
The Performance of Polar Codes for
Multi-Level Flash Memories

Yue Li1,2, Hakim Alhussien4, Erich F. Haratsch4, and Anxiao (Andrew) Jiang1,3

1Department of Computer Science and Engineering, Texas A&M University, College Station, TX 77843, USA
2Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA

3Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
4Flash Components Division, LSI Corporation, San Jose, CA 95131, USA.

{yli, ajiang}@cse.tamu.edu

I. INTRODUCTION

To achieve higher storage density, NAND flash geometries keep
shrinking while more quantization levels are put into each floating
gate transistor. As a result, data are more prone to errors due to
process variation and noise. The urgency for improving the reliability
of flash memories calls for continuous search for optimal channel
coding schemes. Polar codes proposed by Arıkan [1] is the first
class of capacity-achieving codes with explicit constructions. Their
attractive properties make them a potential candidate for optimal
channel coding schemes. However, the practical performance of polar
codes in flash memories is still unknown, and applying polar codes
to flash channels presents many important challenges. For instance,
polar codes require the code length to be an integer power of two
which does not fit in flash pages of different sizes; to conduct rigorous
experimental analysis, the decoding performance of polar codes need
to be compared with that of other ECCs on the same random input
and output data sets from flash characterization platforms, and such
testing data are not assumed to be the codewords of any ECC;
moreover, the construction of polar codes uses the channel statistics,
and one concern is that new polar codes need to be frequently
constructed for optimized performance when flash memory endures
and the channel gradually degrades, which is prohibitively expensive
in practice. Motivated by these challenges, we report part of the
efforts towards realizing polar decoders for flash channels.

To make polar codewords fit different page sizes of flash memories,
length-adapted codes are needed. Punctured polar codes have been
studied recently [3] [4]. Puncturing has low implementation complex-
ity, but degrades decoding performance due to the additional erasures
introduced. This work explores an alternative approach for length-
adapted polar codes through shortening. We propose the schemes for
shortening both non-systematic [1] and systematic polar codes [2].
Shortening obtains a shorter codeword by assigning selected code-
word symbols of the longer codeword to predetermined values made
known both to the encoder and the decoder. The selected symbols
are removed before transmission and inserted back before decoding.
As the symbols inserted are correct, shortening does not introduce
additional noise.

Rate-compatible polar codes can be implemented by adjusting the
size of frozen sets without constructions of new codes [3]. We show
that this property guarantees the feasibility of a practical adaptive
polar decoding framework for flash channels. The decoder adaptively
switches to use lower code rates as flash memory endures, and the
code of each rate is used for a continuous range of program/erase
cycles (PECs). We prove that repeatedly polar code construction is
not necessary for such adaptive decoders. With the codes constructed
for practical flash channels, we observed the order preservation of

subchannel reliability, and our extensive experiments further demon-
strate that the decoding performance by using one code closely
approaches the optimized performance by constructing codes for
different channel parameters.

II. POLAR CODES IN FLASH MEMORIES

We propose the schemes for shortening non-systematic and sys-
tematic polar codes for flash memories with different page sizes.
The performance of shortened polar codes is further evaluated using
data obtained from a flash characterization platform. The shortened
polar codes are defined below:

Definition 1. An (N, K, K′)-shortened polar code (SPC) is a polar
code of length N − K′ obtained from an (N, K)-polar code with
block length N = 2m and information bit length K by assigning K′

predetermined input symbols to known values before encoding, and
removing K′ predetermined codeword symbols after encoding.

Let us define the notations used later in this section. Consider an
(N, K) binary polar code with N = 2m. Let the non-frozen set of the
code be A , {a1 , a2 , · · · , aK} ⊆ {1, 2, · · · , N}, and let the frozen
set Ā , {b1 , b2 , · · · , bN−K} be the complement. We also assume
that a1 < a2 < · · · < aK and b1 < b2 < · · · < bN−K . Denote the
input bits to the encoder by u , (u1 , u2 , · · · , uN) = (uA , uĀ) to
represent u, where uA , (ui : i ∈ A) contains the message bits
and uĀ , (ui : i ∈ Ā) contains the frozen bits. The codeword
x , (x1 , x2 , · · · , xN) computed by encoding is written to cells.

Shortened Non-systematic Polar Codes We first study the short-
ening of non-systematic polar codes (NSPCs) whose encoding of an
(N, K)-NSPC follows the linear transformation x , uG.

Theorem 2. (uN−K′+1 , uN−K′+2 , · · · , uN) are all 0s if and only if
(xN−K′+1 , xN−K′+2 , · · · , xN) are all 0s.

The above theorem suggests we obtain an (N, K, K′)-SPC from an
(N, K)-NSPC by setting the last K′ input bits to 0s, then removing
the last K′ codeword symbols after encoding. Among the K′ input
bits, there are K′′ non-frozen bits and K′ − K′′ frozen bits where
K′′ = |{i|i ∈ A and N − K′ + 1 6 i 6 N}|. An (N, K, K′)-SPC
obtained through the encoding above has rate K−K′′

N−K′ ∈ [ K−K′
N−K′ ,

K
N ].

Shortened Systematic Polar Codes In practice, systematic codes
are preferred because of its lower latency for reading information
bits. Systematic polar codes (SYPCs) have been proposed recently
by Arıkan [2]:

Definition 3. [2] Let the sets B ⊆ {1, 2, · · · , N}, and B̄ be the com-
plement. Therefore, u = (xB , xB̄). Let GAB be a submatrix of G such
that for each element Gi, j, the indices i ∈ A, j ∈ B. For any given non-
systematic polar encoder with parameter (A, uĀ), a systematic polar



encoder (B, uĀ) exists if there is a one-to-one mapping from uA to
xB following xB = uAGAB + uĀGĀB , xB̄ = uAGAB̄ + uĀGĀB̄ .

A systematic polar encoder defined above exists if B = A [2]. To
shorten SYPCs relies on the following theorem:

Theorem 4. Let B = A, and let uĀ be all 0s. There is
a one-to-one mapping between (uaK−K′+1

, uaK−K′+2
, · · · , uaK ) and

(xaK−K′+1
, xaK−K′+2

, · · · , xaK ).

The theorem states that it is feasible to obtain an (N, K, K′)-SPC
from an (N, K)-SYPC by letting frozen bits be all 0s, and setting
the last K′ bits of uA to predetermined values before encoding. The
last K′ bits of xA are removed after encoding. An (N, K, K′)-SYPC
obtained through the encoding above has rate K−K′

N−K′ .

Performance Evaluations We evaluated the decoding performance
of shortened polar codes with the data from the characterizations
of MLC flash chips using 2Y-nm technology from some vendor. The
characterization process at each PEC sequentially program each page
in a block with random input bits, reads the stored (and possibly
noisy) data, and erase the block for the next write. As data written to
the block are not ECC codewords, coset coding technique is needed
to view such random sequences as the codewords of the ECC being
evaluated. Fortunately, this is always feasible for polar codes:

Theorem 5. Given an (N, K, K′)-SPC from an (N, K)-NSPC with
frozen set Ā, there is a unique u′A ∈ {0, 1}K−K′ and a unique
u′Ā ∈ {0, 1}N−K−K′+K′′ , such that

(x′ , 0, · · · , 0︸ ︷︷ ︸
K′

) = ((u′A , 0, · · · , 0︸ ︷︷ ︸
K′′

)A , (u′Ā , 0, · · · , 0︸ ︷︷ ︸
K′−K′′

)Ā) ·G.

Figure 1 shows the average uncorrectable bit error rates (UBERs)
of shortened polar codes at different PECs with both hard sensing
(Figure 1(a)) and soft sensing (Figure 1(b)). As there are four kinds
of pages upper even, upper odd, lower even, and lower odd pages in
a block, and each kind of pages have different raw bit error rates, we
let each kind of pages use a different polar code. List decoding [5] is
used with list size 32. We compare with LDPC codes using min-sum
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Fig. 1. The performance of polar codes and LDPC codes at different PECs.

decoding of equivalent rates. Three rates (0.93, 0.94 and 0.95) of
interest to flash memories are used. We assume each page stores 8
length-7943 polar codewords shortened from a length-213 polar code
constructed for the channel parameters measured at the current PEC.
The PECs when decoding failures first occur are of special interest to
flash memories. The results suggest both LDPC and polar codes have
similar performance in flash memories, and soft sensing significantly
improves the endurance of MLCs.

III. ADAPTIVE POLAR DECODING FOR FLASH MEMORIES

The channels of flash memories gradually degrade as PEC grows.
Specifically, let the flash channel W(α) be parameterized by PEC
α ∈ N, W(α′) is degraded respect to W(α) for any α,α′ such that
α 6 α′. To keep error rates low, adaptive decoder is used in practice.
Let R1 > · · · > Rk−1 be k− 1 code rates of some channel code C,
and letα1 < · · · < αk be k selected PECs. For i ∈ {1, 2, · · · , k− 1},
an adaptive decoder of C changes the rate of C to Ri at αi, and uses
rate Ri consistently for any α ∈ [αi ,αi+1). We show that polar
codes is an excellent candidate for effective adaptive decoding in
flash memories in the sense that the construction of new codes is
not necessary throughout the lifetime of flash chips, and changing
code rate only requires freezing additional input bits. Let σW be the
polarization order of the subchannels of the code for channel W. If
for any PECs α,α′ such that α 6 α′, σW(α) = σW(α′) holds (the
condition is observed for flash channels in our experiments), we have
the next two theorems:
Theorem 6. For i ∈ {1, 2, · · · , k− 1}, when the decoder changes the
code rate Ri previously used atαi+1− 1 to Ri+1 atαi+1, it only needs
to further make the input bits in Fwαi+1

− Fwαi+1−1 frozen where Fwαi+1
and Fwαi+1−1 are the frozen sets of the two codes.
Theorem 7. For i ∈ {1, 2, · · · , k− 1}, given any two PECs α,α′ ∈
[αi ,αi+1), with the same code rate Ri the polar codes for W(α) and
W(α′) are equivalent.

Theorem 7 states that no construction of new code is necessary
for the PECs covered by the same code rate. Figure 2(a) shows the
block error rates of four polar codes of rate-0.94 for the upper-odd
pages constructed at PECs 3 × 103, 6 × 103, 104, and 1.3 × 104,
respectively. Each code is tested through the whole lifetime of the
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Fig. 2. The performance of polar codes constructed at fixed PECs throughout
the lifetime of the flash chips. Soft sensing is used.

flash chips. The results suggest the codes yield very similar decoding
performance due to the polarization order preservation. Figure 2(b)
compares the average UBERs of the codes constructed at 6000
PECs with the optimized performance yield by codes constructed at
different PECs. The performance of the scheme without construction
of new code closely approaches the optimized performance.
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