ϕ(0, 1) = ϕ(1, 0), the
Hamming distrance metric.

We present a concrete example of symmetric secure
WEM we are considering in the following:
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Example 1. Let the rewriting cost metric be the Ham-
ming distance metric, i.e., ϕ(0, 1) = ϕ(1, 0) = 1
and ϕ(0, 0) = ϕ(1, 1) = 0, in this case the capacity
of symmetric WEM is H(D) where 0 ≤ D ≤ 1/2
and the WEM channel induced is a Binary Symmet-
ric Channel (BSC) with parameter D. Let the wiretap
channel P = (X ,Z, PZ|Y ) be a BSC with flipping rate
p (0 ≤ p ≤ 1/2). In this case, the secrecy capacity
is H(p) based on Corollary 3. When D > p, the
WEM channel stochastically degrades with respect to
the wiretap channel, and it is one example of symmetric
secure WEMs we are focusing in this work.

B. Optimal code construction achieving the capacity

The outline of the code construction is presented in
Figure 3: Given the WEM channel and the wiretap
channel, we divide all sub-channels to three parts, i.e.,
sub-channels bad for both channels, the sub-channel
index set is denoted as set M ⊆ N, sub-channels good
for both channels, the sub-channel index set is denoted
as set M2 ⊆ N, and remaining sub-channels, the sub-
channel index set is denoted as the set M1 ⊆ N.

Then the polar code with frozen set M, and frozen
set value uM represents data uM. The rewriting function
R(M,xN−10 ) is to fill in bits of M by M , bits of M1

by random bits, and bits of M2 by bits determined by
successive cancellation encoding. The decoding function
D(yN−10 ) is to retrieve the value represented by bits of
M.

Formally, let G′N (W, β) and GN (P, β) denote good
sub-channel sets for the WEM channel W and the
wiretap channel P, and let B′N (W, β) and BN (P, β)
denote the bad sub-channels for them, respectively.
When W is stochastically degraded with respect to
P, it implies that BN (P, β) ⊆ B′N (W, β) [9]. Let
M def

= B′N (W, β)
⋂
BN (P, β) = BN (P, β), M1

def
=

B′N (W, β)
⋂
GN (P, β) and M2

def
= G′N (W, β). We

know that lim
N→∞

|M|
N = H(Y |Z), lim

N→∞
|M1|
N =

H(Y |X)−H(Y |Z) and lim
N→∞

|M2|
N = I(X;Y ).

The code construction for binary symmetric secure
WEM is presented in Algorithm III.1:

Algorithm III.1 A code construction for binary sym-
metric secure WEM

1: The (N, 2NR, R,D)ave code is C = CN (M, uM),
where CN (M, uM(M)) is a polar code with the
frozen set M as above, frozen set value M , the
binary representation of M is uM(M), and |M| =
NR.

That is, the (N, 2NR, R,D) code is the polar code
ensemble of codeword length N and frozen set M
determined above, and each polar code CN (M, uM(M))

(0 ≤M ≤ 2NR−1) of the ensemble represents the data
with the binary representation uM(M).

The rewriting operation yN−10 = R(M,xN−10 ) is
presented in Algorithm III.2, where m1 is a random
bit, uM(M)j is the jth bit of the binary representation
of M , f(·) : {0, 1, ..., |M| − 1} → M is a one-to-
one mapping, and W (y|x) is determined by the WEM
channel W = (X,Y,WY |X).

Algorithm III.2 The rewriting operation yN−10 =
R(M,xN−10 ).

1: Let vN−10 = xN−10 + gN−10 , where gN−10 is a
common and uniformly distributed message, and +
is over GF(2).

2: Apply SC (Successive Cancellation) encoding [9] to
(vN−10 )M2

, and this results in a vector uN−10 =
Û(vN−10 , uM(M)), that is, uj =
uM(M)f(j) if j ∈M
m1 if j ∈M1, m1 is randomly chosen,

m with probability W
(i)
N (uj−1

0 ,vN−1
0 |m)∑

m′
W

(i)
N (uj−1

0 ,vN−1
0 |m′)

,

and ŷN−10 = uN−10 G⊗n2 .
3: yN−10 = ŷN−10 + gN−10 .

That is, uN−10 is assembled by rewriting message M ,
auxiliary random message M1 (which is to make sure
the security constraint is satisfied), and random message
determined by SC encoding (which is to make sure the
rewriting cost constraint is satisfied).

Fig. 3. Illustration of the polar code construction for symmetric secure
WEM achieving the capacity, where the output yN−1

0 is permuted in
such a way that sub-channels are positioned as above.

The decoding function uM(M) = D(yN−10 ) is pre-
sented in Algorithm III.3:

That is, D(yN−10 ) is to retrieve the value represented
by bits of M.

C. Theoretical analysis of the code construction
In this part, we present the theoretical analysis show-

ing that the presented code construction is optimal.
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Algorithm III.3 The decoding operation uM(M) =
D(yN−10 ).

1: ŷN−10 = yN−10 + gN−10 .
2: uM(M) = (ŷN−10 (G⊗n2 )−1)M.

We start with calculating the probability of a random
selected vector in part a), which is used to prove that
the induced channel is symmetric in part b), then with
the symmetric channel we proceed to prove the rewriting
cost constraint as well as the security constraint are
satisified in part c), the capacity approaching property
is proved in part d), and the theoretical performance of
the proposed code construction is concluded in part e).

a) The probability of a random selected vector:
Let R = M1

⋃
M2, and let eR denote the random

bits determined by the above algorithm. In this part we
focus on the average probability eR is selected given the
rewriting data M , P (eR|M ) (over vN−10 ), and we show
that P (eR|M ) is independent of M .

Let eN−10 denote a vector by assembling a rewriting
message M and eR, and we know that
P (eN−10 |vN−10 ) =

∏
i

PEi|Ei−1
0 ,V N−1

0
(ei|ei−10 , vN−10 ),

where vN−10 is the random vector de-
termined in our rewriting function, and
PEi|Ei−1

0 ,V N−1
0

(ei|ei−10 , vN−10 ) =
W

(i)
N (ei−1

0 ,vN−1
0 |ei)∑

e′
i

W
(i)
N (ei−1

0 ,vN−1
0 |e′i)

if i ∈M2, 1
2 if i ∈M1 and 1 otherwise.

The following lemma presents us the
condition under which Û(vN−10 , uM(M1))Mc =
Û(wN−10 , uM(M2))Mc , i.e., the random bits determined
by the algorithm are the same.

Lemma 4. Let M1,M2 ∈ {0, · · · , 2|M|−1},
uM(M1), uM(M2) ∈ {0, 1}|M|, let vN−10 , wN−10 ∈
{0, 1}N such that vN−10 + wN−10 = xN−10 G⊗n2

where (xN−10 )M = uM(M1) + uM(M2) and
(xN−10 )Mc is the zero vector, then under the
coupling through a common source of randomness,
Û(vN−10 , uM(M1))Mc = Û(wN−10 , uM(M2))Mc .

Proof: Let eN−10 and fN−10 be the result of
Û(vN−10 , uM(M1)) and Û(wN−10 , uM(M2)). We prove
that ei = fi + ((vN−10 + wN−10 )(G⊗n2 )−1)i for 0 ≤ i ≤
N − 1 by induction. This holds true for i = 0.

Now suppose this also holds true for i − 1, and
now consider the case for i. As ei = fi + ((vN−10 +
wN−10 )(G⊗n2 )−1)i holds true for the case when i ∈M,
we only consider the other case when i ∈Mc.

Firstly consider i ∈ M1, since they have access to
the same random source, clearly ei = fi + ((vN−10 +
wN−10 )(G⊗n2 )−1)i.

Secondly consider i ∈ M2, and it is proved using a
skill similar to [9, Lemma 3.12] as shown in equation 1.

Thus Û(vN−10 , uM(M1))i = Û(wN−10 , uM(M2))i
when they have access to the same random source. Thus
we conclude ei = fi+((vN−10 +wN−10 )(G⊗n2 )−1)i, and
Û(vN−10 , uM(M1))Mc = Û(wN−10 , uM(M2))Mc .

Let P (eR|M) denote the average probability
(over vN−10 ) that eR is chosen given M , and
P (eR|M) =

∑
vN−1
0

P (vN−10 )P (eN−10 |vN−10 ) =∑
vN−1
0

1
2N
P (eN−10 |vN−10 ), as vN−10 is uniformly

distributed.
The next theorem shows on average the probability

that eR is chosen given M is the same for any M .

Theorem 5. P (eR|M) is independent of M , i.e.,
P (eR|M1) = P (eR|M2) for any M1,M2.

Proof: The correctness holds by the fact that for
each vN−10 there is a unique wN−10 such that eR =
Û(vN−10 , uM(M1))Mc = Û(wN−10 , uM(M2))Mc

based on the previous lemma.
As P (eR|M) is independent of M , hereafter we will

omit M and write P (eR|M) as P (eR).
b) The induced channel is symmetric: The induced

channel is presented in Figure 4, where the input is N−r
bits uM, representing the rewriting data, and the output
of the channel is zN−10 , the output of yN−10 through the
wiretap channel. Let (vN−r−10 , er−10 ) denote the vector
uN−10 with uR = vN−r−10 and uRc = er−10 , i.e.,
assemblng the rewriting data vN−r−10 and the random
information er−10 .

For this channel its channel transition probability is
denoted as Q(zN−10 |uN−r−10 ), which is∑

er−1
0

P (er−10 )
N−1∏
i=0

P (zi|((uN−r−10 , er−10 )G⊗n2 )i),

where P (er−10 ) denotes the probability er−10 is selected
given the rewriting data vector uN−r−10 (its value is
determined as the previous part), and P (z|x) is de-
termined by the wiretap channel P = (X ,Z, PZ|X).
For convenience, we denote our channel as Q(P,R) =
(XN−r,ZN ,QZN |UN−r ). where X = {0, 1}.

We now present the main result in the following
theorem, which presents us Q(P,R) is symmetric.

Theorem 6. Q(P,R) is symmetric.

Proof: Given a channel (X ,Y,WY |X), we first
recall the definition of symmetric channel from group
theory. A group action of an abelian group A on a set
Y is a function A × Y → Y , denoted (a, y) → a · y,
with the following properties:
• 0 · y = y for all y ∈ Y , where 0 is the unit of A;
• (a+b) ·y = a ·(b ·y) for all a, b ∈ A and all y ∈ Y ,

where + denotes the group operation for A.
The following result from [13, Theorem 11] states a

necessary condition such that the channel is symmetric.
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Fig. 4. Illustration of the induced channel, where the output yN−1
0 is

permuted the same way as before such that sub-channels are positioned
as the above figure; and where the channel inputs are uN−r−1

0 (i.e.,
rewriting data) and the channel outputs are zN−1

0 (i.e., noisy codeword
of yN−1

0 though wiretap channel).

Let (X ,Y,WY |X) be a discrete memory-
less channel, and suppose that X is an abelian
group under the binary operation +. Further,
suppose that there exists a group action · of X
on Y such that

W (y|a+ x) = W (a.y|x)
for all a, x ∈ X and all y ∈ Y . Then
(X ,Y,WY |X) is a symmetric channel.

For Q(P,R) = (XN−r,ZN ,QZN |UN−r ), we first ex-
plore an action of XN−r, denoted as ·, such that
(XN−r, ·) is an abelian group, and we then explore a
group action, denoted as ◦ of the abelian group XN−r
on ZN , such that Q(P,R) is symmetrical based on the
above cited result. We first explore the operation of · in
the following two paragraphs: Let π1 be a permutation
on Z and it is an involution, that is π1 = π−11 . Let π0
be the identity permutation on Z . Following Arikan [2],

let the group action of the additive group of X = {0, 1}
on the set Z be x · z = πx(z) for all x ∈ X and z ∈ Z .
The group action has the property (x+y) ·z = x · (y ·z)
and (x ·y) ·z = x · (y ·z) which can be verified based on
enumeration. Therefore, the additive group X with the
operation · is an abelian group.

Similarly, let xN−10 ·zN−10 = (x0·z0, · · · , xN−1·zN−1)
for all xN−10 ∈ XN and zN−10 ∈ ZN . The action has
the following two properties
• (xN−10 + yN−10 ) · zN−10 = xN−10 · (yN−10 · zN−10 );
• (xN−10 · yN−10 ) · zN−10 = xN−10 · (yN−10 · zN−10 ),

where the first one is based on the property (x+y) ·z =
x · (y · z), and the second one is based on the property
(x · y) · z = x · (y · z). Therefore, the additive group XN
with the operation · is an abelian group.

We then explore the operation of ◦ in the following:
Define ◦ as xN−r−10 ◦ zN−10

def
= (xN−r−10 , 0r−10 )G⊗n2 ·

zN−10 . We can verify that the defined action is a group
action as it satisfies the following two requirements:
• 0N−r−10 ◦ zN−10 = zN−10 ;
• (xN−r−10 +yN−r−10 )◦zN−10 = xN−r−10 ◦(yN−r−10 ◦
zN−10 ),

where the correctness of the second item is shown in
equation 2.

We finish the proof by showing that
Q(zN−10 |aN−r−10 + xN−r−10 ) = Q(aN−r0 ◦
zN−10 |xN−r−10 ) as shown in equations 3 ∼ 5:

c) Rewriting cost constraint and security con-
straint: We first focus on the rewriting cost constraint.
From [12, Theorem 9], we know that as long as M2 ⊆
G′N (W, β), with high probability ϕ(xN−10 , yN−10 ) ≤ D

W
(i)
N (vN−10 , ei−10 |1)

W
(i)
N (vN−10 , ei−10 |0)

=

∑
eN−1
i+1

WN (vN−10 |ei−10 1eN−1i+1 )

∑
eN−1
i+1

WN (vN−10 |ei−10 0eN−1i+1 )
,

=

∑
eN−1
i+1

WN (wN−10 |ei−10 1eN−1i+1 + (vN−10 + wN−10 )(G⊗n2 )−1)

∑
eN−1
i+1

WN (wN−10 |ei−10 0eN−1i+1 + (vN−10 + wN−10 )(G⊗n2 )−1)
,

=

∑
eN−1
i+1

WN (wN−10 |f i−10 1eN−1i+1 )

∑
eN−1
i+1

WN (wN−10 |f i−10 0eN−1i+1 )
,

=
W

(i)
N (wN−10 , f i−10 |1)

W
(i)
N (wN−10 , f i−10 |0)

, (1)

where the third equation is due to the assumption that ((vN−10 + wN−10 )(G⊗n2 )−1)Mc is the zero vector
and the assumption ej = fj + ((vN−10 + wN−10 )(G⊗n2 )−1)j for j ≤ i− 1.
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for arbitrary xN−10 , yN−10 , i.e., Pr(ϕ(xN−10 , yN−10 ) ≥
D + σ) < 2−N

β

for σ > 0. Therefore based on
our selection of M2, which is M2 = G′N (W, β), the
rewriting cost constraint is satisfied with high probability.

We next focus on the security constraint, and we apply
a skill similar to [13].
I(M ; zN−10 )

≤ I(ûM ; ẑN−10 ), (6)
= I(ūM ; z̄N−10 ), (7)

=

|M|∑
i=0

I(ūi; z̄
N−1
0 |ū0, · · · , ūi−1), (8)

=

|M|∑
i=0

I(ūi; z̄
N−1
0 ūi−10 ), (9)

=

|M|∑
i=0

C(P(i)
N ), (10)

where
(6) follows from the channel Q(P,R) is symmet-

ric, and ûM and ẑN−10 denote versions of uM
and zN−10 when ui and zi are uniformly and
independently distributed;

(7) is due to the permutation such that uN−10 is
arranged as Figure 3;

(8) is due to the chain rule of mutual information;
(9) is due to ūi is independent of each other;
(10) is due to P(i)

N is i-th virtual bit channel induced
by the wiretap channel P = (X ,Z, PZ|Y )

(refer to Section II for its definition).
Based on our selection of M, which is BN (P, β),
we know that C(P(i)

N ) ≤ 2−N
β

and further obtain
I(M ;zN−1

0 )
N ≤ |BN (P,β)|

N 2−N
β

, which is approaching 0
as N →∞.

Therefore, we can conclude that the security con-
straint is satisfied since 1

NH(M |zN−10 ) = 1
NH(M) −

1
N I(M ; zN−10 )→ R as N →∞.

d) Capacity approaching property: When the
WEM channel is stochastically degraded with respect to
the wiretap channel, the secrecy capacity is H(Y |Z) as
shown by Corollary 3. Based on our code construction
we know that lim

N→∞
|M|
N = H(Y |Z), thus the construc-

tion is achieving the secrecy capacity asymptotically.
e) Theoretical performance conclusion: Thus

based on analysis from a) ∼ d), we have the following
conclusion for theoretical performance of our proposed
code construction:

Theorem 7. For any symmetric secure WEM, when the
WEM channel is stochastically degraded with respect
to the wiretap channel, the proposed polar code scheme
achieves the secrecy capacity.

D. Optimal code construction achieving the whole re-
gion

In this subsection, we extend the above code construc-
tion to achieve the whole rewriting-rate-equivocation
region.

(xN−r−10 + yN−r−10 ) ◦ zN−10 = ((xN−r−10 , 0r−10 ) + (yN−r−10 , 0r−10 ))G⊗n2 · zN−10

= (xN−r−10 , 0r−10 )G⊗n2 · ((yN−r−10 , 0r−10 )G⊗n2 · zN−10 )

= xN−r−10 ◦ (yN−r−10 ◦ zN−10 ), (2)
where the second equation is based on the property (xN−10 + yN−10 ) · zN−10 = xN−10 · (yN−10 · zN−10 ).

Q(zN−10 |aN−r−10 + xN−r−10 ) =
∑
er−1
0

P (er−10 )
∏
i

P (zN−10 |(((aN−r−10 , 0r−10 ) + (xN−r−10 , er−10 ))G⊗n2 ))i, (3)

=
∑
er−1
0

P (er−10 )
∏
i

P ((aN−r−10 , 0r−10 )G⊗n2 · zN−10 |(xN−r−10 , er−10 )G⊗n2 ))i, (4)

=
∑
er−1
0

P (er−10 )
∏
i

P (aN−r−10 ◦ zN−10 |(xN−r−10 , er−10 )G⊗n2 ))i, (5)

= Q(aN−r0 ◦ zN−10 |xN−r−10 ),
where

(3) follows from the definition of Q(zN−10 |uN−r−10 );
(4) follows from [2, Proposition 12]. i.e., PN (zN−10 |(aN−10 + xN−10 )G⊗n2 ) = PN (aN−10 G⊗n2 ·

zN−10 |xN−10 G⊗n2 ) and PN (zN−10 |xN−10 ) =
∏N−1
i=0 P (zi|xi);

(5) follows from our definition of the operation ◦, and also from Theorem 5.

726



Given a ∀(R,Re) ∈

{(R,Re) :

R ≤ H(Y |X)
Re ≤ H(Y |Z)
Re ≤ R
H(Y |Z) ≤ H(Y |X)

}, (11)

for a PXY ∈ Ps(D), we know that based
on the code construction in the previous subsec-
tion, we can construct a code construction for
(N, 2NRe , Re, D) symmetric secure WEM, and partition
the set {0, 1, · · · , N − 1} into B′N (W, β)

⋂
BN (P, β) =

BN (P, β), B′N (W, β)
⋂
GN (P, β) and G′N (W. We know

that Re =
|B′N (W,β)

⋂
BN (P,β)|

N . Our code construction
for an (N, 2NR, Re, D) symmetric secure WEM is as
follows:
• let M1 = B′N (W, β)

⋂
BN (P, β) of size NRe;

• let M2 ⊆ B′N (W, β)
⋂
GN (P, β) of size N(R −

Re) whose elements have lowest I(W(i)
N );

• let M =M1
⋃
M2;

• let M1 = B′N (W, β)
⋂
GN (P, β)−M2;

• let M2 = G′N (W, β);
• the (N, 2NR, Re, D)ave code is C =⋃
M

CN (M, uM(M)), where CN (M, uM(M))

is a polar code with the frozen set M and frozen
set value M with its binary representation uM(M).

That is, comparing with the previous code construction,
the only difference is that bits of B′N (W, β)

⋂
GN (P, β)

in this case also represent user information, i.e., in
Figure 3, some auxiliary message bits carry information.

The rewriting function and the decoding function are
the same as previous ones. We conclude its performance
in the following theorem.

Theorem 8. For any symmetric secure WEM code
(R,Re) satisfying (11), when the WEM channel is
stochastically degraded with respect to the wiretap chan-
nel, there exists a polar code achieving the whole region.

Proof: We present the sketch proof as follows.
We first focus on the rewriting cost constraint: since
M2 ⊆ G′N (W, β) (the same as the previous subsection),
similarly based on [12, Lemma 7] or [8, Theorem 1] we
obtain the average rewriting cost D̄ ≤ D +O(2−N

β

).
Next we focus on the security constraint: with similar

arguments of a) ∼ c) of the previous subsection, we
can prove that the channel Q(P,R) is still symmetric in
this case; similarly, we obtain
I(M ; zN−10 )

≤
|M1 ⋃

M2|∑
i=0

C(P(i)
N ), (12)

≤
|M2|∑
i=0

C(P(i)
N ) +

|BN (P, β)|
N

2−N
β

, (13)

≤ N(R−Re) + ε, (14)
where

(12) follows from the similar arguments of d) in the
previous subsection;

(13) is due to the selection ofM1 and the definition
of BN (P, β);

(14) is due to the selection ofM2 and the definition
of GN (P, β).

Thus we further obtain 1
NH(M |zN−10 ) ≥ Re + ε as

desired.
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