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Abstract—One serious challenge for flash memories is
data reliability. In this work, we present the content-
replication codeword problem, and it leads to our proposed
joint decoder. We focus on joint decoding algorithms
and study their theoretical decoding performances. The
proposed scheme is novel for flash memories, and we show
their reliability can be enhanced by increasing the diversity
of error-correcting codes.

I. INTRODUCTION

One challenge for flash memories is the data relia-
bility as several types of noise [1], [5] exist. Besides
strong error correcting codes, e.g., LDPC codes, another
mechanism to protect flash memories is memory scrub-
bing [10], i.e., while errors accumulate in a codeword,
with the next block erasure, the codeword is corrected
and a new error-free codeword is written back to the
memory. However, in flash memory rewrites are made
in an out-of-place fashion, i.e., an updated codeword is
stored at a new physical address and the original code-
word remains in the memory. Those mechanisms can
lead to multiple copies of codewords, i.e., the content-
replicated codeword problem. In addition to memory
scrubbing, other factors also may cause the content-
replication problem such as garbage collection, wear-
leveling, etc, and it is estimated that on average 3 ∼
13 (i.e., the exact number depends on the workload
traffic and various Flash Translation Layer algorithms [2]
used) copies of content-replicated codewords can be
generated [3].

In this work, we enhance flash memory reliability by
utilizing the existence of two content-replicated code-
words for decoding, including an old codeword and a
new codeword storing the same information. We aim at
designing a joint decoding scheme having access to both
content-replicated codewords, and explore its decoding
performance. This leads to reliability improvement in
flash memories. We further study a new paradigm where
the two content-replicated codewords have different
forms for better performance. The significance of this
paper is two-fold: on the practical side, the new coding
scheme utilizes the unique properties of flash memories;
on the theoretical side, we show that increasing the
diversity of error-correcting codes in the storage system

can improve the reliability of replicated data even if there
exist constraints in their joint decoding algorithms.

II. PROBLEM STATEMENT

Let D = {0, 1, · · · ,M − 1} be the message set for
M ∈ N, and let X and Y be two alphabets of the sym-
bols stored in a cell. Let two encoders be f1 : D → XN
and f2 : D → XN , and the desired joint decoder be
h : YN×YN → D, where N is the length of codewords.
Let P = (X ,Y,PY |X) and Q = (X ,Y,QY |X) be two
independent channels.

We illustrate the model in Fig. 1. Here, m is a
common message to both encoders, the N -dimensional
vectors xN−10 (1), xN−10 (2) ∈ XN are two codewords
obtained through two encoders (those encoders are not
necessarily identical), and yN−10 (1), yN−10 (2) are two
noisy codewords through P and Q. The task is to design a
joint decoder to give a reliable estimation of the message
m, which is denoted as m̂, giving yN−10 (1) and yN−10 (2).

The problem statement is presented below:

Definition 1. Given two (N, 2NR) error-correcting
codes, a message set D = {0, 1, · · · , 2NR − 1}, their
encoding functions f1 : D → XN and f2 : D → XN ,
and two independent channels P and Q, the task is to
design a joint decoding scheme h : YN × YN → D
such that Pr(h(yN−10 (1), yN−10 (2)) 6= i|xN−10 (1) =
f1(i), x

N−1
0 (2) = f2(i)))→ 0 for i ∈ D as N →∞.

We point out two implicit requirements for the joint
decoder in the above definition: the first is the rate of
the given code should be larger than the capacities of
underlying two channels, i.e., R > C(P) and R > C(Q),
therefore reliable decoding is impossible for separate
decoders, i.e., @ g1 : YN → D and @ g2 : YN →
D such that Pr(g1(yN−10 (1)) 6= i or g2(yN−10 (2)) 6=
i|xN−10 (1) = f1(i), x

N−1
0 (2) = f2(i))) → 0 for i ∈ D

as N →∞. Otherwise, the joint decoder degenerates to
the separate decoder in channel coding model; the sec-
ond requirement is for the given encoders, when channels
are not degrading too much, reliable separate decoders
exist. More precisely, given the same parameters N , R,
we require f1(·) and f2(·) meet the condition that when
R < C(P1) and R < C(Q1) for some P1 and Q1,
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there exist g1 : YN → D and g2 : YN → D such
that Pr(g1(yN−10 (1)) 6= i, g2(y

N−1
0 (2)) 6= i|xN−10 (1) =

f1(i), x
N−1
0 (2) = f2(i)))→ 0 for i ∈ D as N →∞.

The above requirements are due to the motivations of
joint decoders: the joint decoder is not to replace existing
individual decoders (as it is possible that individual
decoders suffice to reliably decode when channels do
not degrade too much, and also the content-replicated
codewords cannot always be guaranteed to exist) but to
replace individual decoders when they fail. It is also
those requirements that differentiate the joint decoder
from other coding models like Multiple Access Channels
with correlated sources by Splepian and Wolf [11] and
Fountain code [6].

In the following, we assume P and Q are identical
Binary Erasure Channels (BEC) in Section III and iden-
tical Additive White Gaussian Noise (AWGN) channels
in Section IV, and both encoders are systematic LDPC
encoders. The following notations will be used: let the
rate of two systematic LDPC codes be K

N , let G1,
G2 be the encoding matrices, and H1, H2 denotes
their parity check matrices. Let yN−10 (1), yN−10 (2) ∈
{0, 1, ?}N be two codewords received for BECs and
let yN−10 (1), yN−10 (2) ∈ RN also be those for AWGN
channels.

Fig. 1. Illustration of joint decoding content-replicated codewords.

III. JOINT DECODER FOR BECS

In this section, we present several joint decoder de-
signs when P and Q are Binary Erasure Channels with
the same parameter.

A. Joint decoder for identical content-replicated codes
The given codes are identical in this case, i.e., G1 =

G2 and H1 = H2.
Given yN−10 (1) and yN−10 (2), a combined codeword

yN−10 is obtained as follows, for i = 0, 1, · · · , N − 1,
yi = 

? if yi(1) = yi(2) =?,

yi(1) if yi(2) =? and yi(1) 6=?,

yi(2) else

The parity check matrix for yN−10 is H1. The decoding
result is obtained by applying belief propagation to yN−10
with H1 and initial erasure probability ε2.

Let λ(x) and ρ(x) be degree distributions for the
LDPC codes used, let εBP (λ, ρ) be its original threshold

as in [8], and εBPiden(λ, ρ) be the threshold for our joint de-
coder. The comparison of εBPiden(λ, ρ) and εBP (λ, ρ) for
some regular LDPC codes is presented in the second and
the third columns of Table I, and we have εBPiden > εBP .

Note that the above scheme can be generalized to
cases when P and Q are with different ε, and due to
space limitation we do not present that here.

TABLE I
COMPARISON OF εBP , εBP

iden AND εBP
dif

(dv , dc) εBP εBP
iden εBP

dif
(3,4) 0.6474 0.8046 0.8741
(3,5) 0.5176 0.7194 0.7594
(3,6) 0.4294 0.6553 0.6600
(4,6) 0.5061 0.7114 0.7335
(4,8) 0.3834 0.6192 0.5814

B. Joint decoder of different content-replicated codes
In the above subsection, the two codes are identical,

which are effectively repetition codes, and this motivates
us to explore another joint decoder design when the two
encoders are different.

1) Joint decoder design: The given codes are different
in this case, i.e., G1 6= G2 and H1 6= H2, but
codewords carry identical systematic information bits,
that is, two encoding functions are xN−10 (1) = uK−10 G1

and xN−10 (2) = uK−10 G2.
Let I1, I2 ⊆ {0, 1, · · · , N−1} be the information bit

index sets for yN−10 (1) and yN−10 (2), and let P1 and P2

be their parity check bit index sets. Let yN−10 (1)I1 =
(yi(1) : i ∈ I1), i.e., information bits of yN−10 (1), and
similar notations apply to yN−10 (2)I2 , yN−10 (1)P1 and
yN−10 (2)P2 . Let g(·) : I1 → I2 be a one-to-one mapping
such that xi(1) = xg(i)(2) for i ∈ I1. Similar to the
previous section, we define (yN−10 )I1 , where yi =

? if yi(1) = yg(i)(2) =?,

yi(1) if yg(i)(2) =? and yi(1) 6=?,

yg(i)(2) else
Then, a constructed combined codeword is y2N−K−10 =
[(yN−10 )I1 , y

N−1
0 (1)P1 , y

N−1
0 (2)P2 ]. That is, y2N−K−10

is constructed by appending information bits from
yN−10 (1) and yN−10 (2) after preprocessing, and parity
check bits from yN−10 (1) and yN−10 (2).

Let H1 = [H1,0,H1,1, · · · ,H1,N−1], let H1,I1 =
[H1,i : i ∈ I1], and let H1,P1 = [H1,i : i ∈ P1].
Similarly, we divide H2 into H2,I2 and H2,P2

. Then,
the parity check matrix H for y2N−K−10 is of the form
in Fig. 2.

An example for a combined codeword and its parity
check matrix is illustrated in Fig. 3. In Fig. 3, (a) is the
Tanner graph and H1 for yN−10 (1), where information
bits are black and parity check bits are red; (b) is the
Tanner graph and H2 for yN−10 (2), where information
bits are black and parity check bits are green; (c) is the
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Fig. 2. Illustration of the parity check matrix H.

Fig. 3. Illustration of constructed y2N−K−1
0 and H.

constructed Tanner graph and H based on (a) and (b),
where information bits are black, parity check bits from
yN−10 (1) are red, and parity check bits from yN−10 (2)
are green.

The decoding result is obtained by applying belief
propagation to y2N−K−10 with H, the initial erasure
probability ε2 for (yN−10 )I1 , and ε for yN−10 (1)P1

and
yN−10 (2)P2

.
2) Performance analysis by density evolution:

a) Notations: In a Tanner graph of an LDPC code,
for an edge if its one end connects to an information
bit of variable nodes, we call it information edge; if
it connects to a parity check bit of variable nodes, we
call it parity edge. For example, in Fig. 3 (c), the edges
connecting to c0, c1, c2, c3 are information edges and the
remaining edges are parity edges.

For information edges (resp. parity edges), let λ(i)i
(resp. λ(p)i ) be the fraction of edges connecting to an

variable node with degree i. Let λ(i)(x) =
div∑
i=1

λ
(i)
i xi−1,

where
div∑
i=1

λ
(i)
i = 1, and λ(p)(x) =

dpv∑
i=1

λ
(p)
i xi−1, where

dpv∑
i=1

λ
(p)
i = 1, be the degree distribution functions from

the edge perspective. For example, λ(i)(x) = 6
15x

2 +
4
15x

3 + 5
15x

5 and λ(p)(x) = 1 in Fig. 3 (c).
Let ρj,k be the fraction of edges connecting to a

check node with degree j + k, of which j edges are
information edges and k edges are parity edges. Let
ρ(x, y) =

∑
j,k

ρj,kx
jyk, where

∑
j,k

ρj,k = 1, denote the

edge degree distribution functions from the check node
perspective. For example, ρ(x, y) = 12

21x
3y + 9

21x
2y in

Fig. 3 (c).
Let ρ

(p)
j,k =

ρj,k
1−ρ0,j+k

and ρ
(i)
j,k =

ρj,k
1−ρj+k,0

, let

ρ(i)(y, x) =
∑
j,k

ρ
(i)
j,kx

j−1yk where
∑
j,k

ρ
(i)
j,k = 1 and

j ≥ 1, k ≥ 0, and ρ(p)(x, y) =
∑
j,k

ρ
(p)
j,kx

jyk−1

where
∑
j,k

ρ
(p)
j,k = 1 and j ≥ 0, k ≥ 1. For example,

ρ(i)(x, y) = 12
21x

2y+ 9
21xy and ρ(p)(x, y) = 12

21x
3+ 9

21x
in Fig. 3 (c), where ρ(p)(x, y) happens to be the same
as ρ(i)(x, y) for this example.

b) Edge degree distributions:

Lemma 2. Given two regular (dv, dc) LDPC codes
(which are not necessarily the same), the edge degree
distributions of constructed the combined LDPC code
are: λ(i)(x) = x2dv−1, λ(p)(x) = xdv−1, and ρj,k =(
j+k
j

)
(dc−dvdc

)j(dvdc )
k, where j + k = dc.

Proof: Based on the construction presented, for the
Tanner graph of y2N−K−10 , both check nodes of yN−10 (1)
and yN−10 (2) connect to information bits of variable
nodes of y2N−K−10 , thus those node degrees are doubled;
The degree of parity check bit of variables nodes of
y2N−K−10 remains the same as those of yN−10 (1) and
yN−10 (2).

The result for ρj,k follows from that for a random edge
it is an information edge with probability dc−dv

dc
, a parity

edge with probability dv
dc

, and the probability distribution
that j out of j + k edges are from information edges is
a binomial distribution.

c) Density evolution: From Lemma 2, we know
that λ(i)(x) and λ(p)(x) are not identical, the initial
effective erasure probability is ε2 for information bits
of y2N−K−10 and ε for parity bits of y2N−K−10 , thus
the probabilities of a parity bit and an information bit
being an erasure at the l-round of belief propagation
decoding are not the same (we show this point in Fig.4
through a simulation with both (3, 6) LDPC code and
initial erasure probability 0.6).

Let x(l)i be the average probability of an information
bit of y2N−K−10 being an erasure after the l-round of
belief propagation decoding, and similarly let x(l)p be
that for a parity check bit of y2N−K−10 .

Our main result based on density evolution [8] is
presented below:

Theorem 3. For our joint decoding of different content-
replicated codes, the average erasure probabilities after
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Fig. 4. Density evolution comparision of information bits and parity
bits for joint decoder of different content-replicated (3, 6) LDPC codes
with initial erasure probability 0.6.

l-round of belief-propagation decoding are given by
x
(l)
i = ε2λ(i)(1− ρ(i)(1− x(l−1)p , 1− x(l−1)i ))),

x(l)p = ελ(p)(1− ρ(p)(1− x(l−1)i , 1− x(l−1)p ))),

where λ(i)(·), λ(p)(·), ρ(i)(·) and ρ(p)(·) are for the
combined LDPC code.

Proof: We break the proof into two steps.
First, let y(l)i be the average probability of being an

erasure under belief-propagation decoding after l rounds
for an output edge from a check node to an information
bit of variable node. It is given by y

(l)
i =

∑
j,k

ρ
(i)
j,k(1 −

(1− x(l)i )j−1(1− x(l)p )k) = 1− ρ(i)(1− x(l)p , 1− x(l)i ).
Similarly, let y(l)p be the average probability of erasure

under belief-propagation decoding after l-round for an
output edge from a check node to a parity check bit of
variable node. It is given by y(l)p = 1−ρ(p)(1−x(l)i , 1−
x
(l)
p ).
Second, the average probability of erasure for the

output message of an information bit of variable nodes is
given by x(l)i = ε2

∑
i

λ
(i)
i (y

(l−1)
i )i−1 = ε2λ(i)(y

(l−1)
i ).

Similarly, the average probability of erasure for the
output message of an parity check bit of variable nodes
is given by x(l)p = ελ(p)(y

(l−1)
p ).

Combining the above two steps, we obtain the desired
results.

The following theorem presents us the existence of
density evolution threshold.

Theorem 4. Based on Theorem 3, one sees density
evolution updates are given by fi(ε, x, y) = ε2λ(i)(1 −
ρ(i)(1− y, 1− x)) and fp(ε, x, y) = ελ(p)(1− ρ(p)(1−
x, 1− y)). We observe the following:

1) fi(ε, x, y) and fp(ε, x, y) are non-decreasing in all
arguments for ε, x, y ∈ [0, 1] and strictly increasing
if ε, x, y ∈ (0, 1).

2) For any x0, y0, ε ∈ [0, 1], the sequence xl+1 =

fi(ε, xl, yl) and yl+1 = fp(ε, xl, yl) are monotonic
in l.

3) Let xl+1(ε) and yl+1(ε) be defined recursively
by xl+1(ε) = fi(ε, xl(ε), yl(ε)), yl+1(ε) =
fp(ε, xl(ε), yl(ε)), x0(ε) = ε2 and y0(ε) = ε. Then,
xl+1(ε) and yl+1(ε) are non-decreasing in ε.

4) The function x∞(ε) = lim
l→∞

xl(ε) and y∞(ε) =

lim
l→∞

(yl(ε)) exist and are non-decreasing for all
ε ∈ [0, 1].

Proof: For 1), we observe that d
dεfi(ε, x, y) =

2ελ(i)(1 − ρ(i)(1 − y, 1 − x)) is not negative for
ε, x, y ∈ [0, 1], and d

dεfp(ε, x, y) = λ(p)(1 − ρ(p)(1 −
x, 1 − y)) are positive for x, y ∈ [0, 1]. d

dxfi(ε, x, y) =

ε2λ(i)
′
(1−ρ(i)(1−y, 1−x)))ρ(i)′(1−y, 1−x) is positive

for ε, x, y ∈ (0, 1) and d
dxfp(ε, x, y) = ελ(p)

′
(1 −

ρ(p)(1 − x, 1 − y))ρ(p)
′
(1 − x, 1 − y) is also positive

for ε, x, y ∈ (0, 1). Similarly, we can prove d
dyfi(ε, x, y)

and d
dyfp(ε, x, y) are also positive for ε, x, y ∈ (0, 1).

For 2), the monotonicity of fi(ε, x, y) and fp(ε, x, y)

implies that xl+1 = fi(ε, xl, yl)
≥
≤ xl and xl+2 =

fi(ε, xl+1, yl+1)
≥
≤ xl+1. Therefore, monotonicity holds

inductively and the direction of xl depends only on the
first step. Similarly, we can prove yl+1 = fp(ε, x, y) are
monotonic.

For 3), we first observe that x0(ε) and y0(ε) are non-
decreasing in ε. Next, we proceed by induction, for
any ε ≤ ε′, to see that xl+1(ε) = fi(ε, xl(ε), yl(ε)) ≤
fi(ε

′, xl(ε
′), yl(ε

′)) = xl+1(ε
′). Similarly, we can prove

that yl+1(ε) is non-decreasing in ε.
For 4), the limit exists because 2) implies the sequence

xl(ε) is monotonic and bounded for all ε ∈ [0, 1].
The limit function is non-decreasing because 3) implies
that, for any ε ≤ ε′, we have x∞(ε) = lim

l→∞
xl(ε) ≤

lim
l→∞

xl(ε
′) = x∞(ε′). The same process applies for the

sequence yl(ε).
Let εBPdif (λ

(i), ρ(i)) = sup{ε ∈ [0, 1] : x∞(ε) = 0}
(which is clearly equal to sup{ε ∈ [0, 1] : y∞(ε) =
0}) be the threshold defined by the density evolution.
We compute εBP , εBPiden, ε

BP
dif , where εBPdif is based on

the recursive functions defined in Theorem 3, for some
regular LDPC codes in the fourth column of Table I.
Comparing with previous results, we can see that εBPdif >
εBPiden is possible.

C. Joint decoder of related content-replicated codes
1) Related encoder design: Let G3 be an interme-

diate systematic LDPC generator matrix with rate 1
2 .

Similarly, let Ii and Pi denote the information bit index
set and the parity check bit index set for codes with
Gi, i = 1, 2, 3. The encoding algorithm is below, where
(xN−10 )P3 denotes the subvector (xi : i ∈ P3).

1) f1: xN−10 (1) = uK−10 G1.
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Fig. 5. Illustration of parity check matrix H

Fig. 6. Illustration of constructed y2N−1
0 and H.

2) vK−10 = (uK−10 G3)P3
.

3) f2: xN−10 (2) = vK−10 G2,
where in the above f1 and f2 are the two encoders
defined in Definition 1. That is, (xN−10 (1))I1 and
(xN−10 (2))I2 are related through G3.

2) Joint decoder design: A combined
codeword is obtained by assembling yN−10 (1)
and yN−10 (2) in the following way, y2N−10 =
(yN−10 (1)P1

, yN−10 (1)I1 , y
N−1
0 (2)P2

, yN−10 (2)I2).
Let H3 be the parity check matrix corresponding to

G3. Then, the parity check matrix H for y2N−10 is of
the form in Fig. 5.

An example for a combined codeword and its parity
check matrix is illustrated in Fig. 6, where (a) is the
Tanner graph and H1 for yN−10 (1), where information
bits are black and parity check bits are red; (b) is the
Tanner graph and H2 for yN−10 (2), where information
bits are green and parity check bis are blue; (c) is the
Tanner graph and H3 for vK−10 , where information bits
are black and parity check bits are blue; (d) is the
constructed Tanner graph and H for y2N−10 .

The decoding result is obtained by applying belief
propagation to y2N−10 with H and initial erasure proba-
bility ε.

3) Performance analysis by density evolution: For
xN−10 (1) and xN−10 (2) the two LDPC codes, we use
same notations of previous subsection, λ(i)(x), λ(p)(x),
ρ(i)(x, y) and ρ(p)(x, y), to denote the edge degree dis-
tributions from the variable nodes. For the intermediate
LDPC code, vK−10 , we use the usual ρ3(x) and λ3(x)

to denote its edge degree distributions.
We have the following results for density evolution,

where we use the same notations, i.e., x(l)p and x(l)i , as
the previous subection.

Theorem 5. For our joint decoding of related content-
replicated codes, the average erasure probabilities after
l-round of belief-propagation decoding are given by
x(l)p = ελ(p)(1− ρ(p)(1− x(l−1)i , 1− x(l−1)p ))),

x
(l)
i = ε2λ(i)(1− ρ(i)(1− x(l−1)p , 1− x(l−1)i ))

·λ3(1− ρ3(1− x(l−1)i )).

where λ(i)(·), λ(p)(·), ρ(i)(·) and ρ(p)(·) are for the
individual LDPC code, and λ3(·) and ρ3(·) are for the
intermediate LDPC code.

Proof: The proof is the similar to that of the
previous theorem, and thus we present its sketch as
follows.

Let y(l)i (resp. y(l)p ) denote the average probability of
being an erasure after the lth round of belief propagation
decoding for an output edge from a check node of
yN−10 (1) or yN−10 (2) to an information bit (resp. parity
check bit) of variable node of y2N−10 . Clearly, they
follow the same formulas as Theorem 3.

For ((yN−10 (1))I1 , (y
N−1
0 (2))I2), let y(l) denote the

probability that the message sent to an variable node is an
erasure, and it is easy to know that y(l) = 1−ρ3(1−x(l)i ).

Next, we focus on x(l)i , we know that an information
bit of variable nodes receives both messages from parity
bits of LDPC codes (ρ1, λ1) and (ρ3, λ3) , thus x(l)i =

ε2λ(i)(1− ρ(i)(1− x(l−1)p , 1− x(l−1)i )) · λ3(1− ρ3(1−
x
(l−1)
i )).
The equation for x(l)p remains the same as that of

the previous section, and the following conclusions hold
immediately.

Let us verify one special case of Theorem 5: when
(dv′ , dc′) is (1, 2) regular LDPC code, it should de-
generate to the different content-replicated code case of
Theorem 3, and this result coincides with this point.

Similarly, we obtain the following convergence re-
sults:

Theorem 6. Based on Theorem 5, one sees density
evolution updates are given by fi(ε, x, y) = ε2λ(i)(1 −
ρ(i)(1 − y, 1 − x))λ3(1 − ρ3(1 − x)) and fp(ε, x, y) =
ελ(p)(1− ρ(p)(1−x, 1− y)). We observe the following:

1) fi(ε, x, y) and fp(ε, x, y) are non-decreasing in all
arguments for ε, x, y ∈ [0, 1] and strictly increasing
if ε, x, y ∈ (0, 1).

2) For any x0, y0, ε ∈ [0, 1], the sequence xl+1 =
fi(ε, xl, yl) and yl+1 = fp(ε, xl, yl) are monotonic
in l.

3) Let xl+1(ε) and yl+1(ε) be defined recursively
by xl+1(ε) = fi(ε, xl(ε), yl(ε)), yl+1(ε) =
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fp(ε, xl(ε), yl(ε)), x0(ε) = ε2 and y0(ε) = ε. Then,
xl+1(ε) and yl+1(ε) are non-decreasing in ε.

4) The function x∞(ε) = lim
l→∞

xl(ε) and y∞(ε) =

lim
l→∞

(yl(ε)) exist and are non-decreasing for all
ε ∈ [0, 1].

Let εBPre (λ(i), ρ(i)) = sup{ε ∈ [0, 1] : x∞(ε) = 0}
be the threshold defined by the density evolution. We
calculate several εBPre based on the recursive functions
defined in Theorem 5 in Table II, where the first row
indicates the regular LDPC for G3, and the first column
indicates the regular LDPC code for G1 and G2. For
example, the result 0.7976 is the threshold when LDPC
codes for G1 and G2 are (4, 6) regular codes, and the
intermediate LDPC code is (2, 4) code in Table II. From
this table, we see that εBPre > εBPdif is possible with
appropriate G3. That is the threshold can be improved by
increasing the diversity of the underlying error-correcting
codes.

TABLE II
CALCULATION OF εBP

re

(dv , dc) (1,2) (2,4) (3,6) (4,8)
(3,4) 0.8741 0.8918 0.8794 0.8754
(3,5) 0.7594 0.8169 0.7928 0.7771
(3,6) 0.6600 0.7569 0.7327 0.7085
(4,6) 0.7335 0.7976 0.772 0.7543
(4,8) 0.5814 0.7082 0.6917 0.662

IV. JOINT DECODERS FOR AWGN CHANNEL

In this section, we present the joint decoder designs
for AWGN channel with the insight provided in previous
sections. In the following, we assume that both P and Q
are AWGN channels with the same parameters, let the
rates of two LDPC codes still be K

N , let G1, G2 be the
encoding matrices, and let H1, H2 denote their parity
check matrices. Let xN−10 (1) and xN−10 (2) be all ones
due to the channel symmetry, yN−10 (1) and yN−10 (2)
are noisy codewords through P and Q, respectively, thus
yi(1), yi(2) ∼ N (1, σ2) for i = 0, · · · , N − 1.

A. Joint decoder of identical content-replicated codes
We first present the joint decoder design and its

theoretical performance for the case when encoders are
identical, i.e., G1 = G2 and H1 = H2.

Given noisy codewords yN−10 (1), yN−10 (2) ∈ RN
of the same codeword xN−10 , the log-likely-ratio
(LLR) message from channel P, denoted as uP (i),, is
ln p(yi(1)|xi=1)

p(yi(1)|xi=0) = 2yi(1)
σ2 , i.e., Gaussian with mean 2

σ2

and variance 4
σ2 , and so is for the LLR message from

channel Q, denoted as uQ(i). Therefore, by averaging
of LLR messages from P and Q, we can obtain the
combined LLR message as u0(i) =

uP (i)+uQ(i)
2 , i.e.,

Gaussian with mean 2
σ2 and variance 2

σ2 .

The decoding result is obtained by applying sum-
product algorithm with H1 and initial LLR messages
u0(i) for i = 0, · · · , N − 1. That is, let v be a LLR
message from a variable node (with initial LLR u0(i))
to a check node, then v = u0(i) +

∑dv−1
i=1 ui, where

ui, i = 1, · · · , dv − 1, are the incoming LLRs from the
neighbors of the variable node except the check node
that gets the message v, and u is updated by tanh(u2 ) =∏dc−1
i=1 tanh(vi2 ), where vi, i = 1, · · · , dc − 1, are the

incoming LLRs from dc− 1 neighbors of a check node.
Let u(l) be the average of LLRs sent to a variable node

at the l-th round of sum-product decoding, let λ(x) and
ρ(x) be degree distribution functions for the LDPC code
used, and let σBPiden(λ, ρ) = sup{σ : u(l) → ∞ as l →
∞} be the threshold for the joint decoder. σBPiden(λ, ρ)
can be obtained through the methods provided by Fu [4],
we compare it with σBP (λ, ρ) in Table III, and we
conclude σBPiden(λ, ρ) > σBP (λ, ρ).

B. Joint decoder for different content-replicated codes

In this part, we present the joint decoder design for
different content-replicated codes. We use two (dv, dc)
regular LDPC codes to simplify the analysis of decoding
algorithm. The two content-replicated codes are different
in this way, i.e, G1 6= G2, H1 6= H2.

1) Joint decoder design: Let I1, I2,P1,P2 and
g(·) be the same notations as before, and a
combined codeword is obtained as y2N−K−10 =
(yI1 , y

N−1
0 (1)P1 , y

N−1
0 (2)P2) with initial LLR from

channel uI1 ∼ N ( 2
σ2 ,

2
σ2 ) for i ∈ I1 (that is by

combining LLRs from yN−10 (1)I1 and yN−10 (2)I2 ), and
uP1

, uP2
∼ N ( 2

σ2 ,
4
σ2 ) for i ∈ P1

⋃
P2. The decoding

result is obtained by applying sum-product decoding
algorithm on y2N−K−10 with H demonstrated in Fig. 2
with uI1 , uP1

and uP2
specified as above.

2) Theoretical performance analysis by density evo-
lution:

a) Density Evolution: For bits of y2N−K−10 , let v(l)i
be the average LLR from an information bit to parity
nodes at the l-th round, and similarly let v(l)p be that
from a parity check bit of y2N−K−10 .

For a parity node connecting to j information edges
and k parity edges, let µ(l)

i (j, k) and µ
(l)
p (j, k) be its

LLR sent to an information and a parity bit at l-round,
respectively. Thus, we have

µ
(l)
i (j, k) = 2 tanh−1

(
(tanh

v
(l)
i

2
)j−1(tanh

v
(l)
p

2
)k
)

µ(l)
p (j, k) = 2 tanh−1

(
(tanh

v
(l)
i

2
)j(tanh

v
(l)
p

2
)k−1

)
. (1)

Let u(l)i be the average LLR from a parity nodes to
an information bit at the l-round, and similarly let u(l)p
be that from a parity check node to a parity bit. Then,
by averaging LLR from a check node to a information
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and parity bit, we have

u
(l)
i =

dc∑
j=1

ρ
(i)
j,kµ

(l)
i (j, k),

u(l)p =

dc∑
j=1

ρ
(p)
j,kµ

(l)
p (j, k), (2)

where ρ(i)j,k and ρ(p)j,k are the same as previous sections.
Thus we obtain our main result of this subsection as

below:

Theorem 7. For joint decoding of different content-
replicated codes, the LLRs after the l-th round of sum-
product decoding at the variable node are given by

v
(l)
i = µ

(0)
i + (2dv − 1) · u(l−1)i ,

v(l)p = µ(0)
p + (dv − 1) · u(l−1)p ,

where µ
(0)
i is the initial LLR for information bits of

y2N−K−10 , and µ(0)
p is that for parity bits.

Check nodes are updated as equation (2) and equa-
tion (1).

b) Approximate algorithm for density evolution:
For the calculation of density evolution of LDPC codes,
there are several papers so far, such as [7], [9] and [4].
The method presented in [7] obtains thresholds with the
Fourier transform, which is computationally intensive.
The method presented in [9] obtains approximate thresh-
olds for AWGN channels with sum-product decoding
based on two assumptions of the LLR passed: one is
their densities are approximately Gaussian when the
channel is AWGN, and the other one is the so-called
symmetry condition which requires a density function
f(x) to satisfy f(x) = f(−x)ex (by enforcing this
condition for Gaussian with mean m and variance σ2,
this condition reduces to σ2 = 2m). Fu [4] pointed
out that the Gaussian assumption does not always hold
especially for LLR from check nodes.

For our analysis of density evolution, we turn to
the method presented in [4] to obtain the approximate
threshold for two reasons: one is the Gaussian assump-
tion is invalid as pointed by Fu [4], and the other
one is the symmetry condition property does not hold
for our case, which is verified by intensive numerical
calculations as shown in Fig. 7 (i.e., from this figure
clearly the assumption that σ2 = 2m does not hold).
Also the update rules stated by Theorem 7 and the initial
samples of µ(0)

i and µ
(0)
p are stationary (i.e., invariant

with respect to the iteration number), thus those update
rules preserve ergodicity. Therefore, based on the well-
known property of ergodicity, i.e., any statistical param-
eter of the random process can be arbitrarily closely
approximated by averaging over a sufficient number of
samples, we have the following approximate algorithm
for density evolution.

1) Step 0: choose a large number n, generate an initial

m of LLR
0 10 20 30 40 50 60

s
td

 o
f 
L
L
R

1.4

1.6
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2.6

2.8

3

3.2
(3,4)
(3,5)
(3,6)
(4,6)
(4,8)

Fig. 7. m and σ2 of LLR for joint decoding of different content-
replicated codes.

n samples of µ(0)
i according to N (2/σ2, 2/σ2), and

similarly generate a n samples of µ(0)
p according to

N (2/σ2, 4/σ2).
2) Step 1 (for variable nodes): For iteration 0, copy

µ
(0)
i to v

(l)
i and copy µ

(0)
p to v

(l)
p as shown by

variable update formula of Theorem 7. For other
iterations, take the n samples of u(l−1)p and u(l−1)i
from the previous iteration, randomly interleave
(dv − 1) samples u(l)p and (2dv − 1) samples u(l)i ,
respectively. Then, update v(l)i and v(l)p by variable
update formula Theorem 7.

3) Step 2 (for check nodes): For each iteration, take
the n samples of v(l)i and v(l)p as calculated above.
Randomly interleave (dc − 1) samples of them,
and then compute the n samples of u(l)i and u

(l)
p

based on equation (1) and check update formula
Theorem 7.
c) Numerical results and analysis: Let u(l) be the

average of LLRs from a check node to a variable node
at the l-th round of sum-product decoding, let λ(x)
and ρ(x) be degree distribution functions for the LDPC
code used, and define σBPdiff (λ, ρ) = sup{σ : u(l) →
∞ as l → ∞} be the threshold for our joint decoder.
We calculate σBPdiff (λ, ρ) based on the method presented
above and compare it with σBP (λ, ρ) and σBPiden(λ, ρ) in
Table III. From the table we can see that it is possible
that σBPdiff (λ, ρ) > σBPiden(λ, ρ).

C. Joint decoder for related content-replicated codes

1) Joint decoder design: Similar to the BEC case, an
intermediate generator matrix G3 with rate 1/2 is used
to connect two LDPC generator matrices G1 and G2,
and the encoding process is exactly the same as the BEC
counterpart.

The decoding process is presented here: given
yN−10 (1) and yN−10 (2), a combined codeword y2N−10

is constructed the same as before, i.e., y2N−10 =
(yN−10 (1)P1 , y

N−1
0 (1)I1 , y

N−1
0 (2)P2 , y

N−1
0 (2)I2). The

decoding result is obtained by applying sum-product
decoding algorithm to y2N−10 with the parity check
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matrix H (constructed the same as Fig.5) and the initial
LLR message u0 ∼ N ( 2

σ2 ,
4
σ2 ).

2) Theoretical performance analysis by density evo-
lution:

a) Density Evolution: For density evolution, we
assume that (d′v, d

′
c) regular LDPC code is used to

connect two (dv, dc) regular LDPC codes.
For one (dv, dc) LDPC code, let v(l)i be the average

LLR from an information bit to its parity nodes (not the
intermediate ones) at the l-round, and similarly let v(l)p
be that from a parity check bit. For a parity node of
one (dv, dc) LDPC code, let u(l)i and u

(l)
p be its LLR

sent to an information bit and a parity bit at l-round,
respectively, and similarly their values can be expressed
the same as equation (2).

For the intermediate (d′v, d
′
c) LDPC code, let x(l) be

the average LLR sent to its parity nodes, and let y(l) be
the average LLR sent to its variable nodes at the l-round
of sum-product decoding. Thus we have

x(l) = µ(0) + dv · u(l−1)i + (d′v − 1) · y(l−1),

y(l) = 2 tanh−1(tanh
x(l)

2
)d

′
c−1,

where µ(0) is the initial LLR for bits of y2N−10 .
We have the following result for the density evolution

of our joint decoder:

Theorem 8. For joint decoding of related content-
replicated codes (i.e., the two LDPC codes are both
(dv, dc) LDPC codes and the intermediate LDPC code
is an (d′v, d

′
c) LDPC code), the LLRs after the l-th round

of sum-product decoding at the variable node are given
by

v
(l)
i = µ(0) + (dv − 1) · u(l−1)i + d′v · y

(l−1)
i ,

v(l)p = µ(0) + (dv − 1) · u(l−1)p ,

where u(l)i and u(l)p are updated as equation (2).

b) Approximate algorithm for density evolution:
We present the approximate algorithm for density evo-
lution based on Theorem 8 below.

1) Step 0: choose a large number n, generate an initial
n samples of µ(0) according to N (2/σ2, 4/σ2).

2) Step 1 (for variable nodes): For iteration 0, copy
µ(0) to ν

(l)
i , x(0) and ν

(0)
p as shown by variable

update formula of Theorem 8 and equation (2).
For other iterations, take the n samples of u(l−1)p ,
u
(l−1)
i and y(l−1) from the previous iteration, ran-

domly interleave (dv − 1) samples u(l−1)p , u(l−1)i

and y(l−1), respectively. Then, update v(l)i , v(l)p and
x(l) by variable update formula of Theorem 8 and
equation (2).

3) Step 2 (for check nodes): For each iteration, take
the n samples of v(l)i , x(l) and v

(l)
p as calculated

above. Randomly interleave the samples of them,

and then compute the n samples of u(l)i , x(l) and
u
(l)
p based on equation (2) and check update formula

of Theorem 8 and equation (2).
c) Numerical results and analysis: Let σBPd′v,d′c(λ, ρ)

be the threshold for our joint decoder with (λ, ρ) be-
ing degree distribution functions for our LDPC codes
and (d′v, d

′
c) as the intermediate LDPC code, that is

σBPd′v,d′c(λ, ρ) = sup{σ : u
(l)
i → ∞ as l → ∞}. We

calculate σBPd′v,d′c(λ, ρ) based on the method presented
above and compare it with σBP (λ, ρ), σBPiden(λ, ρ) and
σBPdiff (λ, ρ) in the Table III. From the results, we can
see that it is possible that σBPd′v,d′c(λ, ρ) > σBPiden(λ, ρ)
with appropriate (d′v, d

′
c).

TABLE III
THRESHOLDS σ∗ OF AWGN CHANNELS FOR JOINT DECODERS

(dv , dc) σBP σBP
iden σBP

diff σBP
2,4 σBP

3,6 σBP
4,8

(3,4) 1.261 1.555 1.69 1.655 1.5 1.45
(3,5) 1.004 1.264 1.379 1.462 1.267 1.201
(3,6) 0.880 1.116 1.19 1.38 1.161 1.085
(4,6) 1.002 1.242 1.3 1.386 1.207 1.145
(4,8) 0.838 1.044 1.065 1.3 1.091 1.007
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